Molybdenite Re–Os and Zircon U–Pb Isotopic Constraints on Gold Mineralization Associated with Fine-Grained Granite in the Xiawolong Deposit, Jiaodong Peninsula, East China
Abstract
:1. Introduction
2. Geological Background and Sampling
3. Analytical Procedures
3.1. Molybdenite Re–Os Isotopic Analyses
3.2. Zircon LA-ICP-MS U–Pb Dating
4. Results
4.1. Molybdenite Re–Os Age
4.2. LA-ICP-MS Zircon U–Pb Age
5. Discussion
5.1. Timing of Au Mineralization
5.2. Constraints on the Origin of Au Mineralization in the Xiawolong Deposit
5.3. Implications for Exploration
6. Conclusions
- (1)
- Our high-precision molybdenite weighted average Re–Os model age of 118 ± 1.7 Ma (2σ) first obtained for the stockwork- and disseminated-style gold-bearing ores indicates that a discrete gold event occurred in Xiawolong deposit, ca. 4 m.y. older than that of the other gold mineralization in ca. 114 Ma in eastern Jiaodong.
- (2)
- The fine-grained granite hosting the gold-bearing ores, dated using the LA-ICP-MS zircon U–Pb method to be 118 ± 2 to 117 ± 2 Ma (2σ), is the crystallization product of granitic magma, related to the Sanfoshan batholith, in the late stage.
- (3)
- The Xiawolong gold deposit is genetically related to the Sanfoshan granitic magmatism, which has high fO2 and is rich in Au at the magmatic–hydrothermal transition stage, and the change in fO2 is most likely to make a significant contribution to the precipitation of Au.
- (4)
- The gold exploration in the ore districts formed an extensional tectonic regime that should not only focus on the fault-hosted Au but also on the fine-grained granite-hosted Au around the apical portions of the small granitic intrusions with high fO2.
- (5)
- The fine-grained granite crystallized from the late-stage granitic magma with high fO2 is also rich in Au, except for the W–Mo–Cu–Zn–U–Be–Li–Nb–Ta–Sn–Bi-elements, and the high-precision magnetometric survey could be used to find the fine-grained granite-hosted Au.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.L.; Yang, L.Q.; Guo, L.N.; Marsh, E.; Wang, J.P.; Liu, Y.; Zhang, C.; Li, R.H.; Zhang, L.; Zheng, X.L.; et al. Fluid immiscibility and gold deposition in the Xincheng deposit, Jiaodong Peninsula, China: A fluid inclusion study. Ore Geol. Rev. 2015, 65, 701–717. [Google Scholar] [CrossRef]
- Guo, P.; Santosh, M.; Li, S. Geodynamics of gold metallogeny in the Shandong Province, NE China: An integrated geological, geophysical and geochemical perspective. Gondwana Res. 2013, 24, 1172–1202. [Google Scholar] [CrossRef]
- Wang, Z.; Tranos, M.D.; Wang, X.; Zhao, R.; Zhang, R. 40Ar–39Ar geochronology and palaeostress analysis using lamprophyre dikes and quartz veins in the Sizhuang gold deposit: New implications for Early Cretaceous stress regime in the Jiaodong Peninsula, North China Craton. Geol. Mag. 2022, 160, 623–644. [Google Scholar] [CrossRef]
- Zhao, Z.; Zheng, Y.F. Remelting of subducted continental lithosphere: Petrogenesis of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt. Sci. China Ser. D Earth Sci. 2009, 52, 1295–1318. [Google Scholar] [CrossRef]
- Maruyama, S.; Isozaki, Y.; Kimura, G.; Terabayashi, M. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesisfrom 750 Ma to the present. Isl. Arc. 1997, 6, 121–142. [Google Scholar] [CrossRef]
- Zhu, R.; Chen, L.; Wu, F.; Liu, J. Timing, scale and mechanism of the destruction of the North China Craton. Sci. China Earth Sci. 2011, 54, 789–797. [Google Scholar] [CrossRef]
- Ma, L.; Jiang, S.Y.; Dai, B.Z.; Jiang, Y.H.; Hou, M.L.; Pu, W.; Xu, B. Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula, eastern China: Zircon U–Pb geochronological, geochemical and Sr–Nd–Hf isotopic evidence. Lithos 2013, 162, 251–263. [Google Scholar] [CrossRef]
- Ma, L.; Jiang, S.Y.; Hou, M.L.; Dai, B.Z.; Jiang, Y.H.; Yang, T.; Zhao, K.D.; Pu, W.; Zhu, Z.Y.; Xu, B. Geochemistry of Early Cretaceous calc-alkaline lamprophyres in the Jiaodong Peninsula: Implication for lithospheric evolution of the eastern North China Craton. Gondwana Res. 2014, 25, 859–872. [Google Scholar] [CrossRef]
- Ma, L.; Jiang, S.Y.; Hofmann, A.W.; Xu, Y.G.; Dai, B.Z.; Hou, M.L. Rapid lithospheric thinning of the North China Craton: New evidence from cretaceous mafic dikes in the Jiaodong Peninsula. Chem. Geol. 2016, 432, 1–15. [Google Scholar] [CrossRef]
- Zhang, H.F. Destruction of ancient lower crust through magma underplating beneath Jiaodong Peninsula, North China Craton: U–Pb and Hf isotopic evidence from granulite xenoliths. Gondwana Res. 2012, 21, 281–292. [Google Scholar] [CrossRef]
- Song, M.C.; Li, S.Z.; Santosh, M.; Zhao, S.; Yu, S.; Yi, P.H.; Cui, S.X.; Lv, G.X.; Xu, J.X.; Song, Y.X.; et al. Types, characteristics and metallogenesis of gold deposits in the Jiaodong Peninsula, Eastern North China Craton. Ore Geol. Rev. 2015, 65, 612–625. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Santosh, M. The dilemma of the Jiaodong gold deposits: Are they unique? Geosci. Front. 2014, 5, 139–153. [Google Scholar] [CrossRef]
- Zhu, R.X.; Fan, H.R.; Li, J.W.; Meng, Q.R.; Li, S.R. Decratonic gold deposits. Sci. China Ser. D Earth Sci. 2015, 58, 1523–1537. [Google Scholar] [CrossRef]
- Yang, K.F.; Jiang, P.; Fan, H.R.; Zuo, Y.B.; Yang, Y.H. Tectonic transition from a compressional to extensional metallogenic environment at similar to 120 Ma revealed in the Hushan gold deposit, Jiaodong, North China craton. J. Asian Earth Sci. 2018, 160, 408–425. [Google Scholar] [CrossRef]
- Goss, S.C.; Wilde, S.A.; Wu, F.Y.; Yang, J.H. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton. Lithos 2010, 120, 309–326. [Google Scholar] [CrossRef]
- Zhang, X.O.; Cawood, P.A.; Wilde, S.A.; Liu, R.Q.; Song, H.L.; Li, W. Snee LW Geology and timing of mineralization at the Cangshang gold deposit, north-western Jiaodong Peninsula, China. Miner. Depos. 2003, 38, 141–153. [Google Scholar] [CrossRef]
- Guo, L.N.; Goldfarb, R.J.; Wang, Z.L.; Li, R.H.; Chen, B.H.; Li, J.L. A comparison of Jiaojia- and Linglong-type gold deposit ore-forming fluids: Do they differ? Ore Geol. Rev. 2017, 88, 511–533. [Google Scholar] [CrossRef]
- Liu, F.G.; Cui, S.; Zheng, S.Q. Gold Detailed Exploration of No. 5 Ore Body in Xincheng Gold Deposit, Laizhou City, Shandong Province; Xincheng Gold Mine: Xincheng, China, 1994. (In Chinese) [Google Scholar]
- Lv, J.Y.; Wang, F.J.; Hu, B.Q.; Wang, X.R.; Zhang, P.; Teng, F. Geological Characteristics and Ore Prospecting Direction of A New Type Gold Deposit Hosted In Fine—Grained Granite in Kunyushan Area in Shandong Province—Setting Xiawolong Gold Depostit as an Example. Shandong Land Resour. 2017, 33, 1–6. [Google Scholar]
- Lv, J.Y.; Wang, Z.L.; Ding, Z.J.; Zhang, R.F.; Zhou, M.L.; Wu, M.C.; Bao, Z.Y.; Teng, F. Fluid Inclusions and Stable Isotope Geochemistry of Gold Mineralization Associated with Fine-Grained Granite: A Case Study of the Xiawolong Gold Deposit, Jiaodong Peninsula, China. Appl. Sci. 2022, 12, 7147. [Google Scholar] [CrossRef]
- Xie, Y.L.; Tang, Y.W.; Li, Y.X.; Qiu, L.M.; Liu, B.S.; Li, Y.; Zhang, X.X.; Han, Y.D.; Jiang, Y.C. Petrochemistry, chronology and ore-forming geological significance of fine crystalline granite in Anji polymetallic deposit of Zhejiang Province. Miner. Depos. 2012, 31, 891–902, (In Chinese with English Abstract). [Google Scholar]
- Antunes, I.M.H.R.; Neiva, A.M.R.; Ramos, J.M.F.; Silva, P.B.; Silva, M.M.V.G.; Corfu, F. Petrogenetic links between lepidolitesubtype aplite-pegmatite, aplite veins and associated granites at Segura (central Portugal). Geochemistry 2013, 73, 323–341. [Google Scholar] [CrossRef]
- Ren, H.; Wu, J.; Ye, X.; Ling, H.; Chen, P. Zircon U-Pb Age and Geochemical Characteristics of Peraluminous Fine-Grained Granite in Western Part of the Fucheng Pluton, Jiangxi Province. Geol. J. China Univ. 2013, 19, 327–345, (In Chinese with English Abstract). [Google Scholar]
- Yu, H.; Cai, Y.Q.; Li, W.L.; Huang, G.L.; Pang, Y.Q.; Jiang, W.B.; Zhang, C. LA-ICP-MS Zircon U-Pb Ages of the Fine-grained Granites in Gaoping Area, South Zhuguang Mountains and Their Geological Significances. Geol. Rev. 2017, 63, 781–792. [Google Scholar]
- Zhong, W.L.; Liu, J.D.; Zhang, C.J.; Li, Y.G. Characteristics of fine grain granitic rock and its metallogenic significance for Zhujiding copper deposit in western Sichuan, China. Geol. Bull. China 2010, 29, 771–778, (In Chinese with English Abstract). [Google Scholar]
- Zhang, X.F.; Li, W.C.; Yang, Z.; Gao, X.; Zhu, J.; Liu, W.D. Implications of aplite dykes for mineralization in the Late Cretaceous vein-type Xiuwacu W-Mo deposit in the southern Yidun Terrane, SE Tibetan Plateau. J. Asian Earth Sci. 2020, 204, 104555. [Google Scholar] [CrossRef]
- Guo, J.S.; Hua, R.M.; Huang, X.E. The Mineralization Characteristics and Prospecting Potential of the Deep Fine-Grained Tungsten-Molybdenum Granite in Southern Jiangxi. China Tungsten Ind. 2011, 26, 8–10, (In Chinese with English Abstract). [Google Scholar]
- Xie, Y.L.; Li, L.M.; Guo, X.; Meffre, S.; Chang, Z.S.; Zhang, J.; Yao, Y.; Wang, A.G. Chronology, petrochemistry of fine-grained granite and their implication to Mo-Cu mineralization in Xichong Mo deposit, Anhui Province, China. Acta Petrol. Sin. 2015, 31, 1929–1942, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Tang, J.; Zheng, Y.F.; Wu, Y.B.; Gong, B.; Liu, X. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu orogen. Precambrian Res. 2007, 152, 48–82. [Google Scholar] [CrossRef]
- Li, S.; Xiao, Y.; Liou, D.; Chen, Y.; Ge, N.; Zhang, Z.; Sun, S.; Cong, B.; Zhang, R.; Hart, S.R.; et al. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: Timing and processes. Chem. Geol. 1993, 109, 89–111. [Google Scholar] [CrossRef]
- Jahn, B.M.; Liu, D.; Wan, Y.; Song, B.; Wu, J. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. Am. J. Sci. 2008, 308, 232–269. [Google Scholar] [CrossRef]
- Zhou, X.W.; Zhao, G.C.; Wei, C.J.; Geng, Y.S.; Sun, M. EPMA U-Th-Pb monazite and SHRIMP U-Pb zircon geochronology of high-pressure pelitic granulites in the Jiaobei massif of the North China Craton. Am. J. Sci. 2008, 308, 328–350. [Google Scholar] [CrossRef]
- Faure, M.; Lin, W.; Monié, P.; Bruguier, O. Palaeoproterozoic arc magmatism and collision in Liaodong Peninsula (north-east China). Terra Nova 2004, 16, 75–80. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Fu, B.; Gong, B.; Li, L. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth-Sci. Rev. 2003, 62, 105–161. [Google Scholar] [CrossRef]
- Tang, J.; Zheng, Y.F.; Wu, Y.B.; Gong, B.; Zha, X.; Liu, X. Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China. Precambrian Res. 2008, 161, 389–418. [Google Scholar] [CrossRef]
- Wang, Z.L.; Zhao, R.X.; Zhang, Q.; Lu, H.-W.; Li, J.L.; Cheng, W. Magma mixing for the high Ba-Sr Guojialing-type granitoids in Northwest Jiaodong Peninsula: Constraints from petrogeochemistry and Sr-Nd isotopes. Acta Petrol. Sin. 2014, 30, 2595–2608, (In Chinese with English Abstract). [Google Scholar]
- Wang, Z.L.; Yang, L.Q.; Deng, J.; Santosh, M.; Zhang, H.F.; Liu, Y.; Li, R.H.; Huang, T.; Zheng, X.L.; Zhao, H. Gold-hosting high Ba-Sr granitoids in the Xincheng gold deposit, Jiaodong Peninsula, East China: Petrogenesis and tectonic setting. J. Asian Earth Sci. 2014, 95, 274–299. [Google Scholar] [CrossRef]
- Sun, W.; Ding, X.; Hu, Y.-H.; Li, X.-H. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet. Sci. Lett. 2007, 262, 533–542. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, R.; Ye, T.; Wang, Y.; Wu, M.; Wang, X.; Zhang, R.; Li, M.; Liu, Y.; Qiao, J. Petrogenesis of Early Cretaceous High Ba-Sr Granitoids in the Jiaodong Peninsula, East China: Insights into Regional Tectonic Transition. Appl. Sci. 2023, 13, 1000. [Google Scholar] [CrossRef]
- Hou, M.L.; Jiang, Y.H.; Jiang, S.Y.; Ling, H.F.; Zhao, K.D. Contrasting origins of late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula, east China: Implications for crustal thickening to delamination. Geol. Mag. 2007, 144, 619–631. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Z.F.; Zheng, Y.F.; Dai, M. Postcollisional magmatism: Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen, China. Lithos 2010, 119, 512–536. [Google Scholar] [CrossRef]
- Liu, J.; Ji, M.; Ni, J.; Shen, L.; Zheng, Y.; Chen, X.; Craddock, J.P. Inhomogeneous thinning of a cratonic lithospheric keel by tectonic extension: The Early Cretaceous Jiaodong Peninsula–Liaodong Peninsula extensional provinces, eastern North China craton. Geol. Soc. Am. Bull. 2021, 133, 159–176. [Google Scholar] [CrossRef]
- Lu, H.Z.; Archambault, G.; Li, Y.; Wei, J. Structural geochemistry of gold mineralization in the Linglong-Jiaojia district, Shandong Province, China. Chin. J. Geochem. 2007, 26, 215–234, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Li, J.L.; Zhang, T.; Yuan, J.Y. Late Mesozoic kinematic history of the Mouping-Jimo fault zone in Jiaodong peninsular, Shandong Province, East China. Geol. Rev. 2007, 53, 289–300, (In Chinese with English Abstract). [Google Scholar]
- Goldfarb, R.J.; Groves, D.I.; Gardoll, S. Orogenic gold and geologic time: A global synthesis. Ore Geol. Rev. 2001, 18, 1–75. [Google Scholar] [CrossRef]
- Qiu, Y.; Groves, D.I.; McNaughton, N.J.; Wang, L.; Zhou, T. Nature, age, and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaodong Peninsula, Eastern North China craton, China. Miner. Depos. 2002, 37, 283–305. [Google Scholar] [CrossRef]
- Hu, F.F.; Fan, H.R.; Yang, J.H.; Wan, Y.S.; Liu, D.Y.; Zhai, M.G.; Jin, C.W. Mineralizing age of the Rushan lode gold deposit in the Jiaodong Peninsula: SHRIMP U-Pb dating on hydrothermal zircon. Chin. Sci. Bull. 2004, 49, 1629–1636. [Google Scholar] [CrossRef]
- Guo, J.H.; Chen, F.K.; Zhang, X.M.; Siebel, W.; Zhai, M.G. Evolution of syn- to postcollisional magmatism from north Sulu UHP belt, eastern China: Zircon U-Pb geochronology. Acta Petrol. Sin. 2005, 21, 1281–1301, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Mcqueen, K. Ore Deposits 1 ORE DEPOSIT TYPES AND THEIR PRIMARY EXPRESSIONS. 2005. Available online: https://www.semanticscholar.org/paper/Ore-Deposits-1-ORE-DEPOSIT-TYPES-AND-THEIR-PRIMARY-McQueen/4629a6458215d6ebaa516813587542ea29c9d6a3 (accessed on 19 January 2025).
- Du, A.D.; Wu, S.Q.; Sun, D.Z.; Wang, S.X.; Qu, W.J.; Markey, R.; Stain, H.; Morgan, J.; Malinovskiy, D. Preparation and certification of Re-Os dating reference materials molybdenite HLP and JDC. Geostand. Geoanal. Res. 2004, 28, 41–52. [Google Scholar] [CrossRef]
- Du, A.D.; Qu, W.J.; Li, C.; Yang, G. A review on the development of Re-Os isotopic dating methods and techniques. Rock Miner. Anal. 2009, 28, 288–304, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Leng, C.B.; Zhang, X.C.; Zhong, H.; Hu, R.Z.; Zhou, W.D.; Li, C. Re–Os molybdenite ages and zircon Hf isotopes of the Gangjiang porphyry Cu–Mo deposit in the Tibetan Orogen. Miner. Depos. 2013, 48, 585–602. [Google Scholar] [CrossRef]
- Li, C.; Qu, W.J.; Du, A.D.; Sun, W.J. Comprehensive study on extraction of rhenium with acetone in Re-Os isotopic dating. Rock Miner. Anal. 2009, 28, 233–238, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, C.; Yang, X.; Zhao, H.; Zhou, L.M.; Du, A.D.; Li, X.W.; Qun, W.J. High precise isotopic measurements of pg–ng Os by negative ion thermal ionization mass spectrometry. Rock Miner. Anal. 2015, 34, 392–398, (In Chinese with English Abstract). [Google Scholar]
- Smoliar, M.I.; Walker, R.J.; Morgan, J.W. Re-Os ages of group IIA, IIIA, IVA, and IVB iron meteorites. Science 1996, 271, 1099–1102. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s manual for isoplot 3.75: A geochronological toolkit for Microsoft Excel. Berkeley Geochronol. Cent. Spec. Publ. 2012, 5, 75. [Google Scholar]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C.; Chen, H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Andersen, T. Correction of common lead in U–Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Wang, Z.L.; Gong, Q.J.; Sun, X.; Wu, F.F.; Wang, W.X. LA-ICP-MS Zircon U-Pb Geochronology of Quartz Porphyry from the Niutougou Gold Deposit in Songxian County, Henan Province. Acta Geol. Sin. Engl. Ed. 2012, 86, 370–382. [Google Scholar] [CrossRef]
- Li, S.; Suo, Y.; Li, X.; Zhou, J.; Santosh, M.; Wang, P.; Wang, G.; Guo, L.; Yu, S.; Lan, H.; et al. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate. Earth Sci. Rev. 2019, 192, 91–137. [Google Scholar] [CrossRef]
- Li, C.; Qu, W.J.; Du, A.D.; Zhou, L.M. Study on Re-Os isotope in molybdenite containing common Os. Acta Petrol. Sin. 2012, 28, 702–708. [Google Scholar]
- Hoskin, P.W.O.; Schaltegger, U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Miner. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Yuan, H.L.; Wu, F.S.; Gao, S.; Liu, X.M.; Xu, P.; Sun, D.Y. Zircon U-Pb dating and in situ REE analysis of Cenozoic intrusions in Northeastern China. Chin. Sci. Bull. 2003, 48, 1511–1520, (In Chinese with English Abstract). [Google Scholar]
- Ding, X.; Chen, P.R.; Chen, W.F.; Huang, H.Y.; Zhou, X.M. Single zircon LA-ICPMS U-Pb dating for Weishan granite mass in Hunan province, China: Diagenetic implications and significance. Sci. China Ser. D 2005, 35, 606–616, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Mezger, K.; Krogstad, E.J. Interpretation of discordant U-Pb zirconages: An evaluation. Metamorph. Geol. 1997, 15, 127–140. [Google Scholar] [CrossRef]
- Yuan, H.L.; Gao, S.; Liu, X.M.; Li, H.M.; Günther, D.; Wu, F.Y. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostand. Geoanal Res. 2004, 28, 353–370. [Google Scholar] [CrossRef]
- Deng, J.; Qiu, K.F.; Wang, Q.F.; Goldfarb, R.J.; Yang, L.Q.; Zi, J.W.; Geng, J.Z.; Ma, Y. In situ dating of hydrothermal monazite and implications on the geodynamic controls of ore formation in the Jiaodong gold province, eastern China. Econ. Geol. 2020, 115, 671–685. [Google Scholar] [CrossRef]
- Zhou, T.; Goldfarb, R.J.; Phillips, G.N. Tectonics and distribution of gold deposits in China. Miner. Depos. 2002, 37, 249–282. [Google Scholar] [CrossRef]
- Fan, H.R.; Zhai, M.G.; Xie, Y.H.; Yang, J.H. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China. Miner. Depos. 2003, 38, 739–750. [Google Scholar] [CrossRef]
- Li, S.R.; Santosh, M. Geodynamics of heterogeneous gold mineralization in the North China Craton and its relationship to lithospheric destruction. Gondwana Res. 2017, 50, 267–292. [Google Scholar] [CrossRef]
- Sai, S.X.; Deng, J.; Qiu, K.F.; Miggins, D.P.; Zhang, L. Textures of auriferous quartz-sulffde veins and 40Ar/39Ar geochronology of the Rushan gold deposit: Implications for processes of ore-ffuid inffltration in the eastern Jiaodong gold province, China. Ore Geol. Rev. 2020, 117, 103254. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Zhang, J.X.; Ye, S.Z. Isotopic Age Analyses on Gold Deposits in Jiaodong; Seismological Press: Beijing, China, 1994. (In Chinese) [Google Scholar]
- Zhai, J.P.; Hu, K.; Lu, J.J. Lamprophyres ore-forming fluids and H, O, Sr isotope studies of the Rushan gold deposit. Miner. Depos. 1996, 15, 358–364, (In Chinese with English Abstract). [Google Scholar]
- Li, J.W. Mesozoic large scale gold mineralization, Jiaodong Peninsula: Geochronology and geodynamic background. In Abstracts of Petrology and Geodynamics Seminar; 2004; pp. 97–100, (In Chinese). Available online: https://www.zhangqiaokeyan.com/academic-conference-cn_meeting-28557_thesis/020222033575.html (accessed on 19 January 2025).
- Li, J.W.; Vasconcelos, P.M.; Zhou, M.F.; Zhao, X.F.; Ma, C.Q. Geochronology of the Pengjiakuang and Rushan gold deposits, eastern Jiaodong gold province, northeastern China: Implications for regional mineralization and geodynamic setting. Econ. Geol. 2006, 101, 1023–1038. [Google Scholar]
- Hu, F.F.; Fan, H.R.; Yang, J.H.; Wang, F.; Zhai, M.G. The 40Ar/39Ar dating age of sericite from altered rocks in the Rushan lode gold deposit, Jiaodong Peninsula and its constraints on the gold mineralization. Bull. Miner. Petro. Geochem. 2006, 25, 109–114, (In Chinese with English Abstract). [Google Scholar]
- Zhang, L.; Weinberg, R.F.; Yang, L.Q.; Groves, D.I.; Sai, S.X.; Matchan, E.; Phillips, D.; Kohn, B.P.; Miggins, D.P.; Liu, Y.; et al. Mesozoic Orogenic Gold Mineralization in the Jiaodong Peninsula, China: A Focused Event at 120 ± 2 Ma during Cooling of Pregold Granite Intrusions. Econ. Geol. 2020, 115, 415–441. [Google Scholar] [CrossRef]
- Yang, J.H.; Zhou, X.H. The Rb-Sr isochron of ore and pyrite subsamples from Linglong gold deposit, Jiaodong Peninsula, eastern China and their geological signifcance. Chin. Sci. Bull. 2000, 45, 2272–2277. [Google Scholar] [CrossRef]
- Zheng, P.X.; Zhou, Y.; Wang, T.F.; Zhang, Y.J. Rb-Sr isochron age of sulfide rich quartz veins in Lingqueshan gold deposit from Zhaoyuan of Shandong Province. Rock Miner. Anal. 2007, 26, 356–358, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Spear, F.S.; Pyle, J.M. Apatite, monazite, and xenotime in metamorphic rocks: Geochemical, geobiological, and materials importance. Rev. Miner. Geochem. 2002, 48, 293–335. [Google Scholar] [CrossRef]
- Harrison, T.M.; Catlos, E.J.; Montel, J.M. U-Th-Pb dating of phosphate minerals. Rev. Miner. Geochem. 2002, 48, 524–555. [Google Scholar] [CrossRef]
- Cherniak, D.J. Diffusion in accessory minerals: Zircon, titanite, apatite, monazite and xenotime. Rev. Miner. Geochem. 2010, 72, 827–869. [Google Scholar] [CrossRef]
- Meldrum, A.; Abdel-Rahman, A.F.M.; Martin, R.F.; Wodicka, N. The nature, age and petrogenesis of the Cartier Batholith, northern flank of the Sudbury structure, Ontario, Canada. Precambrian Res. 1997, 82, 265–285. [Google Scholar] [CrossRef]
- Feng, C.; Qu, W.; Zhang, D.; Dang, X.; Du, A.; Li, D.; She, H. Re-Os dating of pyrite from the Tuolugou stratabound Co (Au) deposit, eastern Kunlun Orogenic Belt, northwestern China. Ore Geol. Rev. 2009, 36, 213–220. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Niu, H.C.; Shen, X.M.; Ma, L.; Yu, X. Late Paleozoic tectonic evolution and polymetallic ore-forming processes in southern Altay and northern Junggar. Miner. Depos. 2008, 27, 596–604, (In Chinese with English Abstract). [Google Scholar]
- Sun, X.; Wang, S.; Sun, W.; Shi, G.; Sun, Y.; Xiong, D.; Qu, W.; Du, A. PGE geochemistry and Re-Os dating of massive sulfide ores from the Baimazhai Cu-Ni deposit, Yunnan province, China. Lithos 2008, 105, 12–24. [Google Scholar] [CrossRef]
- Yang, Z.; Mao, J.; Chen, M.; Tong, X.; Wu, J.; Cheng, Y.; Zhao, H. Re-Os dating of molybdenite from the Kafang skarn copper (tin) deposit in the Gejiu tin polymetallic ore district and its geological significance. Acta Petrol. Sin. 2008, 24, 1937–1944, (In Chinese with English Abstract). [Google Scholar]
- Ma, W.D.; Fan, H.R.; Liu, X.; Pirajno, F.; Hu, F.F.; Yang, K.F.; Yang, Y.H.; Xu, W.G.; Jiang, P. Geochronological framework of the Xiadian gold deposit in the Jiaodong province, China: Implications for the timing of gold mineralization. Ore Geol. Rev. 2017, 86, 196–211. [Google Scholar] [CrossRef]
- Li, X.H.; Fan, H.R.; Yang, K.F.; Hollings, P.; Liu, X.; Hu, F.F.; Cai, Y.C. Pyrite textures and compositions from the Zhuangzi Au deposit, southeastern North China craton: Implication for ore-forming processes. Contrib. Mineral. Pet. 2018, 173, 73–92. [Google Scholar] [CrossRef]
- Feng, K.; Fan, H.R.; Hu, F.F.; Yang, K.F.; Liu, X.; Shangguan, Y.N.; Cai, Y.C.; Jiang, P. Involvement of anomalously As-Au-rich fluids in the mineralization of the Heilan’gou gold deposit, Jiaodong, China: Evidence from trace element mapping and, in-situ, sulfur isotope composition. J. Asian Earth Sci. 2018, 160, 304–321. [Google Scholar] [CrossRef]
- Grundler, P.V.; Brugger, J.; Etschmann, B.E.; Helm, L.; Liu, W.H.; Spry, P.G.; Tian, Y.; Testemale, D.; Pring, A. Speciation of aqueous tellurium(IV) in hydrothermal solutions and vapors, and the role of oxidized tellurium species in Te transport and gold deposition. Geochim. Cosmochim. Acta 2013, 120, 298–325. [Google Scholar] [CrossRef]
- Holwell, D.A.; Fiorentini, M.; McDonald, I.; Lu, Y.; Giuliani, A.; Smith, D.J.; Keith, M.; Locmelis, M. A metasomatized lithospheric mantle control on the metallogenic signature of post-subduction magmatism. Nat. Commun. 2019, 10, 3511. [Google Scholar] [CrossRef]
- Wang, D.Z.; Zhen, S.M.; Liu, J.J.; Wang, J.; Zha, Z.J.; Leng, C.B. Age and mineralization origin of the Zhongshangou Au deposit, Zhangjiakou goldfield, North China: Constraints from molybdenite Re-Os age and sulfides S-Pb isotopes. Ore Geol. Rev. 2023, 161, 105638. [Google Scholar] [CrossRef]
- Kelly, W.C.; Rye, R.O. Geologic fluid inclusion and stable isotope studies of the tin-tungsten deposits of Panasqueira. Portual. Econ. Geol. 1979, 74, 1721–1822. [Google Scholar] [CrossRef]
- Polya, D.A. Chemistry of the main-stage ore-forming fluids of the Panasqueira W-Cu(Ag)–Sn deposit. Port. Implic. Models Ore Genes. Econ. Geol. 1989, 84, 1134–1152. [Google Scholar] [CrossRef]
- Clark, A.H.; Kontak, D.J.; Farrar, E. The San Judas Tadeo W (-Mo-Au) deposit: Permian lithophile mineralization in southeastern Peru. Econ. Geol. 1990, 85, 1651–1668. [Google Scholar] [CrossRef]
- Cattalani, S.; Williams-Jones, A.E. C-O-H-N fluid evolution at Saint-Robert, Quebec: Implications for W-Bi-Ag mineral deposition. Can. Miner. 1991, 29, 435–452. [Google Scholar]
- Li, J.; Zhang, W.L.; Gao, M.Q.; Dang, F.P. Zircon LA-ICP-MS U-Pb isotopic dating age of fine-grained granite in Lujing uranium field and its geological significance. Miner. Resour. Geol. 2019, 33, 489–495, 501. [Google Scholar]
- Allen, F.G.; John, M.B.; Drew, S.C.; Kjell, L. Aplite diking and infiltration: A differentiation mechanism restricted to plutonic rocks. Miner. Petrol. 2020, 175, 37. [Google Scholar] [CrossRef]
- Dressel, B.C.; Chauvet, A.; Trzaskos, B.; Biondi, J.C.; Bruguier, O.; Monié, P.; Villanova, S.N.; Newton, J.B. The Passa Três lode gold deposit (Paraná State, Brazil): An example of structurally-controlled mineralisation formed during magmatic-hydrothermal transition and hosted within granite. Ore Geol. Rev. 2018, 102, 701–727. [Google Scholar] [CrossRef]
- Jeremy, P. Richards; Robert Kerrich. The Porgera gold mine, Papua New Guinea; magmatic hydrothermal to epithermal evolution of an alkalic-type precious metal deposit. Econ. Geol. 1993, 88, 1017–1052. [Google Scholar] [CrossRef]
- Robert, F. Syenite-associated disseminated gold deposits in the Abitibi greenstone belt, Canada. Miner. Depos. 2001, 36, 503–516. [Google Scholar] [CrossRef]
- Mustard, R. Granite-hosted gold mineralization at Timbarra, northern New South Wales, Australia. Miner. Depos. 2001, 36, 542–562. [Google Scholar] [CrossRef]
- Thompson, J.F.H.; Sillitoe, R.H.; Baker, T.; Lang, J.R.; Mortensen, J.K. Intrusionrelated gold deposits associated with tungsten-tin provinces. Miner. Deposita. 1999, 34, 323–334. [Google Scholar] [CrossRef]
- Pirajno, F. Hydrothermal Processes and Mineral Systems; Springer: Berlin, Germany, 2009; pp. 205–354. [Google Scholar]
- Zhu, G.; Niu, M.L.; Xie, C.L.; Wang, Y. Sinistral to normal faulting along the Tan-Lu Fault Zone: Evidence for geodynamic switching of the East China continental margin. J. Geol. 2010, 118, 277–293. [Google Scholar] [CrossRef]
- Zhi, Y.B.; Guo, R.P.; Wang, R.G.; Wang, Y.P.; Zheng, W.J.; Ma, Y.H. The application of integrated geophysical methods to the southward extension of the Jiaojia faulted zone. Geophys. Geochem. Explor. 2014, 38, 1176–1180. [Google Scholar] [CrossRef]
Sample No. | Ore Style | Sample Weight (g) | Re (ppm) | Common Os (ppb) | 187Re (ppm) | 187Os (ppb) | Model Age (Ma) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Measured | Error | Measured | Error | Measured | Error | Measured | Error | Measured | Error | |||
XWL-g1 | stockwork-style | 0.00019 | 192.6 | 1.3 | 0.7217 | 0.6775 | 121.1 | 0.8 | 234.72 | 2.39 | 116.26 | 1.84 |
XWL-g4 | disseminated-style | 0.00241 | 107.2 | 0.8 | 8.1377 | 0.1126 | 67.39 | 0.49 | 133.26 | 0.81 | 118.57 | 1.62 |
XWL1B2 | stockwork-style | 0.00025 | 33.85 | 0.34 | 0.1431 | 1.2672 | 21.28 | 0.21 | 41.30 | 0.54 | 116.40 | 2.24 |
XWL-g9 | disseminated-style | 0.00129 | 79.72 | 0.52 | 0.0043 | 0.0976 | 50.11 | 0.33 | 99.93 | 0.67 | 119.59 | 1.62 |
Spot | Concentrations (ppm) | Th/U | U–Pb Isotopic Ratios | Ages (Ma) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | Th | U | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | ||
XWL4ZK1B2 | ||||||||||||||||
XWL4ZK1B2-1 | 9 | 358 | 393 | 0.9 | 0.063 | 0.004 | 0.150 | 0.009 | 0.017 | 0.0005 | 702 | 131 | 142 | 8 | 111 | 3 |
XWL4ZK1B2-2 | 21 | 1123 | 680 | 1.7 | 0.071 | 0.004 | 0.184 | 0.010 | 0.018 | 0.0005 | 959 | 125 | 171 | 8 | 115 | 3 |
XWL4ZK1B2-3 | 12 | 478 | 518 | 0.9 | 0.057 | 0.003 | 0.134 | 0.008 | 0.017 | 0.0005 | 478 | 125 | 128 | 7 | 110 | 3 |
XWL4ZK1B2-4 | 10 | 375 | 405 | 0.9 | 0.054 | 0.003 | 0.137 | 0.008 | 0.018 | 0.0006 | 387 | 139 | 130 | 7 | 116 | 4 |
XWL4ZK1B2-5 | 17 | 112 | 135 | 0.8 | 0.067 | 0.004 | 0.932 | 0.055 | 0.104 | 0.0038 | 828 | 119 | 669 | 29 | 635 | 22 |
XWL4ZK1B2-6 | 9 | 501 | 319 | 1.6 | 0.052 | 0.004 | 0.131 | 0.009 | 0.018 | 0.0006 | 272 | 167 | 125 | 8 | 115 | 4 |
XWL4ZK1B2-7 | 11 | 507 | 402 | 1.3 | 0.084 | 0.004 | 0.200 | 0.010 | 0.017 | 0.0005 | 1302 | 108 | 185 | 9 | 111 | 3 |
XWL4ZK1B2-8 | 10 | 415 | 431 | 1.0 | 0.047 | 0.003 | 0.112 | 0.007 | 0.017 | 0.0005 | 54 | 167 | 108 | 6 | 108 | 3 |
XWL4ZK1B2-9 | 10 | 363 | 392 | 0.9 | 0.057 | 0.005 | 0.166 | 0.012 | 0.020 | 0.0007 | 483 | 193 | 156 | 10 | 126 | 4 |
XWL4ZK1B2-10 | 10 | 330 | 368 | 0.9 | 0.065 | 0.005 | 0.167 | 0.011 | 0.018 | 0.0006 | 770 | 146 | 157 | 10 | 115 | 4 |
XWL4ZK1B2-11 | 11 | 341 | 459 | 0.7 | 0.052 | 0.004 | 0.134 | 0.009 | 0.019 | 0.0006 | 276 | 172 | 128 | 8 | 122 | 4 |
XWL4ZK1B2-12 | 11 | 375 | 424 | 0.9 | 0.054 | 0.004 | 0.140 | 0.008 | 0.019 | 0.0006 | 354 | 150 | 133 | 7 | 120 | 4 |
XWL4ZK1B2-13 | 11 | 342 | 425 | 0.8 | 0.049 | 0.004 | 0.156 | 0.010 | 0.020 | 0.0007 | 150 | 194 | 147 | 9 | 129 | 4 |
XWL4ZK1B2-14 | 39 | 286 | 228 | 1.3 | 0.063 | 0.003 | 1.031 | 0.040 | 0.119 | 0.0033 | 702 | 89 | 719 | 20 | 725 | 19 |
XWL4ZK1B2-15 | 9 | 297 | 376 | 0.8 | 0.044 | 0.004 | 0.119 | 0.008 | 0.019 | 0.0006 | 114 | 8 | 120 | 4 | ||
XWL4ZK1B2-16 | 3 | 179 | 108 | 1.7 | 0.080 | 0.008 | 0.239 | 0.017 | 0.019 | 0.0008 | 1206 | 200 | 217 | 14 | 122 | 5 |
XWL4ZK1B2-17 | 8 | 303 | 345 | 0.9 | 0.048 | 0.004 | 0.123 | 0.008 | 0.018 | 0.0005 | 98 | 174 | 118 | 7 | 116 | 5 |
XWL4ZK1B2-18 | 12 | 468 | 497 | 0.9 | 0.058 | 0.004 | 0.139 | 0.009 | 0.018 | 0.0005 | 517 | 139 | 132 | 8 | 114 | 3 |
XWL4ZK1B2-19 | 9 | 505 | 329 | 1.5 | 0.052 | 0.004 | 0.132 | 0.008 | 0.018 | 0.0005 | 272 | 165 | 126 | 8 | 115 | 3 |
XWL4ZK1B2-20 | 10 | 382 | 420 | 0.9 | 0.047 | 0.003 | 0.117 | 0.008 | 0.018 | 0.0006 | 78 | 154 | 113 | 7 | 114 | 3 |
XWL4ZK1B2-21 | 10 | 407 | 365 | 1.1 | 0.045 | 0.003 | 0.117 | 0.007 | 0.018 | 0.0006 | 113 | 6 | 117 | 4 | ||
XWL4ZK1B2-22 | 13 | 681 | 445 | 1.5 | 0.064 | 0.004 | 0.154 | 0.010 | 0.018 | 0.0005 | 728 | 149 | 146 | 9 | 112 | 4 |
XWL4ZK1B2-23 | 9 | 330 | 383 | 0.9 | 0.053 | 0.004 | 0.129 | 0.009 | 0.018 | 0.0006 | 339 | 188 | 123 | 8 | 114 | 3 |
XWL4ZK1B2-24 | 6 | 193 | 212 | 0.9 | 0.089 | 0.007 | 0.218 | 0.014 | 0.018 | 0.0006 | 1406 | 150 | 200 | 12 | 117 | 4 |
XWL4ZK1B2-25 | 9 | 454 | 326 | 1.4 | 0.053 | 0.005 | 0.137 | 0.010 | 0.019 | 0.0007 | 339 | 160 | 130 | 9 | 118 | 4 |
XWL4ZK1B2-26 | 16 | 664 | 654 | 1.0 | 0.054 | 0.003 | 0.128 | 0.007 | 0.018 | 0.0005 | 365 | 136 | 122 | 6 | 113 | 3 |
XWL4ZK1B2-27 | 6 | 310 | 196 | 1.6 | 0.072 | 0.006 | 0.200 | 0.013 | 0.019 | 0.0007 | 991 | 161 | 185 | 11 | 120 | 4 |
XWL4ZK1B2-28 | 15 | 547 | 562 | 1.0 | 0.075 | 0.005 | 0.189 | 0.011 | 0.019 | 0.0005 | 1066 | 122 | 176 | 10 | 119 | 3 |
XWL4ZK1B2-29 | 19 | 1295 | 625 | 2.1 | 0.062 | 0.004 | 0.163 | 0.009 | 0.019 | 0.0006 | 681 | 116 | 153 | 8 | 121 | 4 |
XWL4ZK1B2-30 | 13 | 720 | 421 | 1.7 | 0.051 | 0.003 | 0.129 | 0.007 | 0.018 | 0.0005 | 220 | 151 | 123 | 6 | 114 | 3 |
XWL4ZK1B2-31 | 4 | 198 | 142 | 1.4 | 0.072 | 0.006 | 0.191 | 0.012 | 0.018 | 0.0006 | 989 | 174 | 177 | 10 | 117 | 4 |
XWL4ZK1B2-32 | 23 | 1277 | 672 | 1.9 | 0.107 | 0.005 | 0.275 | 0.011 | 0.019 | 0.0005 | 1743 | 80 | 246 | 9 | 122 | 3 |
XWL4ZK1B2-33 | 10 | 303 | 381 | 0.8 | 0.060 | 0.005 | 0.200 | 0.013 | 0.020 | 0.0007 | 594 | 193 | 185 | 11 | 128 | 4 |
XWL4ZK1B2-34 | 15 | 795 | 593 | 1.3 | 0.057 | 0.003 | 0.139 | 0.007 | 0.017 | 0.0005 | 476 | 134 | 132 | 7 | 110 | 3 |
XWL4ZK1B2-35 | 5 | 146 | 168 | 0.9 | 0.096 | 0.009 | 0.298 | 0.019 | 0.020 | 0.0008 | 1554 | 183 | 265 | 15 | 125 | 5 |
XWL4ZK1B2-36 | 12 | 680 | 474 | 1.4 | 0.050 | 0.003 | 0.116 | 0.006 | 0.017 | 0.0005 | 211 | 122 | 112 | 5 | 108 | 3 |
XWL4ZK1B2-37 | 11 | 482 | 461 | 1.0 | 0.048 | 0.003 | 0.110 | 0.006 | 0.017 | 0.0005 | 76 | 130 | 106 | 6 | 106 | 3 |
XWL4ZK1B2-38 | 12 | 505 | 528 | 1.0 | 0.046 | 0.002 | 0.113 | 0.005 | 0.018 | 0.0005 | 13 | 111 | 109 | 5 | 112 | 3 |
XWL4ZK1B2-39 | 14 | 686 | 533 | 1.3 | 0.049 | 0.003 | 0.112 | 0.005 | 0.017 | 0.0005 | 200 | 120 | 107 | 5 | 107 | 3 |
XWL4ZK1B2-40 | 20 | 1197 | 828 | 1.4 | 0.048 | 0.003 | 0.114 | 0.006 | 0.017 | 0.0005 | 109 | 118 | 109 | 5 | 108 | 3 |
XWL5ZK4B3 | ||||||||||||||||
XWL5ZK4B3-1 | 8 | 295 | 335 | 0.9 | 0.050 | 0.003 | 0.126 | 0.007 | 0.018 | 0.0005 | 187 | 143 | 121 | 7 | 116 | 3 |
XWL5ZK4B3-2 | 8 | 172 | 266 | 0.6 | 0.120 | 0.007 | 0.332 | 0.019 | 0.020 | 0.0006 | 1950 | 104 | 291 | 14 | 126 | 4 |
XWL5ZK4B3-3 | 6 | 317 | 234 | 1.4 | 0.055 | 0.004 | 0.131 | 0.007 | 0.017 | 0.0005 | 467 | 144 | 125 | 7 | 109 | 3 |
XWL5ZK4B3-4 | 7 | 327 | 235 | 1.4 | 0.052 | 0.003 | 0.136 | 0.008 | 0.019 | 0.0006 | 333 | 144 | 130 | 7 | 122 | 4 |
XWL5ZK4B3-5 | 9 | 429 | 394 | 1.1 | 0.050 | 0.003 | 0.121 | 0.006 | 0.018 | 0.0005 | 198 | 119 | 116 | 6 | 114 | 3 |
XWL5ZK4B3-6 | 3 | 187 | 105 | 1.8 | 0.062 | 0.005 | 0.163 | 0.011 | 0.018 | 0.0007 | 683 | 177 | 153 | 9 | 115 | 4 |
XWL5ZK4B3-7 | 6 | 347 | 201 | 1.7 | 0.048 | 0.004 | 0.120 | 0.008 | 0.017 | 0.0005 | 98 | 235 | 115 | 7 | 111 | 3 |
XWL5ZK4B3-8 | 15 | 633 | 639 | 1 | 0.052 | 0.002 | 0.124 | 0.006 | 0.017 | 0.0005 | 283 | 106 | 118 | 5 | 110 | 3 |
XWL5ZK4B3-9 | 4 | 226 | 169 | 1.3 | 0.048 | 0.004 | 0.127 | 0.009 | 0.018 | 0.0006 | 120 | 189 | 122 | 8 | 114 | 4 |
XWL5ZK4B3-10 | 7 | 336 | 275 | 1.2 | 0.049 | 0.004 | 0.120 | 0.007 | 0.018 | 0.0005 | 154 | 168 | 115 | 7 | 112 | 3 |
XWL5ZK4B3-11 | 10 | 437 | 407 | 1.1 | 0.060 | 0.004 | 0.147 | 0.008 | 0.018 | 0.0005 | 594 | 136 | 139 | 7 | 112 | 3 |
XWL5ZK4B3-12 | 15 | 1002 | 499 | 2 | 0.046 | 0.002 | 0.108 | 0.005 | 0.017 | 0.0005 | 104 | 5 | 111 | 3 | ||
XWL5ZK4B3-13 | 11 | 407 | 463 | 0.9 | 0.045 | 0.002 | 0.106 | 0.005 | 0.017 | 0.0005 | 102 | 5 | 109 | 3 | ||
XWL5ZK4B3-14 | 7 | 373 | 250 | 1.5 | 0.053 | 0.003 | 0.123 | 0.007 | 0.017 | 0.0005 | 339 | 137 | 117 | 6 | 106 | 3 |
XWL5ZK4B3-15 | 4 | 238 | 161 | 1.5 | 0.051 | 0.004 | 0.129 | 0.008 | 0.018 | 0.0006 | 256 | 174 | 123 | 7 | 113 | 4 |
XWL5ZK4B3-16 | 10 | 345 | 388 | 0.9 | 0.047 | 0.003 | 0.114 | 0.006 | 0.018 | 0.0005 | 58 | 130 | 110 | 6 | 114 | 3 |
XWL5ZK4B3-17 | 5 | 196 | 170 | 1.2 | 0.050 | 0.003 | 0.137 | 0.009 | 0.019 | 0.0006 | 198 | 157 | 131 | 8 | 119 | 4 |
XWL5ZK4B3-18 | 6 | 235 | 207 | 1.1 | 0.101 | 0.006 | 0.256 | 0.015 | 0.019 | 0.0006 | 1644 | 123 | 231 | 12 | 121 | 4 |
XWL5ZK4B3-19 | 11 | 432 | 519 | 0.8 | 0.045 | 0.002 | 0.105 | 0.006 | 0.017 | 0.0005 | 102 | 5 | 109 | 3 | ||
XWL5ZK4B3-20 | 10 | 384 | 391 | 1 | 0.045 | 0.003 | 0.108 | 0.006 | 0.018 | 0.0005 | 104 | 6 | 113 | 3 | ||
XWL5ZK4B3-21 | 3 | 130 | 123 | 1.1 | 0.048 | 0.004 | 0.144 | 0.009 | 0.017 | 0.0007 | 98 | 204 | 137 | 8 | 112 | 4 |
XWL5ZK4B3-22 | 3 | 98.6 | 102 | 1 | 0.119 | 0.010 | 0.317 | 0.023 | 0.020 | 0.0007 | 1944 | 144 | 279 | 17 | 124 | 4 |
XWL5ZK4B3-23 | 5 | 218 | 172 | 1.3 | 0.052 | 0.004 | 0.133 | 0.008 | 0.018 | 0.0006 | 333 | 166 | 127 | 7 | 117 | 4 |
XWL5ZK4B3-24 | 6 | 297 | 226 | 1.3 | 0.050 | 0.004 | 0.117 | 0.008 | 0.017 | 0.0006 | 191 | 174 | 112 | 7 | 110 | 4 |
XWL5ZK4B3-25 | 9 | 282 | 393 | 0.7 | 0.049 | 0.003 | 0.119 | 0.006 | 0.018 | 0.0005 | 200 | -71 | 114 | 6 | 114 | 3 |
XWL5ZK4B3-26 | 12 | 414 | 492 | 0.8 | 0.043 | 0.002 | 0.104 | 0.005 | 0.017 | 0.0005 | 100 | 5 | 111 | 3 | ||
XWL5ZK4B3-27 | 5 | 203 | 212 | 1 | 0.047 | 0.004 | 0.114 | 0.008 | 0.017 | 0.0006 | 61 | 174 | 110 | 7 | 109 | 4 |
XWL5ZK4B3-28 | 3 | 130 | 129 | 1.0 | 0.049 | 0.005 | 0.132 | 0.010 | 0.017 | 0.0007 | 167 | 198 | 126 | 9 | 110 | 5 |
XWL5ZK4B3-29 | 7 | 259 | 262 | 1 | 0.055 | 0.004 | 0.129 | 0.008 | 0.018 | 0.0005 | 398 | 142 | 123 | 7 | 112 | 3 |
XWL5ZK4B3-30 | 12 | 432 | 497 | 0.9 | 0.048 | 0.003 | 0.110 | 0.006 | 0.017 | 0.0005 | 83 | 128 | 105 | 5 | 108 | 3 |
XWL5ZK4B3-31 | 14 | 820 | 534 | 1.5 | 0.043 | 0.002 | 0.102 | 0.005 | 0.017 | 0.0005 | 99 | 4 | 108 | 3 | ||
XWL5ZK4B3-32 | 20 | 799 | 814 | 1 | 0.042 | 0.002 | 0.100 | 0.004 | 0.017 | 0.0005 | 97 | 4 | 111 | 3 | ||
XWL5ZK4B3-33 | 4 | 185 | 133 | 1.4 | 0.061 | 0.005 | 0.157 | 0.010 | 0.017 | 0.0006 | 628 | 161 | 148 | 9 | 110 | 4 |
XWL5ZK4B3-34 | 7 | 303 | 267 | 1.1 | 0.048 | 0.003 | 0.120 | 0.007 | 0.017 | 0.0005 | 120 | 144 | 115 | 6 | 109 | 3 |
XWL5ZK4B3-35 | 5 | 205 | 172 | 1.2 | 0.053 | 0.004 | 0.127 | 0.008 | 0.017 | 0.0006 | 332 | 161 | 122 | 7 | 111 | 4 |
XWL5ZK4B3-36 | 7 | 255 | 289 | 0.9 | 0.047 | 0.003 | 0.112 | 0.007 | 0.017 | 0.0005 | 58 | 152 | 107 | 6 | 110 | 3 |
XWL5ZK4B3-37 | 4 | 211 | 150 | 1.4 | 0.046 | 0.004 | 0.134 | 0.008 | 0.018 | 0.0006 | 128 | 7 | 116 | 4 | ||
XWL5ZK4B3-38 | 4 | 163 | 150 | 1.1 | 0.064 | 0.005 | 0.164 | 0.010 | 0.017 | 0.0005 | 743 | 169 | 154 | 9 | 107 | 3 |
XWL5ZK4B3-39 | 10 | 428 | 418 | 1 | 0.053 | 0.004 | 0.123 | 0.008 | 0.017 | 0.0005 | 317 | 157 | 118 | 7 | 109 | 3 |
XWL5ZK4B3-40 | 4 | 139 | 143 | 1 | 0.092 | 0.009 | 0.272 | 0.019 | 0.018 | 0.0007 | 1458 | 192 | 245 | 15 | 117 | 4 |
XWL5ZK4B3-41 | 5 | 229 | 211 | 1.1 | 0.045 | 0.004 | 0.121 | 0.008 | 0.017 | 0.0006 | 116 | 8 | 106 | 4 | ||
XWL5ZK4B3-42 | 23 | 946 | 886 | 1.1 | 0.045 | 0.002 | 0.104 | 0.005 | 0.017 | 0.0005 | 100 | 4 | 106 | 3 | ||
XWL5ZK4B3-43 | 11 | 518 | 428 | 1.2 | 0.049 | 0.002 | 0.107 | 0.005 | 0.016 | 0.0005 | 146 | 111 | 103 | 5 | 102 | 3 |
XWL5ZK4B3-44 | 7 | 250 | 315 | 0.8 | 0.051 | 0.003 | 0.108 | 0.006 | 0.015 | 0.0005 | 243 | 135 | 104 | 6 | 98 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Wang, Z.; Liu, P. Molybdenite Re–Os and Zircon U–Pb Isotopic Constraints on Gold Mineralization Associated with Fine-Grained Granite in the Xiawolong Deposit, Jiaodong Peninsula, East China. Appl. Sci. 2025, 15, 1199. https://doi.org/10.3390/app15031199
Wu M, Wang Z, Liu P. Molybdenite Re–Os and Zircon U–Pb Isotopic Constraints on Gold Mineralization Associated with Fine-Grained Granite in the Xiawolong Deposit, Jiaodong Peninsula, East China. Applied Sciences. 2025; 15(3):1199. https://doi.org/10.3390/app15031199
Chicago/Turabian StyleWu, Mingchao, Zhongliang Wang, and Pengyu Liu. 2025. "Molybdenite Re–Os and Zircon U–Pb Isotopic Constraints on Gold Mineralization Associated with Fine-Grained Granite in the Xiawolong Deposit, Jiaodong Peninsula, East China" Applied Sciences 15, no. 3: 1199. https://doi.org/10.3390/app15031199
APA StyleWu, M., Wang, Z., & Liu, P. (2025). Molybdenite Re–Os and Zircon U–Pb Isotopic Constraints on Gold Mineralization Associated with Fine-Grained Granite in the Xiawolong Deposit, Jiaodong Peninsula, East China. Applied Sciences, 15(3), 1199. https://doi.org/10.3390/app15031199