Adsorption–Desorption Behaviour of Imidacloprid, Thiamethoxam, and Clothianidin in Different Agricultural Soils
Abstract
1. Introduction
2. Materials and Methods
2.1. Pesticides and Soils
2.2. Adsorption Kinetics
2.3. Adsorption–Desorption Experiments
2.4. HPLC Analysis
2.5. Data Treatment
2.5.1. Kinetic Model
2.5.2. Adsorption and Desorption Isotherms
2.6. Fourier Transform Infrared Analysis
3. Results
3.1. Adsorption Kinetics
3.2. Soil Adsorption–Desorption
3.3. Fourier Transform Infrared Analysis (FTIR)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IMI | Imidacloprid |
THM | Thiamethoxam |
CLO | Clothianidin |
OC | Organic carbon |
NNI | Neonicotinoid |
References
- Ambaye, T.G.; Hassani, A.; Vaccari, M.; Franzetti, A.; Prasad, S.; Formicola, F.; Rosatelli, A.; Rehmang, M.Z.; Mohanakrishna, G.; Ganachari, S.; et al. Emerging technologies for the removal of pesticides from contaminated soils and their reuse in agriculture. Chemosphere 2024, 362, 142433. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, D.; Kania, J.; Kmiecik, E.; Malina, G.; Wątor, K. Fate of selected neonicotinoid insecticides in soil water systems: Current state of the art and knowledge gaps. Chemosphere 2020, 255, 126981. [Google Scholar] [CrossRef]
- Wei, J.; Wang, X.; Tu, C.; Long, T.; Bu, Y.; Wang, H.; Jeyakumar, P.; Jiang, J.; Deng, S. Remediation technologies for neonicotinoids in contaminated environments: Current state and future prospects. Environ. Int. 2023, 178, 108044. [Google Scholar] [CrossRef] [PubMed]
- Radolinski, J.; Wu, J.; Xia, K.; Hession, W.C.; Stewart, R.D. Plants mediate precipitation-driven transport of a neonicotinoid pesticide. Chemosphere 2019, 222, 445–452. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Kaur, P.; Gan, J. A critical review on the accumulation of neonicotinoid insecticides in pollen and nectar: Influencing factors and implications for pollinator exposure. Sci. Total Environ. 2023, 899, 165670. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Bayo, F.; Tennekes, H.; Goka, K. Impact of systemic insecticides on organisms and ecosystems. In Insectic—Development of Safer and More Effective Technologies, Stanislav Trdan; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Mörtl, M.; Vehovszky, Á.; Klátyik, S.; Takács, E.; Győri, J.; Székács, A. Neonicotinoids: Spreading, translocation and aquatic toxicity. Int. J. Environ. Res. Public Health 2020, 17, 2006. [Google Scholar] [CrossRef]
- Zhang, P.; Ren, C.; Sun, H.; Min, L. Sorption, desorption and degradation of neonicotinoids in four agricultural soils and their effects on soil microorganisms. Sci. Total Environ. 2018, 615, 59–69. [Google Scholar] [CrossRef]
- Alsafran, M.; Rizwan, M.; Usman, K.; Saleem, M. Neonicotinoid insecticides in the environment: A critical review of their distribution, transport, fate, and toxic effects. J. Environ. Chem. Eng. 2022, 10, 108485. [Google Scholar] [CrossRef]
- Briceño, G.; Diez, M.C.; Palma, G.; Jorquera, M.; Schalchli, H.; Saez, J.M.; Benimeli, C.S. Neonicotinoid effects on soil microorganisms: Responses and mitigation strategies. Sustainability 2024, 16, 3769. [Google Scholar] [CrossRef]
- Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Anjos, C.S.; Lima, R.N.; Porto, A.L.M. An overview of neonicotinoids: Biotransformation and biodegradation by microbiological processes. Environ. Sci. Pollut. Res. 2021, 28, 37082–37109. [Google Scholar] [CrossRef] [PubMed]
- Tomizawa, M.; Casida, J.E. Neonicotinoid insecticide toxicology: Mechanisms of Selective Action. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 247–268. [Google Scholar] [CrossRef] [PubMed]
- Lye, G.C.; Jennings, S.N.; Osborne, J.L.; Goulson, D. Impacts of the use of nonnative commercial bumble bees for pollinator supplementation in raspberry. J. Econ. Entomol. 2011, 104, 107–114. [Google Scholar] [CrossRef]
- Yang, E.C.; Chuang, Y.C.; Chen, Y.W.; Chang, H.C. Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 2008, 101, 1743–1748. [Google Scholar] [CrossRef] [PubMed]
- Mommaerts, V.; Reynders, S.; Boulet, J.; Besard, L.; Sterk, G.; Smagghe, G. Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behaviour. EcoToxicology 2010, 19, 207–215. [Google Scholar] [CrossRef]
- Henry, M.; Beguin, M.; Requier, F.; Rollin, O.; Odoux, J.F.; Aupinel, P.; Aptel, J.; Tchamitchian, S.; Decourtye, A. A common pesticide decreases foraging success and survival in honey bees. Science 2012, 336, 348–350. [Google Scholar] [CrossRef]
- Declan, B. Scientists hail European ban on bee-harming pesticides. Nature 2018. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Stoner, K.A.; Eitzer, B.D. Movement of soil-applied imidacloprid and thiamethoxam into nectar and pollen of squash (Cucurbita pepo). PLoS ONE 2012, 7, e39114. [Google Scholar] [CrossRef]
- Botías, C.; David, A.; Horwood, J.; Abdul-Sada, A.; Nicholls, E.; Hill, E.; Goulson, D. Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environ. Sci. Technol. 2015, 49, 12731–12740. [Google Scholar] [CrossRef]
- Peterson, E.M.; Wooten, K.J.; Subbiah, S.; Anderson, T.A.; Longing, S.; Smith, P.N. Agrochemical mixtures detected on wild flowers near cattle feed yards. Environ. Sci. Technol. Lett. 2017, 6, 216–220. [Google Scholar] [CrossRef]
- Liu, Z.; Dai, Y.; Huang, G.; Gu, Y.; Ni, J.; Wei, H.; Yuan, S. Soil microbial degradation of neonicotinoid insecticides imidacloprid, acetamiprid, thiacloprid and imidaclothiz and its effect on the persistence of bioefficacy against horsebean aphid Aphis craccivora Koch after soil application. Pest Manag. Sci. 2011, 67, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Cui, W.; Wei, D.; Shuqing, Y.; Zhengbiao, L.; Quan, Z. An integrated assessment and spatial-temporal variation analysis of neonicotinoids in pollen and honey from noncrop plants in Zhejiang, China. Environ. Pollut. 2019, 250, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, A.; Limay-rios, B.; Baute, T.; Smith, J.; Xue, Y. Neonicotinoid insecticide residues in surface water and soil associated with commercial maize (corn) fields in Southwestern Ontario. PLoS ONE 2015, 24, e0118139. [Google Scholar] [CrossRef]
- Wettstein, F.E.; Kasteel, R.; Garcia Delgado, M.F.; Hanke, I.; Huntscha, S.; Balmer, M.E.; Poiger, T.; Bucheli, T.D. Leaching of the neonicotinoids thiamethoxam and imidacloprid from sugar beet seed dressings to subsurface tile drains. J. Agric. Food Chem. 2016, 64, 6407–6415. [Google Scholar] [CrossRef]
- Klarich, K.L.; Pflug, N.C.; DeWald, E.M.; Hladik, M.L.; Kolpin, D.W.; Cwiertny, D.M.; LeFevre, G.H. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment. Environ. Sci. Technol. Lett. 2017, 4, 168–173. [Google Scholar] [CrossRef]
- Bonmatin, J.; Noome, D.A.; Moreno, H.; Mitchell, E.A.D. A survey and risk assessment of neonicotinoids in water, soil and sediments of Belize. Environ. Pollut. 2019, 249, 949–958. [Google Scholar] [CrossRef]
- Zhang, C.; Yi, X.; Chen, C.; Tian, D.; Liu, H.; Xie, L.; Zhu, X.; Huang, M.; Ying, G. Contamination of neonicotinoid insecticides in soil-water-sediment systems of the urban and rural areas in a rapidly developing region: Guangzhou, South China. Environ. Int. 2020, 139, 105719. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Bi, G.; Ward, T.; Li, L. Adsorption and degradation of neonicotinoid insecticides in agricultural soils. Environ. Sci. Pollut. Res. 2023, 30, 47516–47526. [Google Scholar] [CrossRef]
- Aseperi, A.; Busquets, R.; Hooda, P.; Cheung, P.; Barker, J. Behaviour of neonicotinoids in contrasting soils. J. Environ. Manag. 2020, 276, 111329. [Google Scholar] [CrossRef]
- Patakioutas, G.; Albanis, T. Adsorption-desorption studies of alachlor, metolachlor, EPTC, chlorothalonil and pirimiphos-methyl in contrasting soils. Pest Manag. Sci. 2002, 58, 352–362. [Google Scholar] [CrossRef]
- Gondar, D.; Lopez, R.; Antelo, J.; Fiol, S.; Arce, F. Effect of organic matter and pH on the adsorption of metalaxyl and penconazole by soils. J. Hazard. Mater. 2013, 260, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, Z.; Song, J.; Mei, J.; Fang, H.; Gui, W. Reduced bacterial network complexity in agricultural soils after application of the neonicotinoid insecticide thiamethoxam. Environ. Pollut. 2021, 274, 116540. [Google Scholar] [CrossRef]
- Oldfield, E.; Bradford, M.; Wood, S. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil 2015, 5, 15–32. [Google Scholar] [CrossRef]
- CIREN. Estudio Agrológico, IX Región: Descripciones de Suelos, Materiales y Símbolos (Pub. CIREN N°122); Centro de Información de Recursos Naturales: Santiago, Chile, 2002; Available online: https://bibliotecadigital.ciren.cl/items/0c56d801-ba1e-476a-a634-b40b819b66e5 (accessed on 15 July 2024).
- Sadzawka, A.; Carrasco, M.A.; Grez, R.; Mora, M.L.; Flores, H.; Neaman, A. Métodos de Análisis Recomendados Para Los Suelos de Chile. 2006. Available online: https://www.schcs.cl/wp-content/uploads/2018/11/Analisis-de-suelos.pdf (accessed on 12 March 2024).
- OECD. Test No. 106: Adsorption—Desorption Using a Batch Equilibrium Method, OECD Guidelines for the Testing of Chemicals, Section 1; OECD Publishing: Paris, France, 2000. [Google Scholar]
- Thompson, M.; Ellison, S.L.R.; Wood, R. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835–855. [Google Scholar] [CrossRef]
- Zhang, B.; Mu, H.; An, W.; Li, H.; Yang, M. Nationwide prediction of pesticide residual levels in soil: Implications on the resulting risk and prioritization framework. Environ. Int. 2025, 197, 109355. [Google Scholar] [CrossRef] [PubMed]
- Mörtl, M.; Kereki, O.; Darvas, B.; Klátyik, S.; Vehovszky, A.; Gyyri, J.; Székács, A. Study on Soil Mobility of Two Neonicotinoid Insecticides. J. Chem. 2016, 2016, 4546584. [Google Scholar] [CrossRef]
- Lalín-Pousa, V.; Arias-Estevez, M.; Conde-Cid, M.; Díaz-Raviña, M.; Fernandez-Calviño, D. Acetamiprid retention in agricultural acid soils: Experimental data and prediction. Environ. Res. 2025, 268, 120835. [Google Scholar] [CrossRef]
- Briceño, G.; Demanet, R.; Mora, M.d.L.; Palma, G. Effect of liquid cow manure on Andisol properties and atrazine adsorption. J. Environ. Qual. 2008, 37, 1519–1526. [Google Scholar] [CrossRef]
- Cáceres-Jensen, L.; Rodríguez-Becerra, J.; Parra-Rivero, J.; Escudey, M.; Barrientos, L.; Castro-Castillo, V. Sorption kinetics of diuron on volcanic ash derived soils. J. Hazard. Mater. 2013, 261, 602–613. [Google Scholar] [CrossRef]
- Spuler, M.J.; Briceño, G.; Duprat, F.; Jorquera, M.; Céspedes, C.; Palma, G. Sorption kinetics of 2,4-D and diuron herbicides in a urea-fertilized Andisol. J. Soil Sci. Plant Nutr. 2019, 19, 313–320. [Google Scholar] [CrossRef]
- Bamal, D.; Duhan, A.; Kumar, R.; Sindhu, J.; Kumar, R.; Dhanda, V.; Pal, A.; Dhanda, S.; Singh, V.; Kumar, P.; et al. Impact of different soils and temperature in adsorption-desorption of herbicide butachlor. Soil Adv. 2025, 3, 100027. [Google Scholar] [CrossRef]
- Beckstrom, T.; Maaz, T.; Deenik, J.; Peter-Contesse, H.; Koch, A.; Glazer, T.; Rivera-Zayas, J.; Cro, S. From volcanic ash to abundant earth: Understanding Andisol organic matter dynamics in relation to soil health on Hawaii Island. BiogeoChemistry 2025, 168, 22. [Google Scholar] [CrossRef]
- Fernandez-Bayo, J.; Nogales, R.; Romero, E. Evaluation of the sorption process for imidacloprid and diuron in eight agricultural soils from southern Europe using various kinetic models. J. Agric. Food Chem. 2008, 56, 5266–5272. [Google Scholar] [CrossRef]
- Yang, J.; Chen, A.; Zhu, S.; Shang, C.; Yang, Z.; Cao, L.; Bai, M. Adsorption behavior of neonicotinoid pesticides on typical soil minerals. J. Environ. Chem. Eng. 2025, 13, 116939. [Google Scholar] [CrossRef]
- Rodriguez-Liebana, J.A.; Peña, A. Differences in the sorption kinetics of various non-ionisable pesticides in a limited number of agricultural soils from the Mediterranean basin. J. Environ. Manag. 2020, 276, 111336. [Google Scholar] [CrossRef]
- He, R.; Jiang, Y.; Liu, Z.; Wu, J.; Zhang, X.; Wu, Y. Exploring the sorption/desorption on nitenpyram in loess soils: Implication for neonicotinoid fate and ecological risk assessment. Environ. Geochem. Health 2024, 46, 446. [Google Scholar] [CrossRef]
- Kumar, J.; Kaur, P.; Sud, D.; Saini, S.; Bansal, P. Persistence, sorption, and forced degradation of imidacloprid in environmental matrix. Mater. Today Proc. 2023, 78, 849–857. [Google Scholar] [CrossRef]
- Li, Y.; Su, P.; Li, Y.; Wen, K.; Bi, G.; Cox, M. Adsorption-desorption and degradation of insecticides clothianidin and thiamethoxam in agricultural soils. Chemosphere 2018, 207, 708–714. [Google Scholar] [CrossRef]
- Palma, G.; Demanet, R.; Jorquera, M.; Mora, M.L.; Briceño, G.; Violante, A. Effect of pH on sorption kinetic process of acidic herbicides in a volcanic soil. J. Soil Sci. Plant Nutr. 2015, 15, 549–560. [Google Scholar] [CrossRef]
- Uthman, Q.; Kadyampakeni, D.; Leiva, J.; Judy, J.; Nkedi-Kizza, R. Sorption and degradation processes of imidacloprid in Florida soils. PLoS ONE 2024, 19, e0305006. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, N. Extended sorption partitioning models for pesticide leaching risk assessments: Can we improve upon the Koc concept? Sci. Total Environ. 2016, 539, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Boivin, A.; Cherrier, R.; Schiavon, M. A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils. Chemosphere 2005, 61, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Sarker, A.; Yoo, J.-H.; Jeong, W.-T. Environmental fate and metabolic transformation of two non-ionic pesticides in soil: Effect of biochar, moisture, and soil sterilization. Chemosphere 2023, 345, 140458. [Google Scholar] [CrossRef]
- Cáceres-Jensen, L.; Gan, J.; Báez, M.; Fuentes, R.; Escudey, M. Adsorption of glyphosate on variable-charge, volcanic ash–derived Soils. J. Environ. Qual. 2009, 38, 1449–1457. [Google Scholar] [CrossRef]
Pesticide | Chemical Structure | Molecular Mass (g mol−1) | Water Solubility (mg L−1) | Koc |
---|---|---|---|---|
IMI | 255.66 | 610 | 249–336 * | |
THM | 291.71 | 4100 | 56.2 | |
CLO | 249.7 | 327 | 123 |
Parameter | Freire Soil | Chufquén Soil |
---|---|---|
pH (H2O) | 6.18 | 6.03 |
pH (CaCl2) | 5.26 | 5.16 |
OM (%) | 16 | 7 |
OC (%) | 9.3 | 4.1 |
ECEC (cmol+/kg) | 1.24 | 14.80 |
Clay (%) | 36.0 | 52.5 |
Silt (%) | 42.2 | 34.3 |
Sand (%) | 21.8 | 13.2 |
Texture class | Clay loam | Clay |
Soil | |||||||
---|---|---|---|---|---|---|---|
Model | Parameter | Freire | Chufquén | ||||
IMI | THM | CLO | IMI | THM | CLO | ||
Pseudo-first order | qmax (mg kg−1) | 3.85 | 1.48 | 3.30 | 2.25 | 1.70 | 1.21 |
K1 (h−1) | 0.13 | 0.02 | 0.12 | 0.11 | −0.01 | 0.04 | |
R2 | 0.879 | 0.514 | 0.961 | 0.914 | 0.466 | 0.93 | |
Pseudo-second order | qmax (mgkg1) | 7.18 | 2.21 | 5.88 | 5.07 | 2.02 | 3.56 |
K2 (kg mg−1 h−1) | 0.17 | 1.29 | 0.18 | 0.29 | 1.05 | 0.49 | |
R2 | 0.997 | 0.998 | 0.994 | 0.998 | 0.992 | 0.998 | |
Elovich | α (mg kg−1 h−1) | 301.41 | 40.34 | 1027.07 | 2019.27 | 22,505.75 | 5319.00 |
β (kg mg−1) | 1.36 | 3.74 | 2.06 | 2.42 | 7.49 | 3.89 | |
R2 | 0.955 | 0.826 | 0.897 | 0.972 | 0.385 | 0.904 | |
Weber–Morris | Kint (mg kg−1 h1/2) | 0.58 | 0.17 | 0.42 | 0.32 | 0.09 | 0.92 |
C (mg kg−1) | 3.77 | 1.26 | 3.19 | 3.18 | 1.51 | 2.19 | |
R2 | 0.873 | 0.603 | 0.9664 | 0.834 | 0.325 | 0.978 |
Soil | |||||||
---|---|---|---|---|---|---|---|
Process | Parameter | Freire | Chufquén | ||||
IMI | THM | CLO | IMI | THM | CLO | ||
Adsorption isotherm | Kf (mg1−1/n k−1 L1/n) | 3.00 ± 0.05 | 4.46 ± 0.05 | 3.75 ± 0.02 | 8.03 ± 0.02 | 12.39 ± 0.05 | 7.72 ± 0.04 |
1/n | 0.63 ± 0.05 | 0.96 ± 0.02 | 1.26 ± 0.05 | 1.82 ± 0.05 | 0.221 ± 0.05 | 1.01 ± 0.02 | |
R2 | 0.931 | 0.9515 | 0.951 | 0.973 | 0.841 | 0.989 | |
Kd (L kg−1) | 2.56 | 2.78 | 2.28 | 2.81 | 3.32 | 6.89 | |
KOC | 28 | 127 | 24 | 75 | 81 | 167 | |
Desorption isotherm | Kf,d (mg1−1/n k−1 L1/n) | 3.78 ± 0.03 | 4.40 ± 0.06 | 8.70 ± 0.04 | 6.65 ± 0.05 | 27.13 ± 0.06 | 18.85 ± 0.02 |
1/nd | 0.92 ± 0.02 | 1.60 ± 0.03 | 0.92 ± 0.02 | 0.87 ± 0.03 | 1.43 ± 0.05 | 1.27 ± 0.02 | |
R2 | 0.963 | 0.961 | 0.994 | 0.999 | 0.824 | 0.965 | |
H | 1.47 | 1.24 | 0.73 | 0.48 | 1.48 | 1.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Briceño, G.; Palma, G.; Schalchli, H.; Durán, P.; Llafquén, C.; Huenchupán, A.; Rodríguez-Rodríguez, C.; Diez, M.C. Adsorption–Desorption Behaviour of Imidacloprid, Thiamethoxam, and Clothianidin in Different Agricultural Soils. Agriculture 2025, 15, 1380. https://doi.org/10.3390/agriculture15131380
Briceño G, Palma G, Schalchli H, Durán P, Llafquén C, Huenchupán A, Rodríguez-Rodríguez C, Diez MC. Adsorption–Desorption Behaviour of Imidacloprid, Thiamethoxam, and Clothianidin in Different Agricultural Soils. Agriculture. 2025; 15(13):1380. https://doi.org/10.3390/agriculture15131380
Chicago/Turabian StyleBriceño, Gabriela, Graciela Palma, Heidi Schalchli, Paola Durán, Cesar Llafquén, Andrés Huenchupán, Carlos Rodríguez-Rodríguez, and María Cristina Diez. 2025. "Adsorption–Desorption Behaviour of Imidacloprid, Thiamethoxam, and Clothianidin in Different Agricultural Soils" Agriculture 15, no. 13: 1380. https://doi.org/10.3390/agriculture15131380
APA StyleBriceño, G., Palma, G., Schalchli, H., Durán, P., Llafquén, C., Huenchupán, A., Rodríguez-Rodríguez, C., & Diez, M. C. (2025). Adsorption–Desorption Behaviour of Imidacloprid, Thiamethoxam, and Clothianidin in Different Agricultural Soils. Agriculture, 15(13), 1380. https://doi.org/10.3390/agriculture15131380