Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (578)

Search Parameters:
Keywords = ApoB48

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3258 KiB  
Article
Loss of SVIP Results in Metabolic Reprograming and Increased Retention of Very-Low-Density Lipoproteins in Hepatocytes
by Vandana Sekhar, Thomas Andl and Shadab A. Siddiqi
Int. J. Mol. Sci. 2025, 26(15), 7465; https://doi.org/10.3390/ijms26157465 - 1 Aug 2025
Viewed by 219
Abstract
Perturbations in the tightly regulated processes of VLDL biosynthesis and secretion can directly impact both liver and cardiovascular health. Patients with metabolic disorders have an increased risk of developing hepatic steatosis, which can lead to cirrhosis. These associated metabolic risks underscore the importance [...] Read more.
Perturbations in the tightly regulated processes of VLDL biosynthesis and secretion can directly impact both liver and cardiovascular health. Patients with metabolic disorders have an increased risk of developing hepatic steatosis, which can lead to cirrhosis. These associated metabolic risks underscore the importance of discerning the role of different cellular proteins involved in VLDL biogenesis, transport, and secretion. Small VCP-Interacting Protein (SVIP) has been identified as a component of VLDL transport vesicles and VLDL secretion. This study evaluates the cellular effects stemming from the CRISPR-Cas9-mediated depletion of SVIP in rat hepatocytes. The SVIP-knockout (KO) cells display an increased VLDL retention with elevated intracellular levels of ApoB100 and neutral lipid staining. RNA sequencing studies reveal an impaired PPARα and Nrf2 signaling in the SVIP KO cells, implying a state of metabolic reprograming, with a shift from fatty acid uptake, synthesis, and oxidation to cells favoring the activation of glucose by impaired glycogen storage and increased glucose release. Additionally, SVIP KO cells exhibit a transcriptional profile indicative of acute phase response (APR) in hepatocytes. Many inflammatory markers and genes associated with APR are upregulated in the SVIP KO hepatocytes. In accordance with an APR-like response, the cells also demonstrate an increase in mRNA expression of genes associated with protein synthesis. Together, our data demonstrate that SVIP is critical in maintaining hepatic lipid homeostasis and metabolic balance by regulating key pathways such as PPARα, Nrf2, and APR. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

14 pages, 1385 KiB  
Article
Is TGF-β Associated with Cytokines and Other Biochemical or Clinical Risk Parameters in Early-Onset CAD Patients?
by Bartosz Rakoczy, Violetta Dziedziejko, Krzysztof Safranow and Monika Rac
Biomedicines 2025, 13(8), 1840; https://doi.org/10.3390/biomedicines13081840 - 29 Jul 2025
Viewed by 332
Abstract
Background: TGF-β is an immunosuppressive cytokine. Its signaling pathway plays a role in anti-inflammatory responses. Coronary artery disease (CAD) is a clinical consequence of atherosclerosis, which manifests as chronic inflammation and involves platelet mediators, including TGF-β. The aim of this study is to [...] Read more.
Background: TGF-β is an immunosuppressive cytokine. Its signaling pathway plays a role in anti-inflammatory responses. Coronary artery disease (CAD) is a clinical consequence of atherosclerosis, which manifests as chronic inflammation and involves platelet mediators, including TGF-β. The aim of this study is to validate the diagnostic utility of TGF-β levels in relation to classical and molecular risk factors for CAD. Methods: The study group included 25 women and 75 men, all aged up to 55 and 50 years, respectively, who had been diagnosed with early-onset CAD. Fasting blood samples were taken to measure plasma levels of TGF-β, sCD36, PCSK9, TNF, VEGF, IL-6, and E-selectin using the ELISA method. Furthermore, a full lipid profile, apolipoproteins (Lp(a), ApoA1, and ApoB), C-reactive protein (hsCRP), and blood morphology were analyzed at the Central Hospital Laboratory. A physical examination was also performed. Results: Positive associations were observed between TGF-β concentration and TNF, platelet count, PTC, and triglyceride levels. TNF and platelet concentration were significant independent predictors of increased plasma TGF-β levels. None of the clinical parameters showed statistically significant associations with plasma TGF-β concentration. Conclusions: Our research has demonstrated that TGF-β levels, including circulating TNF, triglycerides, and platelets, are linked to specific biochemical risk factors in early-onset CAD cases. Full article
Show Figures

Figure 1

17 pages, 3908 KiB  
Article
Metagenomic Characterization of Gut Microbiota in Individuals with Low Cardiovascular Risk
by Argul Issilbayeva, Samat Kozhakhmetov, Zharkyn Jarmukhanov, Elizaveta Vinogradova, Nurislam Mukhanbetzhanov, Assel Meiramova, Yelena Rib, Tatyana Ivanova-Razumova, Gulzhan Myrzakhmetova, Saltanat Andossova, Ayazhan Zeinoldina, Malika Kuantkhan, Bayan Ainabekova, Makhabbat Bekbossynova and Almagul Kushugulova
J. Clin. Med. 2025, 14(14), 5097; https://doi.org/10.3390/jcm14145097 - 17 Jul 2025
Viewed by 403
Abstract
Background/Objectives: Cardiovascular diseases remain the leading cause of global mortality, with the gut microbiome emerging as a critical factor. This study aimed to characterize gut microbiome composition and metabolic pathways in individuals with low cardiovascular risk (LCR) compared to healthy controls to reveal [...] Read more.
Background/Objectives: Cardiovascular diseases remain the leading cause of global mortality, with the gut microbiome emerging as a critical factor. This study aimed to characterize gut microbiome composition and metabolic pathways in individuals with low cardiovascular risk (LCR) compared to healthy controls to reveal insights into early disease shifts. Methods: We performed shotgun metagenomic sequencing on fecal samples from 25 LCR individuals and 25 matched healthy controls. Participants underwent a comprehensive cardiovascular evaluation. Taxonomic classification used MetaPhlAn 4, and functional profiling employed HUMAnN 3. Results: Despite similar alpha diversity, significant differences in bacterial community structure were observed between groups (PERMANOVA, p < 0.05). The LCR group showed enrichment of Faecalibacterium prausnitzii (p = 0.035), negatively correlating with atherogenic markers, including ApoB (r = −0.3, p = 0.025). Conversely, Fusicatenibacter saccharivorans positively correlated with ApoB (r = 0.4, p = 0.006). Metabolic pathway analysis revealed upregulation of nucleotide biosynthesis, glycolysis, and sugar degradation pathways in the LCR group, suggesting altered metabolic activity. Conclusions: We identified distinct gut microbiome signatures in LCR individuals that may represent early alterations associated with cardiovascular disease development. The opposing correlations between F. prausnitzii and F. saccharivorans with lipid parameters highlight their potential roles in cardiometabolic health. These findings suggest gut microbiome signatures may serve as indicators of early metabolic dysregulation preceding clinically significant cardiovascular disease. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

19 pages, 428 KiB  
Article
Irisin Concentrations in Children and Adolescent Cancer Survivors and Their Relation to Metabolic, Bone, and Reproductive Profile: A Pilot Case–Control Study
by Despoina Apostolaki, Katerina Katsibardi, Vasiliki Efthymiou, Charikleia Stefanaki, Aimilia Mantzou, Stavroula Papadodima, George P. Chrousos, Antonis Kattamis and Flora Bacopoulou
J. Clin. Med. 2025, 14(14), 5098; https://doi.org/10.3390/jcm14145098 - 17 Jul 2025
Viewed by 306
Abstract
Background/Objectives: Childhood cancer survivors (CCS) experience chronic health problems and significant metabolic burden. Timely identification of CCS at higher metabolic risk requires novel biomarkers. Irisin, a novel myokine/adipokine has been associated with metabolic, bone and reproductive diseases, but its role in the [...] Read more.
Background/Objectives: Childhood cancer survivors (CCS) experience chronic health problems and significant metabolic burden. Timely identification of CCS at higher metabolic risk requires novel biomarkers. Irisin, a novel myokine/adipokine has been associated with metabolic, bone and reproductive diseases, but its role in the health of CCS is unknown. The aim of this study was to examine irisin concentrations in children and adolescent CCS (vs. controls) and their association with metabolic, bone and hormonal parameters. Methods: Children and adolescent CCS, aged 8–18 years, as well as healthy controls, underwent a detailed physical, body composition, biochemical, hormonal and serum irisin assessment at least 6 months post-treatment. Results: A total of 59 children and adolescents (36 CCS, 23 controls; mean age ± SD 12.8 ± 2.9 years; 10 prepubertal, 49 pubertal) participated in the study. Serum irisin concentrations (ng/mL) were significantly lower in CCS than controls [median (IQR) 6.54 (4.12) vs. 11.70 (8.75) ng/mL, respectively, p < 0.001]. In the total study sample, serum irisin was correlated negatively with LH (rs = −0.314, p < 0.05), CRP (rs = −0.366, p < 0.005), age (rs = −0.323, p < 0.05) and positively with ALP (rs = 0.328, p < 0.05). Serum irisin was also positively correlated with ApoB and Lpa (rs = 0.410 and 0.421, respectively, p < 0.05) in CCS, and with PTH (r = 0.542, p < 0.005) in controls. Multivariate linear regression analysis indicated parathyroid hormone (PTH) as the only independent variable affecting irisin concentrations. Conclusions: Study results reinforce the irisin–PTH interplay hypothesis. Future studies are needed to clarify the potential role of irisin as a bone biomarker of CCS in childhood and adolescence. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

19 pages, 924 KiB  
Article
High-Density Lipoprotein Cholesterol and Cognitive Function in Older Korean Adults Without Dementia: Apolipoprotein E4 as a Moderating Factor
by Young Min Choe, Hye Ji Choi, Musung Keum, Boung Chul Lee, Guk-Hee Suh, Shin Gyeom Kim, Hyun Soo Kim, Jaeuk Hwang, Dahyun Yi and Jee Wook Kim
Nutrients 2025, 17(14), 2321; https://doi.org/10.3390/nu17142321 - 14 Jul 2025
Viewed by 482
Abstract
Background: High-density lipoprotein cholesterol (HDL-C) is known for its cardiovascular and neuroprotective effects, but its association with cognitive function remains unclear, particularly in relation to genetic factors such as apolipoprotein E ε4 (APOE4). We aimed to investigate the association between serum HDL-C levels [...] Read more.
Background: High-density lipoprotein cholesterol (HDL-C) is known for its cardiovascular and neuroprotective effects, but its association with cognitive function remains unclear, particularly in relation to genetic factors such as apolipoprotein E ε4 (APOE4). We aimed to investigate the association between serum HDL-C levels and cognition and to examine the moderating effect of APOE4 on this relationship. Methods: This cross-sectional study included 196 dementia-free older adults (aged 65–90) recruited from a memory clinic and the community. Cognitive function was assessed across multiple domains using the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) battery. Serum HDL-C levels were measured, and APOE4 genotyping was performed. Multiple linear regression analyses were conducted, adjusting for age, sex, APOE4 status, education, diagnosis, vascular risk, nutritional status, physical activity, and blood biomarkers. Results: Higher HDL-C levels were significantly associated with better episodic memory (B = 0.109, 95% confidence interval [CI]: 0.029–0.189, p = 0.008) and global cognition (B = 0.130, 95% CI: 0.001–0.261, p = 0.049). These associations were significantly moderated by APOE4 status. In APOE4-positive individuals, HDL-C was strongly associated with both episodic memory (B = 0.357, 95% CI: 0.138–0.575, p = 0.003) and global cognition (B = 0.519, 95% CI: 0.220–0.818, p = 0.002), but no such associations were observed in APOE4-negative participants. Conclusions: This study indicates a significant association between serum HDL-C levels and cognitive function, particularly in episodic memory and global cognition, with APOE4 status potentially moderating this relationship. While these findings may suggest a protective role of HDL-C in individuals at increased genetic risk due to APOE4, they should be interpreted with caution given the cross-sectional design. Future longitudinal and mechanistic studies are warranted to clarify causality and potential clinical implications. Full article
(This article belongs to the Section Geriatric Nutrition)
Show Figures

Figure 1

15 pages, 1845 KiB  
Article
In Vitro Investigation of Statin Effects on Genes Associated with Severe COVID-19 in Cancerous and Non-Cancerous Cells
by Adriana Kapustová, Patrik Macášek, Bibiána Baďurová, Jana Melegová, Silvie Rimpelová, Jan Kubovčiak, Jana Šáchová, Miluše Hradilová, Michal Kolář, Libor Vítek, Tomáš Ruml and Helena Gbelcová
Biomedicines 2025, 13(7), 1714; https://doi.org/10.3390/biomedicines13071714 - 14 Jul 2025
Viewed by 334
Abstract
Background: The progressive course of coronavirus disease 2019 (COVID-19) is more frequently observed in individuals with obesity, diabetes, pulmonary and cardiovascular disease, or arterial hypertension. Many patients with these conditions are prescribed statins to treat hypercholesterolaemia. However, statins exhibit additional pleiotropic effects. The [...] Read more.
Background: The progressive course of coronavirus disease 2019 (COVID-19) is more frequently observed in individuals with obesity, diabetes, pulmonary and cardiovascular disease, or arterial hypertension. Many patients with these conditions are prescribed statins to treat hypercholesterolaemia. However, statins exhibit additional pleiotropic effects. The present study aims to investigate the effects of all eight currently existing statins on the expression of genes whose products have been reported to be directly associated with complicated COVID-19 disease. Methods: We extended the interpretation of the whole-genome DNA microarray analyses of pancreatic cancer cells MiaPaCa-2 and whole-transcriptome analyses of adipose tissue-derived mesenchymal stem cells AD-MSC that we had performed in the past. From the number of genes with altered expression induced by statins, we focused on those reported to be involved in a complicated course of COVID-19, including APOE and ACE2, genes encoding proteins involved in innate antiviral immunity and respiratory failure genes. Results: Although we did not observe statin-induced changes in the expression of APOE, ACE2 and any of the six genes clustered in the locus associated with respiratory failure in patients with COVID-19, some statins induced changes in the expression of genes encoding their interaction partners. Among genes associated with the immune system, all statins, which are effective in vitro affected the expression of genes encoding IL-6 and IL-8 and interaction partners of NF-kB, which may influence the duration of viral persistence. Conclusions: Statins act on multiple pathways simultaneously, some of which support COVID-19 development, while others suppress it. Full article
Show Figures

Figure 1

21 pages, 749 KiB  
Review
HDL Function Versus Small Dense LDL: Cardiovascular Benefits and Implications
by Claudiu Stoicescu, Cristina Vacarescu and Dragos Cozma
J. Clin. Med. 2025, 14(14), 4945; https://doi.org/10.3390/jcm14144945 - 12 Jul 2025
Viewed by 651
Abstract
High-density lipoprotein (HDL) and small dense low-density lipoprotein (sdLDL) represent two critical yet contrasting components in lipid metabolism and cardiovascular risk modulation. While HDL has traditionally been viewed as cardioprotective due to its role in reverse cholesterol transport and anti-inflammatory effects, emerging evidence [...] Read more.
High-density lipoprotein (HDL) and small dense low-density lipoprotein (sdLDL) represent two critical yet contrasting components in lipid metabolism and cardiovascular risk modulation. While HDL has traditionally been viewed as cardioprotective due to its role in reverse cholesterol transport and anti-inflammatory effects, emerging evidence emphasizes that HDL functionality—rather than concentration alone—is pivotal in atheroprotection. Conversely, sdLDL particles are increasingly recognized as highly atherogenic due to their enhanced arterial penetration, oxidative susceptibility, and prolonged plasma residence time. This review critically examined the physiological roles, pathological implications, and therapeutic interventions targeting HDL function and sdLDL burden. Lifestyle modifications, pharmacologic agents including statins, fibrates, PCSK9 inhibitors, and novel therapies such as icosapent ethyl were discussed in the context of their effects on HDL quality and sdLDL reduction. Additionally, current clinical guidelines were analyzed, highlighting a paradigm shift away from targeting HDL-C levels toward apoB-driven risk reduction. Although HDL-targeted therapies remain under investigation, the consensus supports focusing on lowering apoB-containing lipoproteins while leveraging lifestyle strategies to improve HDL functionality. In the setting of heart failure, particularly with preserved ejection fraction (HFpEF), alterations in HDL composition and elevated sdLDL levels have been linked to endothelial dysfunction and systemic inflammation, further underscoring their relevance beyond atherosclerosis. A comprehensive understanding of HDL and sdLDL dynamics is essential for optimizing cardiovascular prevention strategies. Full article
(This article belongs to the Special Issue Clinical Management of Patients with Heart Failure—2nd Edition)
Show Figures

Figure 1

15 pages, 584 KiB  
Review
The Role of Non-HDL Cholesterol and Apolipoprotein B in Cardiovascular Disease: A Comprehensive Review
by Vasiliki Katsi, Nikolaos Argyriou, Christos Fragoulis and Konstantinos Tsioufis
J. Cardiovasc. Dev. Dis. 2025, 12(7), 256; https://doi.org/10.3390/jcdd12070256 - 4 Jul 2025
Viewed by 1009
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains the leading global cause of morbidity and mortality, even in the era of aggressive low-density lipoprotein cholesterol (LDL-C) lowering. This persistent residual risk has prompted a reevaluation of atherogenic lipid markers, with non-high-density lipoprotein cholesterol (non-HDL-C) and apolipoprotein [...] Read more.
Atherosclerotic cardiovascular disease (ASCVD) remains the leading global cause of morbidity and mortality, even in the era of aggressive low-density lipoprotein cholesterol (LDL-C) lowering. This persistent residual risk has prompted a reevaluation of atherogenic lipid markers, with non-high-density lipoprotein cholesterol (non-HDL-C) and apolipoprotein B (Apo B) emerging as superior indicators of the total atherogenic particle burden. Unlike LDL-C, non-HDL-C includes cholesterol from all atherogenic lipoproteins, while Apo B reflects the total number of atherogenic particles regardless of cholesterol content. Their clinical relevance is underscored in populations with diabetes, obesity, and hypertriglyceridemia, where LDL-C may not adequately reflect cardiovascular risk. This review explores the biological, clinical, and genetic foundations of non-HDL-C and Apo B as critical tools for risk stratification and therapeutic targeting. It highlights discordance analysis, inflammatory mechanisms in atherogenesis, the influence of metabolic syndromes, and their utility in specific populations, including those with chronic kidney disease and children with familial hypercholesterolemia. Additionally, the role of lipoprotein (a), glycation in diabetes, and hypertriglyceridemia are examined as contributors to residual risk. Clinical trials and genetic studies support Apo B and non-HDL-C as more robust predictors of cardiovascular events than LDL-C. Current guidelines increasingly endorse these markers as secondary or even preferred targets in complex lipid disorders. The incorporation of Apo B and non-HDL-C into routine clinical practice, especially for patients with residual risk, represents a paradigm shift toward personalized cardiovascular prevention. The review concludes with recommendations for guideline integration, emerging therapies, and future directions in biomarker-driven cardiovascular risk management. Full article
(This article belongs to the Special Issue Effect of Lipids and Lipoproteins on Atherosclerosis)
Show Figures

Figure 1

30 pages, 1333 KiB  
Review
The APOE–Microglia Axis in Alzheimer’s Disease: Functional Divergence and Therapeutic Perspectives—A Narrative Review
by Aiwei Liu, Tingxu Wang, Liu Yang and Yu Zhou
Brain Sci. 2025, 15(7), 675; https://doi.org/10.3390/brainsci15070675 - 23 Jun 2025
Cited by 1 | Viewed by 1067
Abstract
Apolipoprotein E (APOE) alleles play distinct roles in the pathogenesis of Alzheimer’s disease (AD), with APOEε4 being the strongest genetic risk factor for late-onset AD, while APOEε2 appears protective. Despite extensive research, the precise mechanisms by which APOE alleles contribute to [...] Read more.
Apolipoprotein E (APOE) alleles play distinct roles in the pathogenesis of Alzheimer’s disease (AD), with APOEε4 being the strongest genetic risk factor for late-onset AD, while APOEε2 appears protective. Despite extensive research, the precise mechanisms by which APOE alleles contribute to AD pathology remain incompletely understood. Recent advances in multi-omics technologies and single-cell analyses have revealed that APOE alleles shape microglial phenotypes, thereby affecting amyloid clearance, inflammatory responses, tau pathology, and lipid metabolism. In this review, we provide a detailed overview of how APOE alleles differentially regulate microglial activation, inflammatory signaling, phagocytic activity, and lipid metabolism in the context of AD, with a particular focus on the APOEε4-mediated disruption of microglial homeostasis via pathways such as TREM2 signaling, NF-κB/NLRP3 activation, ACSL1 upregulation, and HIF-1α induction. These insights not only advance our understanding of APOE allele-specific contributions to AD pathology, but also highlight novel therapeutic strategies targeting the APOE–microglia axis. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

22 pages, 4566 KiB  
Article
Immune Dysregulation at the Maternal–Fetal Interface Exacerbates Adverse Pregnancy Outcomes in an Inflammatory Arthritis Murine Model
by Chenxi Yang, Wenjuan Li, Xinxin Liu, Zijun Ma, Jun Chen, Quan Gong, Zachary Braunstein, Xiaoquan Rao, Yingying Wei and Jixin Zhong
Biomedicines 2025, 13(6), 1440; https://doi.org/10.3390/biomedicines13061440 - 11 Jun 2025
Viewed by 698
Abstract
Objective: Inflammatory arthritis (IA) has been linked to a number of adverse pregnancy outcomes (APOs), but the mechanisms linking IA-related immune dysregulation to compromised reproductive success remain poorly understood. This project will examine how IA affects pregnancy outcomes and alters the associated [...] Read more.
Objective: Inflammatory arthritis (IA) has been linked to a number of adverse pregnancy outcomes (APOs), but the mechanisms linking IA-related immune dysregulation to compromised reproductive success remain poorly understood. This project will examine how IA affects pregnancy outcomes and alters the associated immune microenvironment using SKG (ZAP70W163C) mice, a mouse model that suffers from arthritis resembling human IA. Methods: IA was induced in SKG mice on a C57BL/6J background via mannan exposure. Wild-type C57BL/6 mice served as controls. Pregnancy rates, conception time, embryo resorption rates, and immune parameters (cytokine levels and splenic/lymph node/placental immune cell subsets) were analyzed. Joint pathology was evaluated via histology (HE is staining) and anti-CCP antibody levels. Flow cytometry was used to analyze immune populations within the spleen along with the associated lymphatic nodes. Results: Synovial hyperplasia, elevated anti-CCP, and systemic inflammation were all observed in IA mice. Compared to controls, IA mice demonstrated a reduced mating success rate, prolonged conception time, decreased pregnancy rates, and increased embryo resorption. IA mice showed elevated Th1/Th17 cytokines-IFN-γ, TNF-α, and IL-17, and an expansion of pro-inflammatory immune cells, including NK cells, CD11b+ myeloid cells, neutrophils, M1 macrophages, and Tc1, in the spleen/lymph nodes. Placental immune dysregulation featured increased NKT, NK, and CD4+ cell infiltration. Conversely, anti-inflammatory subsets, such as M2 macrophages and dendritic cells, were reduced. Conclusions: IA increased APOs and skewed the immune microenvironment toward a pro-inflammatory state dominated by Th1/Th17/Tc1 responses and cytotoxic cell activation. These findings highlight immune dysregulation as a key driver of IA-associated pregnancy complications, providing mechanistic insights for therapeutic intervention. Full article
(This article belongs to the Special Issue Pathogenesis, Diagnostics, and Therapeutics for Rheumatic Diseases)
Show Figures

Figure 1

25 pages, 6477 KiB  
Article
Endarachne binghamiae Ameliorates Hepatic Steatosis, Obesity, and Blood Glucose via Modulation of Metabolic Pathways and Oxidative Stress
by Sang-Seop Lee, Sang-Hoon Lee, So-Yeon Kim, Ga-Young Lee, Seung-Yun Han, Bong-Ho Lee and Yung-Choon Yoo
Int. J. Mol. Sci. 2025, 26(11), 5103; https://doi.org/10.3390/ijms26115103 - 26 May 2025
Viewed by 780
Abstract
Obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) are major contributors to the rise in metabolic disorders, particularly in developed countries. Despite the need for effective therapies, natural product-based interventions remain underexplored. This study investigated the therapeutic effects of Endarachne binghamiae, a [...] Read more.
Obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) are major contributors to the rise in metabolic disorders, particularly in developed countries. Despite the need for effective therapies, natural product-based interventions remain underexplored. This study investigated the therapeutic effects of Endarachne binghamiae, a type of brown algae, hot water extract (EB-WE) in ameliorating obesity and MASLD using high-fat diet (HFD)-induced ICR mice for an acute obesity model (4-week HFD feeding) and C57BL/6 mice for a long-term MASLD model (12-week HFD feeding). EB-WE administration significantly reduced body and organ weights and improved serum lipid markers, such as triglycerides (TG), total cholesterol (T-CHO), HDL (high-density lipoprotein), LDL (low-density lipoprotein), adiponectin, and apolipoprotein A1 (ApoA1). mRNA expression analysis of liver and skeletal muscle tissues revealed that EB-WE upregulated Ampkα and Cpt1 while downregulating Cebpα and Srebp1, suppressing lipogenic signaling. Additionally, EB-WE activated brown adipose tissue through Pgc1α and Ucp1, contributing to fatty liver alleviation. Western blot analysis of liver tissues demonstrated that EB-WE enhanced AMPK phosphorylation and modulated lipid metabolism by upregulating PGC-1α and UCP-1 and downregulating PPAR-γ, C/EBP-α, and FABP4 proteins. It also reduced oxidation markers, such as OxLDL (oxidized low-density lipoprotein) and ApoB (apolipoprotein B), while increasing ApoA1 levels. EB-WE suppressed lipid peroxidation by modulating oxidative stress markers, such as SOD (superoxide dismutase), CAT (catalase), GSH (glutathione), and MDA (malondialdehyde), in liver tissues. Furthermore, EB-WE regulated the glucose regulatory pathway in the liver and muscle by inhibiting the expression of Sirt1, Sirt4, Glut2, and Glut4 while increasing the expression of Nrf2 and Ho1. Tentative liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis for EB-WE identified bioactive compounds, such as pyropheophorbide A and digiprolactone, which are known to have antioxidant or metabolic regulatory activities. These findings suggest that EB-WE improves obesity and MASLD through regulation of metabolic pathways, glucose homeostasis, and antioxidant activity, making it a promising candidate for natural product-based functional foods and pharmaceuticals targeting metabolic diseases. Full article
(This article belongs to the Special Issue Advances and Emerging Trends in Marine Natural Products)
Show Figures

Figure 1

12 pages, 965 KiB  
Article
Genetic Spectrum of Lithuanian Familial Hypercholesterolemia Patients
by Urte Aliosaitiene, Rimante Cerkauskiene, Aleksandras Laucevicius, Migle Vilniskyte, Viktoras Sutkus, Antanas Mainelis, Birute Burnyte, Jurate Barysiene and Zaneta Petrulioniene
J. Cardiovasc. Dev. Dis. 2025, 12(5), 197; https://doi.org/10.3390/jcdd12050197 - 21 May 2025
Viewed by 476
Abstract
Background and aims: Although familial hypercholesterolemia (FH) is a common congenital cause of elevated low-density lipoprotein cholesterol (LDL-C), it remains underdiagnosed and undertreated worldwide due to its inherent genetic heterogeneity. This study aimed to determine the prevalence of genetic variants in a Lithuanian [...] Read more.
Background and aims: Although familial hypercholesterolemia (FH) is a common congenital cause of elevated low-density lipoprotein cholesterol (LDL-C), it remains underdiagnosed and undertreated worldwide due to its inherent genetic heterogeneity. This study aimed to determine the prevalence of genetic variants in a Lithuanian patient cohort with clinically diagnosed FH and evaluate their possible clinical implications. Methods: A total of 172 patients were included in the retrospective analysis. The study population comprised males and females ranging from 0 to 85 years of age, with LDL-C levels exceeding 4.9 mmol/L in adults and 3.9 mmol/L in children. The subjects were divided into four groups according to the Dutch Lipid Clinic Network (DLCN) criteria (definite, probable, possible, and unlikely). Children were analyzed separately. Next-generation sequencing (NGS) has been chosen as the most appropriate technique for genetic testing. All identified variants were categorized into three groups: (1) pathogenic, (2) likely pathogenic, and (3) variants of uncertain significance. Subjects without detected variants were classified into group (4) No mutation. Results: Women were diagnosed with FH significantly later than men (p = 0.033). Genetic testing identified FH-causing variants in 41.86% of subjects, with 20.93% carrying pathogenic variants, 9.88% likely pathogenic, and 11.05% variants of uncertain significance (VUS). Frequently identified pathogenic variants were c.654_656del p.(Gly219del) in LDLR and c.10580G>A p.(Arg3527Gln) in APOB, which are both linked to the founder effect. Genetic testing led to a reassessment of Dutch Lipid Clinic Network scores, increasing the number of individuals classified as “Definite FH” by 86.2%. Conclusions: The increasing use of NGS in FH has enhanced diagnostic capabilities and suggests population-specific genetic patterns. However, it also increases VUS detection, for which reclassification rates are still low and require strenuous efforts. Moreover, despite the benefits of genetic testing, significant gender disparities remain and require further attention. Full article
(This article belongs to the Section Genetics)
Show Figures

Graphical abstract

17 pages, 1628 KiB  
Review
Crosstalk Between Dietary Fatty Acids and MicroRNAs in the Regulation of Hepatic ApoB-Containing Lipoprotein Synthesis in Humans
by Joanna Karbowska and Zdzislaw Kochan
Int. J. Mol. Sci. 2025, 26(10), 4817; https://doi.org/10.3390/ijms26104817 - 17 May 2025
Viewed by 668
Abstract
Enhanced hepatic synthesis, assembly, and secretion of apolipoprotein B (ApoB)-containing lipoproteins elevate their plasma levels and—like their impaired clearance from the circulation—can increase cardiovascular risk. Both dietary fatty acids and microRNAs contribute to the nutrient-dependent regulation of hepatic gene expression. Together, these factors [...] Read more.
Enhanced hepatic synthesis, assembly, and secretion of apolipoprotein B (ApoB)-containing lipoproteins elevate their plasma levels and—like their impaired clearance from the circulation—can increase cardiovascular risk. Both dietary fatty acids and microRNAs contribute to the nutrient-dependent regulation of hepatic gene expression. Together, these factors may modulate lipid and ApoB-containing lipoprotein synthesis in the liver, either exacerbating or mitigating dyslipidemia. Research continues to reveal the complexity of fatty acid–microRNA networks and highlights differences in regulating hepatic ApoB-containing lipoprotein synthesis between humans and rodents. Consequently, this review focuses on studies conducted in humans or human-derived hepatocytes. Full article
(This article belongs to the Special Issue The Role of Lipids in Health and Diseases)
Show Figures

Graphical abstract

12 pages, 2921 KiB  
Article
Fenofibrate Treatment Inhibits Very-Low-Density Lipoprotein Transport Vesicle Formation by Reducing Sar1b Protein Expression
by Kayli Winterfeldt, Fahim Rejanur Tasin, Vandana Sekhar and Shadab A. Siddiqi
Int. J. Mol. Sci. 2025, 26(10), 4720; https://doi.org/10.3390/ijms26104720 - 15 May 2025
Viewed by 919
Abstract
Dyslipidemia is a well-known risk factor in the development and progression of atherosclerosis. VLDL plays a crucial role in maintaining lipid homeostasis; however, even minor fluctuations in its production, intracellular trafficking, and secretion can contribute to the progression of atherosclerosis. Fenofibrate is an [...] Read more.
Dyslipidemia is a well-known risk factor in the development and progression of atherosclerosis. VLDL plays a crucial role in maintaining lipid homeostasis; however, even minor fluctuations in its production, intracellular trafficking, and secretion can contribute to the progression of atherosclerosis. Fenofibrate is an FDA-approved drug that effectively lowers plasma triglycerides and VLDL-associated cholesterol while simultaneously increasing HDL levels. Although fenofibrate is a known PPARα agonist with several proposed mechanisms for its lipid-altering effects, its impact on the intracellular trafficking of VLDL has not yet been investigated. We observed that treatment of HepG2 cells with 50 µM of fenofibrate resulted in a significant reduction in VLDL secretion, as evidenced by a significant decrease in the secretion of 3H-labeled TAG, fluorescent TAG, and ApoB100 protein into the media. Using confocal microscopy to monitor VLDL intracellular trafficking, we observed a distinct change in VLDL triglyceride localization, suggesting delayed transport through the endoplasmic reticulum and Golgi. An immunoblot analysis revealed a decrease in Sar1B protein expression, a key regulator of COPII protein recruitment, which is essential for VTV formation and intracellular VLDL trafficking, the rate-limiting step in VLDL secretion. Our data reveal a novel mechanism by which fenofibrate alters the lipid profile by interfering with intracellular VLDL trafficking in hepatocytes. Full article
(This article belongs to the Special Issue The Role of Lipids in Human Health)
Show Figures

Figure 1

13 pages, 504 KiB  
Article
Role of Next-Generation Sequencing in Diagnosis of Familial Hypercholesterolemia in Serbia
by Sandra Singh Lukac, Vladimir Gasic, Jovana Komazec, Ivana Grubisa, Ljiljana Popovic, Iva Rasulic, Sonja Pavlovic and Katarina Lalic
Diagnostics 2025, 15(10), 1212; https://doi.org/10.3390/diagnostics15101212 - 12 May 2025
Viewed by 632
Abstract
Objectives: Familial hypercholesterolemia (FH) is an autosomal dominant disorder of lipid metabolism characterized by high levels of low-density lipoprotein (LDL). This study aimed to identify variants in the LDLR, APOB, PCSK9 and LDLRAP1 genes and to identify the genotype–phenotype correlation in [...] Read more.
Objectives: Familial hypercholesterolemia (FH) is an autosomal dominant disorder of lipid metabolism characterized by high levels of low-density lipoprotein (LDL). This study aimed to identify variants in the LDLR, APOB, PCSK9 and LDLRAP1 genes and to identify the genotype–phenotype correlation in Serbian FH patients. Method: This study included a total of 101 patients suspected of having FH based on clinical criteria. Genetic analysis was performed by the next-generation sequencing (NGS) method. Results: An overall mutation detection rate of 43.6% was achieved. Thirteen distinct variants were detected in the LDLR gene (93.2%). The most frequently observed variant was c.858C>A p.(Ser286Arg), which was present in 26% of the LDLR-positive patients. Additional variants were detected in the APOB gene. No pathogenic variants were detected in the PCSK9 or LDLRAP1 genes. Comparing genetically FH-positive and FH-negative patients, statistical significance was observed in terms of age (p < 0.001), total cholesterol (TC) (p < 0.001), low-density-lipoprotein cholesterol (LDL-C) (p < 0.001) and triglyceridemia (p < 0.001). Conclusions: This study represents the first insight into the genetic basis of FH in Serbia. Taking into consideration that variants were detected in more than one gene and that the variants in the LDLR gene were distributed across nearly all exons, the FH diagnostics in Serbia ought to be based on NGS methodology. Full article
(This article belongs to the Special Issue Advances in the Diagnosis of Inherited/Genetic Diseases)
Show Figures

Figure 1

Back to TopTop