High-Density Lipoprotein Cholesterol and Cognitive Function in Older Korean Adults Without Dementia: Apolipoprotein E4 as a Moderating Factor
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Assessments
2.3. Measuring Serum Levels of HDL-C and Other Blood Biomarkers
2.4. APOE4 Genotyping
2.5. Statistical Analysis
3. Results
3.1. Participants
3.2. Association of the Serum HDL-C Levels with Cognitive Function
3.3. APOE4 Moderation of the Association Between the Serum HDL-C Levels and Cognitive Function
3.4. Subgroup Analyses Based on APOE4 Status
3.5. Association of the Serum HDL-C Level Groups with Cognitive Function
3.6. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
APOE4 | apolipoprotein E ε4 allele |
BMI | body mass index |
CERAD | Consortium to Establish a Registry for Alzheimer’s Disease |
CN | cognitively normal |
EMS | episodic memory score |
GLAD | General Lifestyle and AD |
HDL-C | high-density lipoprotein cholesterol |
LDL-C | low-density lipoprotein cholesterol |
MCI | mild cognitive impairment |
MNA | Mini-Nutritional Assessment |
NMS | non-memory score |
PASE | Physical Activity Scale for the Elderly |
TS | total score of CERAD |
VRS | vascular risk score |
References
- Hong, B.V.; Agus, J.K.; Tang, X.; Zheng, J.J.; Romo, E.Z.; Lei, S.; Zivkovic, A.M. Precision nutrition and cardiovascular disease risk reduction: The promise of high-density lipoproteins. Curr. Atheroscler. Rep. 2023, 25, 663–677. [Google Scholar] [CrossRef] [PubMed]
- Besler, C.; Heinrich, K.; Riwanto, M.; Luscher, T.F.; Landmesser, U. High-density lipoprotein-mediated anti-atherosclerotic and endothelial-protective effects: A potential novel therapeutic target in cardiovascular disease. Curr. Pharm. Des. 2010, 16, 1480–1493. [Google Scholar] [CrossRef] [PubMed]
- Turri, M.; Marchi, C.; Adorni, M.P.; Calabresi, L.; Zimetti, F. Emerging role of HDL in brain cholesterol metabolism and neurodegenerative disorders. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2022, 1867, 159123. [Google Scholar] [CrossRef] [PubMed]
- Vitali, C.; Wellington, C.L.; Calabresi, L. HDL and cholesterol handling in the brain. Cardiovasc. Res. 2014, 103, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Saiz-Vazquez, O.; Puente-Martinez, A.; Ubillos-Landa, S.; Pacheco-Bonrostro, J.; Santabarbara, J. Cholesterol and Alzheimer’s disease risk: A meta-meta-analysis. Brain Sci. 2020, 10, 386. [Google Scholar] [CrossRef]
- Chernick, D.; Zhong, R.; Li, L. The role of HDL and HDL mimetic peptides as potential therapeutics for Alzheimer’s disease. Biomolecules 2020, 10, 1276. [Google Scholar] [CrossRef]
- Button, E.B.; Robert, J.; Caffrey, T.M.; Fan, J.; Zhao, W.; Wellington, C.L. HDL from an Alzheimer’s disease perspective. Curr. Opin. Lipidol. 2019, 30, 224–234. [Google Scholar] [CrossRef]
- Hottman, D.A.; Chernick, D.; Cheng, S.; Wang, Z.; Li, L. HDL and cognition in neurodegenerative disorders. Neurobiol. Dis. 2014, 72 Pt A, 22–36. [Google Scholar] [CrossRef]
- Hussain, S.M.; Robb, C.; Tonkin, A.M.; Lacaze, P.; Chong, T.T.; Beilin, L.J.; Yu, C.; Watts, G.F.; Ryan, J.; Ernst, M.E.; et al. Association of plasma high-density lipoprotein cholesterol level with risk of incident dementia: A cohort study of healthy older adults. Lancet Reg. Health West. Pac. 2024, 43, 100963. [Google Scholar] [CrossRef]
- Reitz, C.; Tang, M.X.; Schupf, N.; Manly, J.J.; Mayeux, R.; Luchsinger, J.A. Association of higher levels of high-density lipoprotein cholesterol in elderly individuals and lower risk of late-onset Alzheimer disease. Arch. Neurol. 2010, 67, 1491–1497. [Google Scholar] [CrossRef]
- Reitz, C.; Tang, M.X.; Luchsinger, J.; Mayeux, R. Relation of plasma lipids to Alzheimer disease and vascular dementia. Arch. Neurol. 2004, 61, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; An, Y.; Yu, H.; Che, F.; Zhang, X.; Rong, H.; Xi, Y.; Xiao, R. Sex-specific nonlinear associations between serum lipids and different domains of cognitive function in middle to older age individuals. Metab. Brain Dis. 2017, 32, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Singh-Manoux, A.; Gimeno, D.; Kivimaki, M.; Brunner, E.; Marmot, M.G. Low HDL cholesterol is a risk factor for deficit and decline in memory in midlife: The Whitehall II study. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1556–1562. [Google Scholar] [CrossRef]
- Glans, I.; Nagga, K.; Gustavsson, A.M.; Stomrud, E.; Nilsson, P.M.; Melander, O.; Hansson, O.; Palmqvist, S. Associations of modifiable and non-modifiable risk factors with cognitive functions—A prospective, population-based, 17 years follow-up study of 3,229 individuals. Alzheimers Res. Ther. 2024, 16, 135. [Google Scholar] [CrossRef] [PubMed]
- Weisgraber, K.H.; Mahley, R.W. Human apolipoprotein E: The Alzheimer’s disease connection. FASEB J. 1996, 10, 1485–1494. [Google Scholar] [CrossRef]
- Liu, C.C.; Liu, C.C.; Kanekiyo, T.; Xu, H.; Bu, G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol. 2013, 9, 106–118. [Google Scholar] [CrossRef]
- Mahley, R.W.; Huang, Y. Apolipoprotein E sets the stage: Response to injury triggers neuropathology. Neuron 2012, 76, 871–885. [Google Scholar] [CrossRef]
- Morris, J.C. The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology 1993, 43, 2412–2414. [Google Scholar] [CrossRef]
- Morris, J.C.; Heyman, A.; Mohs, R.C.; Hughes, J.P.; van Belle, G.; Fillenbaum, G.; Mellits, E.D.; Clark, C. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 1989, 39, 1159–1165. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, K.U.; Lee, D.Y.; Kim, K.W.; Jhoo, J.H.; Kim, J.H.; Lee, K.H.; Kim, S.Y.; Han, S.H.; Woo, J.I. Development of the Korean version of the Consortium to Establish a Registry for Alzheimer’s Disease Assessment Packet (CERAD-K): Clinical and neuropsychological assessment batteries. J. Gerontol. B Psychol. Sci. Soc. Sci. 2002, 57, P47–P53. [Google Scholar] [CrossRef]
- Lee, D.Y.; Lee, K.U.; Lee, J.H.; Kim, K.W.; Jhoo, J.H.; Kim, S.Y.; Yoon, J.C.; Woo, S.I.; Ha, J.; Woo, J.I. A normative study of the CERAD neuropsychological assessment battery in the Korean elderly. J. Int. Neuropsychol. Soc. 2004, 10, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Howieson, D.B.; Dame, A.; Camicioli, R.; Sexton, G.; Payami, H.; Kaye, J.A. Cognitive markers preceding Alzheimer’s dementia in the healthy oldest old. J. Am. Geriatr. Soc. 1997, 45, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Grober, E.; Lipton, R.B.; Hall, C.; Crystal, H. Memory impairment on free and cued selective reminding predicts dementia. Neurology 2000, 54, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Tromp, D.; Dufour, A.; Lithfous, S.; Pebayle, T.; Despres, O. Episodic memory in normal aging and Alzheimer disease: Insights from imaging and behavioral studies. Ageing Res. Rev. 2015, 24, 232–262. [Google Scholar] [CrossRef]
- Backman, L.; Small, B.J.; Fratiglioni, L. Stability of the preclinical episodic memory deficit in Alzheimer’s disease. Brain 2001, 124, 96–102. [Google Scholar] [CrossRef]
- Laakso, M.P.; Hallikainen, M.; Hanninen, T.; Partanen, K.; Soininen, H. Diagnosis of Alzheimer’s disease: MRI of the hippocampus vs delayed recall. Neuropsychologia 2000, 38, 579–584. [Google Scholar] [CrossRef]
- Backman, L.; Jones, S.; Berger, A.K.; Laukka, E.J.; Small, B.J. Cognitive impairment in preclinical Alzheimer’s disease: A meta-analysis. Neuropsychology 2005, 19, 520–531. [Google Scholar] [CrossRef]
- Ferman, T.J.; Smith, G.E.; Kantarci, K.; Boeve, B.F.; Pankratz, V.S.; Dickson, D.W.; Graff-Radford, N.R.; Wszolek, Z.; Van Gerpen, J.; Uitti, R.; et al. Nonamnestic mild cognitive impairment progresses to dementia with Lewy bodies. Neurology 2013, 81, 2032–2038. [Google Scholar] [CrossRef]
- Seo, E.H.; Lee, D.Y.; Lee, J.H.; Choo, I.H.; Kim, J.W.; Kim, S.G.; Park, S.Y.; Shin, J.H.; Do, Y.J.; Yoon, J.C.; et al. Total scores of the CERAD neuropsychological assessment battery: Validation for mild cognitive impairment and dementia patients with diverse etiologies. Am. J. Geriatr. Psychiatry 2010, 18, 801–809. [Google Scholar] [CrossRef]
- DeCarli, C.; Mungas, D.; Harvey, D.; Reed, B.; Weiner, M.; Chui, H.; Jagust, W. Memory impairment, but not cerebrovascular disease, predicts progression of MCI to dementia. Neurology 2004, 63, 220–227. [Google Scholar] [CrossRef]
- Choe, M.A.; Kim, J.; Jeon, M.; Chae, Y.R. Evaluation of the Korean Version of Physical Activity Scale for the Elderly (K-PASE). Korean J. Women Health Nurs. 2010, 16, 47. [Google Scholar] [CrossRef]
- Washburn, R.A.; Smith, K.W.; Jette, A.M.; Janney, C.A. The Physical Activity Scale for the Elderly (PASE): Development and evaluation. J. Clin. Epidemiol. 1993, 46, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Vellas, B.; Guigoz, Y.; Garry, P.J.; Nourhashemi, F.; Bennahum, D.; Lauque, S.; Albarede, J.L. The Mini Nutritional Assessment (MNA) and its use in grading the nutritional state of elderly patients. Nutrition 1999, 15, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, Y.; Schwarz, D.; Reinecke, H. LDL-C augments whereas HDL-C prevents inflammatory innate immune memory. Trends Mol. Med. 2022, 28, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Chen, M.T.; He, Y.Y.; Chen, M.; Liang, J.R.; Jia, F.J.; Huang, Q.; Zhou, R.; Hou, C.L. Cognitive impairment and depression precede increased HDL-C levels in middle-aged and older Chinese adults: Cross-lagged panel analyses. Lipids Health Dis. 2024, 23, 288. [Google Scholar] [CrossRef]
- Bruce, D.G.; Davis, W.A.; Davis, T.M.E. Low serum HDL-cholesterol concentrations in mid-life predict late-life cognitive impairment in type 2 diabetes: The Fremantle diabetes study. J. Diabetes Complicat. 2017, 31, 945–947. [Google Scholar] [CrossRef]
- Crichton, G.E.; Elias, M.F.; Davey, A.; Sullivan, K.J.; Robbins, M.A. Higher HDL cholesterol is associated with better cognitive function: The Maine-Syracuse study. J. Int. Neuropsychol. Soc. 2014, 20, 961–970. [Google Scholar] [CrossRef]
- Wen, J.; Hao, X.; Jia, Y.; Wang, B.; Pang, J.; Liang, F. Sex differences in the association between LDL/HDL with cognitive decline in older adults: National Health and Nutrition Examination Survey. J. Alzheimer’s Dis. 2024, 98, 1493–1502. [Google Scholar] [CrossRef]
- Lara, V.P.; Caramelli, P.; Teixeira, A.L.; Barbosa, M.T.; Carmona, K.C.; Guimaraes, H.C.; Carvalho, M.G.; Fernandes, A.P.; Gomes, K.B. Cortisol, HDL-c, VLDL-c, and APOE polymorphisms as laboratorial parameters associated to cognitive impairment no dementia (CIND) and dementia. J. Clin. Lab. Anal. 2016, 30, 374–380. [Google Scholar] [CrossRef]
- Braga, P.G.S.; Freitas, F.R.; Bachi, A.L.L.; Amirato, G.R.; Baroni, R.V.; Alves, M.; Vieira, R.P.; Vaisberg, M.W.; Aldin, M.N.; Kalil Filho, R.; et al. Regular practice of physical activity improves cholesterol transfers to high-density lipoprotein (HDL) and other HDL metabolic parameters in older adults. Nutrients 2023, 15, 4871. [Google Scholar] [CrossRef]
- Seidler, R.D. Neuroplasticity in middle age: An ecologically valid approach. Front. Hum. Neurosci. 2012, 6, 324. [Google Scholar] [CrossRef] [PubMed]
- Goh, J.O.; Park, D.C. Neuroplasticity and cognitive aging: The scaffolding theory of aging and cognition. Restor. Neurol. Neurosci. 2009, 27, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Iadecola, C. The pathobiology of vascular dementia. Neuron 2013, 80, 844–866. [Google Scholar] [CrossRef] [PubMed]
- Marchi, C.; Adorni, M.P.; Caffarra, P.; Ronda, N.; Spallazzi, M.; Barocco, F.; Galimberti, D.; Bernini, F.; Zimetti, F. ABCA1- and ABCG1-mediated cholesterol efflux capacity of cerebrospinal fluid is impaired in Alzheimer’s disease. J. Lipid Res. 2019, 60, 1449–1456. [Google Scholar] [CrossRef]
- Fagan, A.M.; Holtzman, D.M. Astrocyte lipoproteins, effects of apoE on neuronal function, and role of apoE in amyloid-beta deposition in vivo. Microsc. Res. Tech. 2000, 50, 297–304. [Google Scholar] [CrossRef]
- Montagne, A.; Zhao, Z.; Zlokovic, B.V. Alzheimer’s disease: A matter of blood-brain barrier dysfunction? J. Exp. Med. 2017, 214, 3151–3169. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Swomley, A.M.; Sultana, R. Amyloid beta-peptide (1-42)-induced oxidative stress in Alzheimer disease: Importance in disease pathogenesis and progression. Antioxid. Redox Signal. 2013, 19, 823–835. [Google Scholar] [CrossRef]
- Rosenblat, M.; Vaya, J.; Shih, D.; Aviram, M. Paraoxonase 1 (PON1) enhances HDL-mediated macrophage cholesterol efflux via the ABCA1 transporter in association with increased HDL binding to the cells: A possible role for lysophosphatidylcholine. Atherosclerosis 2005, 179, 69–77. [Google Scholar] [CrossRef]
- Chua, X.Y.; Chai, Y.L.; Chew, W.S.; Chong, J.R.; Ang, H.L.; Xiang, P.; Camara, K.; Howell, A.R.; Torta, F.; Wenk, M.R.; et al. Immunomodulatory sphingosine-1-phosphates as plasma biomarkers of Alzheimer’s disease and vascular cognitive impairment. Alzheimers Res. Ther. 2020, 12, 122. [Google Scholar] [CrossRef]
- Yassine, H.N.; Finch, C.E. APOE alleles and diet in brain aging and Alzheimer’s disease. Front. Aging Neurosci. 2020, 12, 150. [Google Scholar] [CrossRef]
- Singh, D. Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease. J. Neuroinflamm. 2022, 19, 206. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, G.; Beiser, A.S.; Choi, S.H.; Preis, S.R.; Chen, T.C.; Vorgas, D.; Au, R.; Pikula, A.; Wolf, P.A.; DeStefano, A.L.; et al. Serum brain-derived neurotrophic factor and the risk for dementia: The Framingham Heart Study. JAMA Neurol. 2014, 71, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Proitsi, P.; Lupton, M.K.; Velayudhan, L.; Newhouse, S.; Fogh, I.; Tsolaki, M.; Daniilidou, M.; Pritchard, M.; Kloszewska, I.; Soininen, H.; et al. Genetic predisposition to increased blood cholesterol and triglyceride lipid levels and risk of Alzheimer disease: A Mendelian randomization analysis. PLoS Med. 2014, 11, e1001713. [Google Scholar] [CrossRef]
- Benn, M.; Nordestgaard, B.G.; Frikke-Schmidt, R.; Tybjaerg-Hansen, A. Low LDL cholesterol, PCSK9 and HMGCR genetic variation, and risk of Alzheimer’s disease and Parkinson’s disease: Mendelian randomisation study. BMJ 2017, 357, j1648. [Google Scholar] [CrossRef]
- Group, H.T.R.C.; Bowman, L.; Hopewell, J.C.; Chen, F.; Wallendszus, K.; Stevens, W.; Collins, R.; Wiviott, S.D.; Cannon, C.P.; Braunwald, E.; et al. Effects of Anacetrapib in patients with atherosclerotic vascular disease. N. Engl. J. Med. 2017, 377, 1217–1227. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Barbaresko, J.; Rienks, J.; Nöthlings, U. Lifestyle indices and cardiovascular disease risk: A meta-analysis. Am. J. Prev. Med. 2018, 55, 555–564. [Google Scholar] [CrossRef]
- Farukhi, Z.M.; Mora, S.; Manson, J.E. Marine omega-3 fatty acids and cardiovascular disease prevention: Seeking clearer water. Mayo Clin. Proc. 2021, 96, 277–279. [Google Scholar] [CrossRef]
- Fitó, M.; Cladellas, M.; de la Torre, R.; Martí, J.; Alcántara, M.; Pujadas-Bastardes, M.; Pujadas-Bastardes, M.; Marrugat, J.; Bruguera, J.; López-Sabater, M.C.; et al. Antioxidant effect of virgin olive oil in patients with stable coronary heart disease: A randomized, crossover, controlled, clinical trial. Atherosclerosis 2005, 181, 149–158. [Google Scholar] [CrossRef]
- Basu, A.; Rhone, M.; Lyons, T.J. Berries: Emerging impact on cardiovascular health. Nutr. Rev. 2010, 68, 168–177. [Google Scholar] [CrossRef]
- Valls-Pedret, C.; Sala-Vila, A.; Serra-Mir, M.; Corella, D.; de la Torre, R.; Martínez-González, M.A.; Martínez-Lapiscina, E.H.; Fitó, M.; Pérez-Heras, A.; Salas-Salvadó, J.; et al. Mediterranean diet and age-related cognitive decline: A randomized clinical trial. JAMA Intern. Med. 2015, 175, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- Scarmeas, N.; Stern, Y.; Tang, M.X.; Mayeux, R.; Luchsinger, J.A. Mediterranean diet and risk for Alzheimer’s disease. Ann. Neurol. 2006, 59, 912–921. [Google Scholar] [CrossRef]
Overall | APOE4-Negative | APOE4-Positive | p | |
---|---|---|---|---|
n | 196 | 156 | 40 | |
Age, y | 72.65 (5.95) | 72.95 (5.96) | 71.50 (5.86) | 0.170 a |
Female, n (%) | 138 (70.41) | 106 (67.95) | 32 (80.00) | 0.136 b |
Education, y | 9.62 (4.51) | 9.61 (4.55) | 9.68 (4.38) | 0.934 a |
MCI, n (%) | 113 (57.65) | 88 (56.41) | 25 (62.50) | 0.487 b |
VRS, % | 23.98 (18.58) | 23.93 (19.14) | 24.17 (16.43) | 0.943 a |
MMSE | 25.58 (3.45) | 25.52 (3.46) | 25.83 (3.43) | 0.618 a |
Dietary pattern including food types | ||||
Protein, n (%) | 0.410 b | |||
high | 27 (13.78) | 19 (12.18) | 8 (20.00) | |
medium | 74 (37.76) | 59 (37.82) | 15 (37.50) | |
low | 95 (48.47) | 78 (50.00) | 17 (42.50) | |
Fruit or vegetables, n (%) | 0.795 b | |||
high | 119 (60.71) | 62 (39.74) | 15 (37.50) | |
low | 77 (39.29) | 94 (60.26) | 25 (62.50) | |
Decrease in food intake over the past three months | 1.00 c | |||
no, n (%) | 182 (92.86) | 145 (92.95) | 37 (92.50) | |
yes, n (%) | 14 (7.14) | 11 (7.05) | 3 (7.50) | |
Serum nutritional markers | ||||
Albumin, g/dL | 4.57 (0.26) | 4.57 (0.26) | 4.60 (0.25) | 0.465 a |
Glucose, fasting, mg/dL | 108.15 (19.94) | 108.46 (21.02) | 106.87 (14.87) | 0.660 a |
HDL-cholesterol, mg/dL | 54.64 (12.96) | 54.51 (12.89) | 55.21 (13.38) | 0.765 a |
HDL-cholesterol, n (%) | 0.481 b | |||
high | 60 (30.61) | 48 (30.77) | 12 (30.00) | |
medium | 58 (29.59) | 44 (28.21) | 14 (35.00) | |
low | 76 (38.78) | 64 (41.03) | 12 (30.00) | |
LDL-cholesterol, mg/dL | 96.41 (33.82) | 96.10 (35.42) | 97.68 (26.64) | 0.796 a |
BMI, kg/m2 | 24.82 (3.41) | 24.78 (3.41) | 25.03 (3.40) | 0.680 a |
Mini nutrition assessment | ||||
Screening score | 12.60 (2.08) | 12.54 (2.13) | 12.83 (1.91) | 0.439 a |
Assessment score | 13.01 (1.75) | 12.93 (1.78) | 13.33 (1.61) | 0.200 a |
Total score | 25.60 (3.33) | 25.46 (3.43) | 26.15 (2.89) | 0.247 a |
Physical activity | ||||
PASE total score | 64.77 (46.21) | 64.45 (47.19) | 66.04 (42.70) | 0.847 a |
Multi-domains of Cognition | ||||
Memory score | ||||
EMS | 35.10 (9.48) | 35.17 (9.47) | 34.83 (9.67) | 0.840 a |
Non-memory score | ||||
Verbal fluency (for executive function/attention) | 12.79 (4.00) | 12.75 (4.19) | 12.93 (3.19) | 0.806 a |
Modified Boston naming test (for language) | 11.53 (2.52) | 11.45 (2.54) | 11.85 (2.46) | 0.371 a |
Constructional praxis (for visual spatial skill) | 9.92 (1.80) | 9.85 (1.89) | 10.23 (1.37) | 0.237 a |
Global cognition | ||||
TS | 69.98 (15.61) | 70.00 (16.15) | 69.90 (13.52) | 0.971 a |
B | 95% CI | p | ||
---|---|---|---|---|
TS | ||||
Model 1 | 0.143 | 0.015–0.271 | 0.118 | 0.028 |
Model 2 | 0.130 | 0.001–0.261 | 0.108 | 0.049 |
EMS | ||||
Model 1 | 0.120 | 0.041–0.198 | 0.163 | 0.003 |
Model 2 | 0.109 | 0.029–0.189 | 0.149 | 0.008 |
NMS | ||||
Verbal fluency | ||||
Model 1 | 0.031 | −0.008–0.070 | 0.100 | 0.118 |
Model 2 | 0.034 | −0.006–0.075 | 0.111 | 0.095 |
Boston naming test | ||||
Model 1 | −0.001 | −0.027–0.025 | −0.004 | 0.950 |
Model 2 | −0.001 | −0.028–0.026 | −0.007 | 0.920 |
Constructional praxis | ||||
Model 1 | 0.019 | 0.001–0.036 | 0.133 | 0.039 |
Model 2 | 0.018 | 0.001–0.037 | 0.131 | 0.053 |
B | 95% CI | p | ||
---|---|---|---|---|
TS | ||||
HDL-cholesterol level | 0.063 | −0.077–0.204 | 0.052 | 0.375 |
APOE4-positivity | −22.733 | −39.451–−6.015 | −0.571 | 0.008 |
HDL-cholesterol level APOE4-positivity | 0.379 | 0.082–0.675 | 0.540 | 0.013 |
EMS | ||||
HDL-cholesterol level | 0.051 | −0.032–0.134 | 0.072 | 0.228 |
APOE4-positivity | −15.813 | −25.820–−5.806 | −0.677 | 0.002 |
HDL-cholesterol APOE4-positivity | 0.236 | 0.057–0.416 | 0.570 | 0.010 |
NMS | ||||
Verbal fluency | ||||
HDL-cholesterol level | 0.017 | −0.026–0.060 | 0.054 | 0.445 |
APOE4-positivity | −3.404 | −8.541–1.733 | −0.334 | 0.193 |
HDL-cholesterol APOE4-positivity | 0.067 | −0.024–0.158 | 0.376 | 0.148 |
Boston naming test | ||||
HDL-cholesterol level | −0.009 | −0.037–0.020 | −0.044 | 0.557 |
APOE4-positivity | −1.770 | −5.190–1.650 | −0.275 | 0.309 |
HDL-cholesterol APOE4-positivity | 0.037 | −0.024–0.098 | 0.326 | 0.233 |
Constructional praxis | ||||
HDL-cholesterol level | 0.016 | −0.003–0.036 | 0.117 | 0.096 |
APOE4-positivity | −1.608 | −3.909–0.694 | −0.349 | 0.170 |
HDL-cholesterol APOE4-positivity | 0.033 | −0.008–0.074 | 0.408 | 0.112 |
B | 95% CI | p | ||
---|---|---|---|---|
TS | ||||
APOE4-negative | ||||
Model 1 | 0.034 | −0.1120–0.180 | 0.027 | 0.648 |
Model 2 | 0.025 | −0.0120–0.170 | 0.020 | 0.734 |
APOE4-positive | ||||
Model 1 | 0.577 | 0.376–0.778 | 0.640 | <0.001 |
Model 2 | 0.519 | 0.220–0.818 | 0.575 | 0.002 |
EMS | ||||
APOE4-negative | ||||
Model 1 | 0.064 | −0.025–0.154 | 0.088 | 0.156 |
Model 2 | 0.057 | −0.033–0.148 | 0.078 | 0.211 |
APOE4-positive | ||||
Model 1 | 0.385 | 0.232–0.537 | 0.597 | <0.001 |
Model 2 | 0.357 | 0.138–0.575 | 0.554 | 0.003 |
B | 95% CI | p | ||
---|---|---|---|---|
TS | ||||
Overall | ||||
Model 1 | ||||
High HDL-cholesterol | 4.671 | 0.244–9.097 | 0.138 | 0.039 |
Medium HDL-cholesterol | 2.710 | −1.759–7.178 | 0.079 | 0.233 |
Low HDL-cholesterol | Reference | |||
Model 2 | ||||
High HDL-cholesterol | 3.669 | −0.215–7.552 | 0.108 | 0.064 |
Medium HDL-cholesterol | 2.347 | −1.516–6.211 | 0.069 | 0.232 |
Low HDL-cholesterol | Reference | |||
APOE4-negative | ||||
Model 1 | ||||
High HDL-cholesterol | 1.141 | −3.276–5.557 | 0.033 | 0.611 |
Medium HDL-cholesterol | 0.250 | −4.116–4.616 | 0.007 | 0.910 |
Low HDL-cholesterol | Reference | |||
Model 2 | ||||
High HDL-cholesterol | 1.019 | −3.414–5.452 | 0.029 | 0.650 |
Medium HDL-cholesterol | −0.461 | −4.796–3.875 | −0.013 | 0.834 |
Low HDL-cholesterol | Reference | |||
APOE4-positive | ||||
Model 1 | ||||
High HDL-cholesterol | 16.235 | 8.473–23.997 | 0.623 | <0.001 |
Medium HDL-cholesterol | 12.061 | 4.409–19.712 | 0.472 | 0.003 |
Low HDL-cholesterol | Reference | |||
Model 2 | ||||
High HDL-cholesterol | 13.945 | 3.754–24.137 | 0.535 | 0.010 |
Medium HDL-cholesterol | 10.866 | 1.692–20.039 | 0.425 | 0.022 |
Low HDL-cholesterol | Reference | |||
EMS | ||||
Overall | ||||
Model 1 | ||||
High HDL-cholesterol | 3.555 | 1.131–5.978 | 0.174 | 0.004 |
Medium HDL-cholesterol | 2.217 | −0.153–4.586 | 0.107 | 0.067 |
Low HDL-cholesterol | Reference | |||
Model 2 | ||||
High HDL-cholesterol | 3.239 | 0.766–5.713 | 0.158 | 0.011 |
Medium HDL-cholesterol | 2.162 | −0.208–4.532 | 0.105 | 0.074 |
Low HDL-cholesterol | Reference | |||
APOE4-negative | ||||
Model 1 | ||||
High HDL-cholesterol | 2.230 | −0.460–4.919 | 0.110 | 0.104 |
Medium HDL-cholesterol | 1.161 | −1.498–3.820 | 0.056 | 0.390 |
Low HDL-cholesterol | Reference | |||
Model 2 | ||||
High HDL-cholesterol | 2.105 | −0.640–4.849 | 0.104 | 0.132 |
Medium HDL-cholesterol | 1.009 | −1.675–3.693 | 0.049 | 0.459 |
Low HDL-cholesterol | Reference | |||
APOE4-positive | ||||
Model 1 | ||||
High HDL-cholesterol | 11.815 | 6.432–17.198 | 0.634 | <0.001 |
Medium HDL-cholesterol | 9.376 | 4.069–14.682 | 0.513 | 0.001 |
Low HDL-cholesterol | Reference | |||
Model 2 | ||||
High HDL-cholesterol | 10.677 | 3.632–17.722 | 0.573 | 0.005 |
Medium HDL-cholesterol | 8.576 | 2.235–14.917 | 0.470 | 0.010 |
Low HDL-cholesterol | Reference |
B | 95% CI | p | ||
---|---|---|---|---|
TS | ||||
Overall a | ||||
Model 1 | 0.145 | 0.015–0.274 | 0.125 | 0.029 |
Model 2 | 0.119 | −0.012–0.250 | 0.103 | 0.074 |
APOE4-negative b | ||||
Model 1 | −0.036 | −0.173–0.102 | −0.030 | 0.610 |
Model 2 | −0.045 | −0.183–0.093 | −0.038 | 0.521 |
APOE4-positive b | ||||
Model 1 | 0.585 | 0.378–0.792 | 0.642 | <0.001 |
Model 2 | 0.527 | 0.222–0.832 | 0.578 | 0.002 |
EMS | ||||
Overall a | ||||
Model 1 | 0.116 | 0.038–0.194 | 0.166 | 0.004 |
Model 2 | 0.104 | 0.024–0.183 | 0.148 | 0.011 |
APOE4-negative b | ||||
Model 1 | 0.025 | −0.059–0.109 | 0.037 | 0.556 |
Model 2 | 0.019 | −0.067–0.104 | 0.027 | 0.665 |
APOE4-positive b | ||||
Model 1 | 0.379 | 0.222–0.535 | 0.576 | <0.001 |
Model 2 | 0.354 | 0.130–0.579 | 0.539 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choe, Y.M.; Choi, H.J.; Keum, M.; Lee, B.C.; Suh, G.-H.; Kim, S.G.; Kim, H.S.; Hwang, J.; Yi, D.; Kim, J.W. High-Density Lipoprotein Cholesterol and Cognitive Function in Older Korean Adults Without Dementia: Apolipoprotein E4 as a Moderating Factor. Nutrients 2025, 17, 2321. https://doi.org/10.3390/nu17142321
Choe YM, Choi HJ, Keum M, Lee BC, Suh G-H, Kim SG, Kim HS, Hwang J, Yi D, Kim JW. High-Density Lipoprotein Cholesterol and Cognitive Function in Older Korean Adults Without Dementia: Apolipoprotein E4 as a Moderating Factor. Nutrients. 2025; 17(14):2321. https://doi.org/10.3390/nu17142321
Chicago/Turabian StyleChoe, Young Min, Hye Ji Choi, Musung Keum, Boung Chul Lee, Guk-Hee Suh, Shin Gyeom Kim, Hyun Soo Kim, Jaeuk Hwang, Dahyun Yi, and Jee Wook Kim. 2025. "High-Density Lipoprotein Cholesterol and Cognitive Function in Older Korean Adults Without Dementia: Apolipoprotein E4 as a Moderating Factor" Nutrients 17, no. 14: 2321. https://doi.org/10.3390/nu17142321
APA StyleChoe, Y. M., Choi, H. J., Keum, M., Lee, B. C., Suh, G.-H., Kim, S. G., Kim, H. S., Hwang, J., Yi, D., & Kim, J. W. (2025). High-Density Lipoprotein Cholesterol and Cognitive Function in Older Korean Adults Without Dementia: Apolipoprotein E4 as a Moderating Factor. Nutrients, 17(14), 2321. https://doi.org/10.3390/nu17142321