Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = Andisol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6621 KB  
Article
Differential Induction of Resistance Mechanisms by Methyl Jasmonate in Two Vaccinium corymbosum L. Cultivars Under Combined Water Deficit and Aluminum Toxicity
by Cristina Cáceres, Crystal Cazor-Curilef, Patricio Delgado-Santibañez, Jorge González-Villagra, Paz Cárcamo-Fincheira, Mabel Delgado, Alejandra Ribera-Fonseca, Claudio Inostroza-Blancheteau, Leon A. Bravo, Adriano Nunes-Nesi and Marjorie Reyes-Díaz
Plants 2025, 14(20), 3202; https://doi.org/10.3390/plants14203202 - 18 Oct 2025
Viewed by 444
Abstract
This study aimed to determine the stress mechanisms induced by foliar methyl jasmonate (MeJA) application in Vaccinium corymbosum cultivars subjected to water deficit (WD) and aluminum toxicity (Al). Two V. corymbosum cultivars, Star and Legacy, were subjected to different treatments in an Andisol: [...] Read more.
This study aimed to determine the stress mechanisms induced by foliar methyl jasmonate (MeJA) application in Vaccinium corymbosum cultivars subjected to water deficit (WD) and aluminum toxicity (Al). Two V. corymbosum cultivars, Star and Legacy, were subjected to different treatments in an Andisol: control (80% field capacity and low Al saturation), combined WD + Al (50% field capacity and 85% Al saturation), and different concentrations of foliar MeJA application (10 μM, 50 μM, and 100 μM) under WD + Al conditions. The determination of photosynthetic pigments, osmolytes, and organic acids, as well as the auxin levels and the expression of Aluminium-Activated Malate Transporter (ALMT) and Multidrug and Toxic Compound Extrusion (MATE) genes, was analyzed at 7 and 21 days. Foliar MeJA application increased chlorophyll a, b, and carotenoid levels, mainly at 50 µM, exhibiting early Star responses with up to 1.5-fold higher pigment accumulation, and a later increase in Legacy with up to 1.4-fold higher accumulation. Proline increases up to 2.2-fold in roots and sugar by 1.4-fold in leaves of both cultivars. The MeJA application increases the auxin levels by up to 2.3-fold in Star roots at 7 days and by up to 1.4-fold in Legacy leaves at 21 days. MeJA-induced upregulation of ALMT and MATE gene expression facilitated Al detoxification, with malate and citrate levels increasing up to 2-fold. Hierarchical clustering confirmed that the Star cultivar activated resistance mechanisms early, while the Legacy cultivar exhibited delayed but sustained resistance mechanisms. MeJA improves V. corymbosum resistance to combined WD + Al stress by modulating photosynthetic pigments, osmolytes, organic acids, and hormone regulation. This finding underscores the biotechnological potential of MeJA application to improve stress resilience and optimize crop performance under adverse environmental conditions. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

18 pages, 18468 KB  
Article
Assessment of Heavy Metal Transfer from Soil to Forage and Milk in the Tungurahua Volcano Area, Ecuador
by Lourdes Carrera-Beltrán, Irene Gavilanes-Terán, Víctor Hugo Valverde-Orozco, Steven Ramos-Romero, Concepción Paredes, Ángel A. Carbonell-Barrachina and Antonio J. Signes-Pastor
Agriculture 2025, 15(19), 2072; https://doi.org/10.3390/agriculture15192072 - 2 Oct 2025
Viewed by 2011
Abstract
The Bilbao parish, located on the slopes of the Tungurahua volcano (Ecuador), was heavily impacted by ashfall during eruptions between 1999 and 2016. Volcanic ash may contain toxic metals such as Pb, Cd, Hg, As, and Se, which are linked to neurological, renal, [...] Read more.
The Bilbao parish, located on the slopes of the Tungurahua volcano (Ecuador), was heavily impacted by ashfall during eruptions between 1999 and 2016. Volcanic ash may contain toxic metals such as Pb, Cd, Hg, As, and Se, which are linked to neurological, renal, skeletal, pulmonary, and dermatological disorders. This study evaluated metal concentrations in soil (40–50 cm depth, corresponding to the rooting zone of forage grasses), forage (English ryegrass and Kikuyu grass), and raw milk to assess potential risks to livestock and human health. Sixteen georeferenced sites were selected using a simple random probabilistic sampling method considering geological variability, vegetation cover, accessibility, and cattle presence. Samples were digested and analyzed with a SpectrAA 220 atomic absorption spectrophotometer (Varian Inc., Victoria, Australia). Soils (Andisols) contained Hg (1.82 mg/kg), Cd (0.36 mg/kg), As (1.36 mg/kg), Pb (1.62 mg/kg), and Se (1.39 mg/kg); all were below the Ecuadorian limits, except for Hg and Se. Forage exceeded FAO thresholds for Pb, Cd, As, Hg, and Se. Milk contained Pb, Cd, and Hg below detection limits, while Se averaged 0.047 mg/kg, exceeding water safety guidelines. Findings suggest soils act as sources with significant bioaccumulation in forage but limited transfer to milk. Although immediate consumer risk is low, forage contamination highlights long-term hazards, emphasizing the need for monitoring, soil management, and farmer guidance. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

17 pages, 4287 KB  
Article
Assessment of Environmental Radionuclides and Controlling Factors in Volcanic Soils of Andean Patagonia
by Ludmila La Manna, Leticia Gaspar, Dubraska González Comunian and Ana Navas
Geosciences 2025, 15(9), 348; https://doi.org/10.3390/geosciences15090348 - 5 Sep 2025
Cited by 1 | Viewed by 750
Abstract
Natural radionuclides (40K, 210Pb, 226Ra, 232Th, and 238U) were evaluated for the first time on volcanic ash soils of the Argentine Patagonian Andes. The study was carried out along a topoedaphoclimatic gradient, encompassing soils from Xeric Mollisols [...] Read more.
Natural radionuclides (40K, 210Pb, 226Ra, 232Th, and 238U) were evaluated for the first time on volcanic ash soils of the Argentine Patagonian Andes. The study was carried out along a topoedaphoclimatic gradient, encompassing soils from Xeric Mollisols to Udic Andisols, and different land uses. Median mass-specific activities of the lithogenic radionuclides 40K, 210Pb, 226Ra, 232Th, and 238U were 375, 8, 17, 19, and 29 (Bq kg−1), respectively, all falling within global natural background levels, yet distinct spatial and vertical patterns emerged. Radionuclide activities increased with sand content and decreased with organic matter, highlighting the role of the parent material and texture. In dry-site Mollisols, 40K and 210Pb increased with depth, while in humid-site Udands, activities declined with depth, suggesting leaching and surface accumulation by allophane–organic matter complexes. The 238U/226Ra activity ratio showed disequilibrium, indicating young, developing soil profiles. In Xerolls, where native forest was replaced by afforestation and rangeland use, erosion-driven degradation was evident. The distribution of radionuclides along the slopes was closely linked to the topographic position and slope gradient. These results underscore the sensitivity of radionuclide patterns to parent material, soil-forming processes and land use and provide a valuable reference for environmental monitoring in volcanic landscapes. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Graphical abstract

18 pages, 2765 KB  
Article
The Effects of Burning Intensity on the Soil C-Related Properties and Mineralogy of Two Contrasting Forest Soils from Chilean National Parks
by Karla Erazo, Clara Martí-Dalmau, David Badía-Villas, Silvia Quintana-Esteras, Blanca Bauluz and Carolina Merino
Fire 2025, 8(7), 277; https://doi.org/10.3390/fire8070277 - 12 Jul 2025
Viewed by 1305
Abstract
Forest fires alter multiple soil properties, from those related to the carbon cycle to mineralogy; however, the responses of various soils to thermal impact remain unclear. This study examined the impact of fire-induced heating (300, 600, and 900 °C) on the properties of [...] Read more.
Forest fires alter multiple soil properties, from those related to the carbon cycle to mineralogy; however, the responses of various soils to thermal impact remain unclear. This study examined the impact of fire-induced heating (300, 600, and 900 °C) on the properties of two contrasted soils (Andisol and Inceptisol) with regard to soil organic carbon (SOC), total organic carbon (TOC), dissolved organic carbon (DOC), recalcitrant organic carbon (ROC), soil pH, electrical conductivity (EC), soil water repellency (SWR), soil aggregate stability (SAS), and mineralogy using X-ray diffraction (XRD). SOC and TOC decreased as temperatures increased, with a more pronounced decrease in Andisol (90% loss) than in Inceptisol (80% loss). DOC and SWR peaked at 300 °C but disappeared above 600 °C. Further, ROC increased at 300 °C in both soils, but behaved differently at higher temperatures, remaining stable in Inceptisol and being eliminated in Andisol. Soil pH increased at 600 and 900 °C; meanwhile, EC increased progressively in Andisol but peaked at 300 °C in Inceptisol. SAS remained high in both soils (between 85 and 95%) despite heating. The mineralogical analysis demonstrated how heating induced transformations in iron minerals into more oxidized forms (as hematite and maghemite) in the Andisol, while clay minerals and gibbsite decreased feldspar and quartz accumulation promotion in the Inceptisol. In summary, the initial properties of each soil influenced their respective responses to fire. Full article
Show Figures

Graphical abstract

17 pages, 921 KB  
Article
Adsorption–Desorption Behaviour of Imidacloprid, Thiamethoxam, and Clothianidin in Different Agricultural Soils
by Gabriela Briceño, Graciela Palma, Heidi Schalchli, Paola Durán, Cesar Llafquén, Andrés Huenchupán, Carlos Rodríguez-Rodríguez and María Cristina Diez
Agriculture 2025, 15(13), 1380; https://doi.org/10.3390/agriculture15131380 - 27 Jun 2025
Viewed by 1894
Abstract
This study evaluated the adsorption and desorption of imidacloprid (IMI), thiamethoxam (THM) and clothianidin (CLO) in an andisol (Freire soil) and an inceptisol (Chufquén soil) from southern Chile with different organic matter and clay contents. The soils had a slightly acidic pH and [...] Read more.
This study evaluated the adsorption and desorption of imidacloprid (IMI), thiamethoxam (THM) and clothianidin (CLO) in an andisol (Freire soil) and an inceptisol (Chufquén soil) from southern Chile with different organic matter and clay contents. The soils had a slightly acidic pH and clay and clay-loam textures. The tests were carried out at 20 °C with CaCl2 0.01 M as the electrolyte. Kinetic experiments were performed and isotherms were fitted to the pseudo-second-order, Elovich, Weber–Morris, Freundlich and Langmuir models. The kinetics were best described by the pseudo-second-order model (R2 > 0.99), indicating chemisorption; the rate was the highest for THM, although IMI and CLO achieved the highest retention capacities. The Chufquén samples, with lower organic matter but 52% clay, exhibited the highest Kf and qm of up to 12.4 and 270 mg kg−1, respectively, while the Kd (2.3–6.9 L kg−1) and Koc (24–167 L kg−1) coefficients revealed a moderate leaching risk. THM was the most mobile compound due to its high solubility. Desorption was partially irreversible (H = 0.48–1.48), indicating persistence in soil. FTIR analysis confirmed the interaction with O-Al-O/O-O-Si-O groups without alterations in the mineral structure. In the soils examined in this study, the clay fraction and variable-charge minerals, rather than organic matter, were more closely associated with the adsorption behaviour of these NNIs. Full article
Show Figures

Figure 1

15 pages, 1817 KB  
Article
Soil Amendments, Physicochemical Properties, and Metal Accumulation in Soils and Vegetables of Volcanic and Non-Volcanic Regions in Ecuador
by Lourdes Carrera-Beltrán, Irene Gavilanes-Terán, Julio Idrovo-Novillo, Cristina Ramos, Víctor Hugo Valverde, Verónica Bravo-Basantes, Steven Ramos-Romero, Concepción Paredes, Francisca Hernández, Ángel A. Carbonell-Barrachina and Antonio J. Signes-Pastor
Agronomy 2025, 15(5), 1166; https://doi.org/10.3390/agronomy15051166 - 10 May 2025
Cited by 2 | Viewed by 1571
Abstract
Heavy metal contamination in agricultural soils threatens food security and public health, especially in volcanic regions where ash alters soil properties. This study evaluates the effects of soil amendments on physicochemical properties, nutrient availability, and heavy metal accumulation in ash-affected (Mocha) and non-affected [...] Read more.
Heavy metal contamination in agricultural soils threatens food security and public health, especially in volcanic regions where ash alters soil properties. This study evaluates the effects of soil amendments on physicochemical properties, nutrient availability, and heavy metal accumulation in ash-affected (Mocha) and non-affected (Puyo) soils in Ecuador. A field experiment tested compost, poultry manure, inorganic fertilizer, and a control on onion (Allium fistulosum) and parsley (Petroselinum crispum). Soil analyses assessed the bulk density, texture, pH, electrical conductivity, organic matter, nutrients, metals, and metalloid concentrations of the soils and crops. Mocha soils exhibited volcanic Andisol characteristics, while Puyo soils resembled eastern Ecuadorian soils, both showing high nitrogen but deficiencies in phosphorus, potassium, and calcium. Arsenic (As), lead (Pb), and chromium (Cr) levels in soils varied between regions but not among treatments. In Mocha, As bioavailability decreased with poultry manure and compost, while other metals remained stable except in fertilized soils. In Puyo, organic amendments reduced Hg, Pb, Ni, and Cr but increased them in fertilized soils. All treatments met Ecuadorian limits for As, Cd, Pb, and Ni but exceeded those for Hg and Cr. Organic amendments improved soil quality, reduced metal mobility, and supported sustainable agriculture, with Mocha soils appearing more suitable for cultivation. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

14 pages, 1555 KB  
Article
Effect of Agricultural Management Intensity on the Organic Carbon Fractions and Biological Properties of a Volcanic-Ash-Derived Soil
by Camila Aravena, Susana R. Valle, Rodrigo Vergara, Mauricio González Chang, Oscar Martínez, John Clunes, Belén Caurapán and Joel Asenjo
Sustainability 2025, 17(6), 2704; https://doi.org/10.3390/su17062704 - 18 Mar 2025
Cited by 2 | Viewed by 1645
Abstract
Intensive agricultural management affects the physical, chemical, and biological properties of soil, potentially contributing to a decrease in soil carbon storage. In this study, the effects of soil management intensity on soil organic carbon (SOC) content and its labile fractions, i.e., water-soluble organic [...] Read more.
Intensive agricultural management affects the physical, chemical, and biological properties of soil, potentially contributing to a decrease in soil carbon storage. In this study, the effects of soil management intensity on soil organic carbon (SOC) content and its labile fractions, i.e., water-soluble organic carbon (OC-sol) and permanganate oxidizable carbon (POXC), were evaluated in a volcanic-ash-derived soil (Andisol) with a very high soil organic matter (SOM) content (>20%). These indicators were associated with water-stable aggregates (WSAs) and biological indicators, namely, earthworm density, cellulase activity, and autoclaved-citrate-extractable (ACE) proteins, related to the decomposition of SOM and its physical protection. The conditions evaluated were secondary native forest (SF), naturalized grassland (NG), no-till (NT), and conventional tillage (CT), considering the last item to be representative of a higher agriculture management intensity. Soil samples were collected by horizon. The SF and NG soil showed higher contents of SOC, OC-sol, and POXC. When comparing the evaluated annual cropping systems, NT showed higher values than CT (p < 0.05) in the first horizon (Hz1), while similar values were found at deeper horizons. The highest cellulase activity, ACE protein levels, and earthworm densities were found in NG and SF. NT also showed significantly higher levels of the aforementioned factors than CT (p < 0.05). A positive and significant relationship was found between the SOC content and WSA (R2 = 0.76; p < 0.05) in the whole profile and between POXC and WSA for Hz1 (R2 = 0.67; p < 0.05). Soil C storage was affected by the intensity of agricultural management, mainly because of the effect of tillage on structural stability, considering that biological activity synthesizes compounds such as enzymes and proteins that react and adhere to the mineral fraction affecting aggregate stability. The C content stored in the soil is consequently a key indicator with which to regulate SOM and protect SOC. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

22 pages, 35333 KB  
Article
Mechanisms Involved in Soil–Plant Interactions in Response to Poultry Manure and Phytase Enzyme Compared to Inorganic Phosphorus Fertilizers
by Patricia Poblete-Grant, Leyla Parra-Almuna, Sofía Pontigo, Cornelia Rumpel, María de La Luz Mora and Paula Cartes
Agronomy 2025, 15(3), 660; https://doi.org/10.3390/agronomy15030660 - 6 Mar 2025
Viewed by 2022
Abstract
While soil responses to organic and inorganic phosphorus (P) fertilizers have been widely studied, plant physiological and molecular responses remain insufficiently characterized. Such an understanding is necessary to develop sustainable P fertilization strategies that enhance plant performance in soils with P limitations. This [...] Read more.
While soil responses to organic and inorganic phosphorus (P) fertilizers have been widely studied, plant physiological and molecular responses remain insufficiently characterized. Such an understanding is necessary to develop sustainable P fertilization strategies that enhance plant performance in soils with P limitations. This study investigated the impact of poultry manure (PM) and its combination with phytase enzyme on molecular plant responses involved in P use efficiency (PUE) of ryegrass plants growing on a P-deficient Andisol. A greenhouse experiment under controlled conditions was performed to evaluate soil properties, plant biomass, P uptake, plant performance, and the expression of P transporters under the following P treatments: P deficiency (PD), mineral fertilizers (F), PM alone, and PM combined with phytase. The combination of PM and phytase enhanced soil P availability by 60% and increased soil P enzyme activities 2.6-fold, facilitating the mineralization of organic P. This resulted in a 63% increase in shoot P concentration and a 35% enhancement in shoot biomass. Additionally, oxidative stress markers decreased, with lipid peroxidation in roots reduced up to five-fold, while antioxidant activity increased 1.6-fold. Molecular analysis revealed that the expression of the P transporter gene LpPHT1;4 was upregulated 9.3-fold, indicating an improved capacity for P acquisition and utilization. These findings suggest that phytase-mediated hydrolysis of organic P and the activation of plant P transporters are key mechanisms driving enhanced P uptake and efficiency in P-deficient soils. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

16 pages, 9762 KB  
Article
Microplastics Can Alter Plant Parameters Without Affecting the Soil Enzymatic Activity in White Lupine
by Carla Sobarzo-Palma, María Dolores López-Belchí, Felipe Andrés Noriega, Raúl Zornoza, Gonzalo Tortella and Mauricio Schoebitz
Sustainability 2025, 17(1), 149; https://doi.org/10.3390/su17010149 - 28 Dec 2024
Cited by 1 | Viewed by 2011
Abstract
The widespread presence of microplastics (MPs) in agricultural soils raises concerns regarding their impact on crop health and productivity, particularly in legumes, which are known to have soil-enhancing properties. This study investigated the effects of low-density polyethylene (LDPE), polypropylene (PP), and polyamide (PA) [...] Read more.
The widespread presence of microplastics (MPs) in agricultural soils raises concerns regarding their impact on crop health and productivity, particularly in legumes, which are known to have soil-enhancing properties. This study investigated the effects of low-density polyethylene (LDPE), polypropylene (PP), and polyamide (PA) MPs on white lupine (Lupinus albus L.). Plants were cultivated for 110 days in glass pots containing 700 g of volcanic soil mixed with 2% w/w MPs, with four treatments (control, LDPE, PP, and PA) and five replicates each. The results indicated that PP increased soil ammonium and available nitrogen by 71% and 60%, respectively, compared to the control. LDPE increased root length by 3% and decreased chlorophyll content by 2.7%, whereas PA increased chlorophyll levels by 3.5%. Oxidative stress markers were significantly elevated in the LDPE and PA treatments, with 12% and 5.4% increases, respectively, compared with the control. However, no significant differences were observed in enzyme activity or basal soil respiration. These findings contribute to the understanding of how short-term exposure to MPs affects agricultural soils and emphasize the necessity for long-term studies to elucidate their potential effects. Full article
Show Figures

Figure 1

13 pages, 5166 KB  
Article
Quality and Influences of Natural and Anthropogenic Factors on Drinking Water in Rural Areas of Southern Chile
by Norka Fuentes, Aldo Arriagada, Claudio Pareja and Mauricio Molina-Roco
Water 2024, 16(19), 2830; https://doi.org/10.3390/w16192830 - 6 Oct 2024
Cited by 1 | Viewed by 1800
Abstract
Water quality is a fundamental aspect of public health and environmental sustainability. In rural areas, the physicochemical and microbiological quality of drinking water depends not only on hydrogeological conditions but also on anthropogenic activities carried out on the surface of the basin. This [...] Read more.
Water quality is a fundamental aspect of public health and environmental sustainability. In rural areas, the physicochemical and microbiological quality of drinking water depends not only on hydrogeological conditions but also on anthropogenic activities carried out on the surface of the basin. This study aimed to identify natural and anthropogenic influences related to the quality of drinking water in rural areas of southern Chile. In order to perform this, six rural drinking water systems were evaluated. A total of two types of catchment sources (groundwater and surface water) that were located in a longitudinal gradient were used, where coverage and sequences of rocks and soils could be differentiated. The results show that the water delivered by the majority of rural drinking water systems studied was of good quality, meeting the standards of Chilean and international regulations. No fecal coliforms or Escherichia coli were recorded. In addition, we recorded that turbidity, color, pH, concentration of total dissolved solids and fecal coliforms showed significant differences between groundwater and surface water. We also recorded that in two groundwater systems, iron and manganese levels slightly exceeded the regulations, endangering the acceptability of the water. These increases can be related to the natural origins of the metals, linked to the presence of oxides in Andisol- and Utisol-type volcanic soils. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

12 pages, 2018 KB  
Article
Changes in the Bioavailability of Ionizable Herbicides in Volcanic Soils Due to Soil Acidification by Urea as Fertilizer
by Graciela Palma, Milko Jorquera, Aylin Ladino, Claudia Benimeli and Gabriela Briceño
Agronomy 2024, 14(8), 1617; https://doi.org/10.3390/agronomy14081617 - 24 Jul 2024
Cited by 2 | Viewed by 1508
Abstract
The application of urea as a nitrogen fertilizer and herbicide is a common practice in agricultural systems. However, there is no background information on how the soil acidification caused by urea might affect the herbicide bioavailability in volcanic soils. The persistence study was [...] Read more.
The application of urea as a nitrogen fertilizer and herbicide is a common practice in agricultural systems. However, there is no background information on how the soil acidification caused by urea might affect the herbicide bioavailability in volcanic soils. The persistence study was conducted under microcosm incubation conditions in two Andisol soils amended with a field equivalent nitrogen dose of 200 kg N ha−1 and double dose of 400 kg N ha−1. Clopyralid, fluroxypyr, picloram, and triclopyr, acidic ionizable herbicides, were applied at the field equivalent dose. Adsorption studies were also carried out on both soils at pH 4, 5, and 6. Clopyralid and picloram showed the greatest increase in half-life in the range of 20–80%. The application of twice the dose of urea resulted in minor changes. A higher adsorption implies a higher persistence of the herbicides. This was more evident for the Piedras Negras soil (PNS). The conclusion of this work is that soil acidification by urea increases the persistence of ionizable herbicides in Andisol soils and that this effect depends on the acidity of the herbicide and the physico-chemical characteristics of the soil, which are among the most determining factors. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 4440 KB  
Article
Assessment of Mixed Amendments of CaCO3/Na2SO4 Ratio on the pH Buffer Capacity and Exchangeable Sodium Percentage of Soils with Contrasting Properties
by Dante Pinochet, Carolina Romero, Fernando Ramírez and John Clunes
Soil Syst. 2024, 8(3), 68; https://doi.org/10.3390/soilsystems8030068 - 21 Jun 2024
Viewed by 1683
Abstract
Reusing the by-products from wood pulp processing can promote the efficient use of resources. In this sense, the objective of this research was to determine the agronomic efficiency of CaCO3 and Na2SO4 by-products from wood pulp processing to establish [...] Read more.
Reusing the by-products from wood pulp processing can promote the efficient use of resources. In this sense, the objective of this research was to determine the agronomic efficiency of CaCO3 and Na2SO4 by-products from wood pulp processing to establish criteria for their use and avoid undesirable side effects when applying these materials to the soil. Six treatments in proportions of 1; 0.9; 0.75; 0.5, 0.25, and 0, of CaCO3/Na2SO4, respectively, were incubated at a constant temperature and humidity for 15 days. The first proportion consisted of 100% CaCO3, while M1 mixed 90% CaCO3 and 10% Na2SO4, M2: 75% CaCO3 and 25% Na2SO4, M3: 50% CaCO3 and 50% Na2SO4, M4: 25% CaCO3 and 75% Na2SO4, with the last proportion comprised of 100% Na2SO4. Samples of 40 g from two soil series, Licantén (Inceptisol) and San José (Andisol), were used. The rates applied for each treatment were 0, 1, 2, 4, and 8 g of material per kg of dry soil. At the end of the incubation period, pH in water, pH in CaCl2, exchange bases (Ca2+, Mg2+, K+ and Na+) and extractable sulfur were determined. The results showed that the San José soil had a pH buffering capacity three times higher than that of the Licantén soil. The linear increase in pH was thus explained by the soil type in relation to the applied rate of CaCO3. The analysis of the increase in the exchangeable Na percentage (ESP) showed that the soils increased up to about 70% of their ESP with the highest added rate of Na2SO4. The application of a mixture of 25% Na2SO4 and 75% CaCO3 resulted in an increase in the ESP close to 15%; therefore, it is not recommended to use mixtures with a Na2SO4 content higher than 25% in these soils. Finally, we affirm that for M2 the maximum recommended dose for application should be 4 Mg ha−1, i.e., 3 g of material per kg of soil. Full article
Show Figures

Figure 1

12 pages, 723 KB  
Article
N Losses from an Andisol via Gaseous N2O and N2 Emissions Increase with Increasing Ruminant Urinary–N Deposition Rate
by Magdalena A. Ramírez-Sandoval, Nadine Loick, Dante E. Pinochet, Maria López-Aizpun, M. Jordana Rivero and Laura M. Cárdenas
Nitrogen 2024, 5(2), 254-265; https://doi.org/10.3390/nitrogen5020017 - 22 Mar 2024
Cited by 2 | Viewed by 2277
Abstract
Agricultural soils account for about 60% of the global atmospheric emissions of the potent greenhouse gas nitrous oxide (N2O). One of the main processes producing N2O is denitrification, which occurs under oxygen-limiting conditions when carbon is readily available. On [...] Read more.
Agricultural soils account for about 60% of the global atmospheric emissions of the potent greenhouse gas nitrous oxide (N2O). One of the main processes producing N2O is denitrification, which occurs under oxygen-limiting conditions when carbon is readily available. On grazed pastures, urine patches create ideal conditions for denitrification, especially in soils with high organic matter content, like Andisols. This lab study looks at the effects of Urine-urea-N load on the Andisol potential to emit N2O. For this, we investigated the effects of three levels of urea-N concentrations in cow urine on emissions of N2O, N2, and CO2 under controlled conditions optimised for denitrification to occur. Results show total N2O emissions increased with increasing urine-N concentration and indicate that denitrification was the main N2O-producing process during the first 2–3 days after urine application, though it was most likely soil native N rather than urine-N being utilised at this stage. An increase in soil nitrate indicates that a second peak of N2O emissions was most likely due to the nitrification of ammonium hydrolysed from the added urine, showing that nitrification and denitrification have the potential to play a big part in N losses and greenhouse gas production from these soils. Full article
Show Figures

Figure 1

13 pages, 1532 KB  
Article
Impact of Pyrolyzed and Unpyrolyzed Animal Manures on Soil Properties, Carbon Sequestration, and Clover Productivity in Andisol
by Cristina Muñoz, Milagros Ginebra and Erick Zagal
Agronomy 2024, 14(3), 592; https://doi.org/10.3390/agronomy14030592 - 15 Mar 2024
Cited by 1 | Viewed by 1993
Abstract
The use of organic waste in agricultural soil can enhance crop yields, improve waste management, and boost soil carbon (C) sequestration. However, more field data are required to fully understand the impacts of pyrolyzed and unpyrolyzed animal manures. The objectives of this study [...] Read more.
The use of organic waste in agricultural soil can enhance crop yields, improve waste management, and boost soil carbon (C) sequestration. However, more field data are required to fully understand the impacts of pyrolyzed and unpyrolyzed animal manures. The objectives of this study were (i) to analyze the impact of two pyrolyzed and unpyrolyzed manures on soil properties, soil C storage, and clover productivity and (ii) to examine the biochar’s movement through the soil profile. Poultry litter (PL), dairy manure (DM), poultry litter biochar (PLBC), and dairy manure biochar (DBC) were applied at rates of 8 t ha−1 in a field experiment with red clover (Trifolium pratense L. var. Quiñequeli) in an Andisol. We monitored changes in soil chemical properties, foliar properties, and crop yield after three clover cuttings. To examine the movement of biochars through the soil profile, we set up a lab experiment where field conditions were simulated. PLBC, DBC, and PL increased soil pH by 0.5 (6.44), 0.28 (6.22), and 0.25 (6.19) units, respectively. Soil available P increased in both pyrolyzed and unpyrolyzed PL treatments (by 8.53 mg P kg−1, on average). Clover yields only increased in treatments with amendments that provided more available P and increased the pH. The addition of DBC increased soil total C (30.3%). Both biochars added to the soil surface exhibited little movement through the soil profile (2 to 4 cm). In this study, the pyrolysis of manures emerged as an option for reducing waste volume from the farming industry. Manure biochars proved useful at low rates for enhancing crop yields (PLBC) and storing C in the soil (DBC). Full article
Show Figures

Figure 1

10 pages, 498 KB  
Article
Three Biannual Rotations Cycles with Residue Incorporation Affect Wheat Production and Chemical Soil Properties
by Juan Hirzel, Pablo Undurraga, Carola Vera, Iván Matus and Pascal Michelow
Plants 2023, 12(24), 4194; https://doi.org/10.3390/plants12244194 - 18 Dec 2023
Cited by 3 | Viewed by 1766
Abstract
Background: There are few reports of crop rotations with high residue incorporation in terms of their effects on indicator crop yields and soil properties, so this study evaluated the effect of two medium-term biannual rotations on wheat yield development and soil chemical properties [...] Read more.
Background: There are few reports of crop rotations with high residue incorporation in terms of their effects on indicator crop yields and soil properties, so this study evaluated the effect of two medium-term biannual rotations on wheat yield development and soil chemical properties after six years of rotation. Methods: The experiment was conducted with two biannual rotations (canola–wheat and bean–wheat) and four residue incorporation levels (0%, 50%, 100%, and 200%) in an Andisol in south central Chile. Wheat grain yield and residue production were evaluated during each biannual cycle during three cycles of crop rotation, and soil chemical properties were evaluated at final evaluation. Results: The use of beans as a wheat preculture partially improved grain yield in 7.3%. The chemical properties of the soil showed an increase in pH (0.08 units), organic matter content (15 g kg−1), and concentrations of P (2.8 mg kg−1), S (7.4 mg kg−1), and Al (0.03 cmol+ kg−1) after canola cultivation, while after bean cultivation there was an increase in the available N concentration (3.7 mg kg−1). The use of increasing doses of residue allowed for an increase in the soil pH and decrease in the exchangeable Al concentration. Conclusion: The continuous incorporation of the residues produced within the biannual rotations evaluated in this volcanic soil did contribute to improving some chemical properties of the soil without affecting wheat crop yield. Full article
(This article belongs to the Special Issue Soil Ecology and Nutrients' Cycling in Crops and Fruits)
Show Figures

Figure 1

Back to TopTop