Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = Aloe barbadensis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2675 KiB  
Article
Aloe Vera as an Adjunct in Endodontic Irrigation: Impact on Dentin Bond Strength and Cytotoxicity
by Lucas David Galvani, Ester Alves Ferreira Bordini, Diana Gabriela Soares, Joatan Lucas de Sousa Gomes Costa, José Rodolfo Verbicário, Fernando Pozzi Semeghini Guastaldi, Milton Carlos Kuga and Luís Geraldo Vaz
Materials 2025, 18(12), 2874; https://doi.org/10.3390/ma18122874 - 18 Jun 2025
Viewed by 363
Abstract
This study evaluated the effects of mechanical agitation of Aloe vera Barbadensis Miller solution at different concentrations using passive ultrasonic irrigation (PUI), XP Endo Finisher (XPF), XP Clean (XPC), and Easy Clean (ECL), compared to conventional endodontic irrigation (CIE), on bond strength and [...] Read more.
This study evaluated the effects of mechanical agitation of Aloe vera Barbadensis Miller solution at different concentrations using passive ultrasonic irrigation (PUI), XP Endo Finisher (XPF), XP Clean (XPC), and Easy Clean (ECL), compared to conventional endodontic irrigation (CIE), on bond strength and adhesive failure patterns in the cervical, middle, and apical thirds of the root canal. Aloe vera solutions at 1%, 3%, and 5% were tested to reverse collagen fiber collapse induced by hypochlorous acid, a free radical released by 2.5% sodium hypochlorite, which impairs dentin hybridization and the light curing of resin cement. Fiberglass posts were cemented using an etch-and-rinse adhesive system (Ambar; FGM) and conventional dual resin cement (Allcem Core) in root dentin across all thirds. Human teeth underwent chemical–mechanical preparation, and the Aloe vera solution was agitated using the CIE, PUI, XPF, XPC, or ECL protocols. Slices from each root third were evaluated under a stereomicroscope at 10× magnification and subjected to the push-out test. Cytotoxicity was assessed by applying various Aloe vera concentrations to stem cells from the apical papilla (SCAPs) for 24 h, followed by analysis of cell metabolism (Alamar Blue), viability (Live/Dead), and proliferation (F-actin). Aloe vera demonstrated significant biological activity and enhanced bond strength, particularly at 3% and 5%, irrespective of the agitation method or root third. Thus, it can be concluded that using Aloe vera solution is an alternative for pre-treatment before the cementation of fiberglass posts with conventional dual-cure resin cement in endodontically treated dentin. Full article
Show Figures

Figure 1

32 pages, 2052 KiB  
Review
Aloe Vera Polysaccharides as Therapeutic Agents: Benefits Versus Side Effects in Biomedical Applications
by Consuela Elena Matei, Anita Ioana Visan and Rodica Cristescu
Polysaccharides 2025, 6(2), 36; https://doi.org/10.3390/polysaccharides6020036 - 4 May 2025
Viewed by 4452
Abstract
Aloe Vera (Aloe barbadensis Miller), a historically revered medicinal plant, has garnered great scientific attention due to its polysaccharide-rich bioactive compounds with significant therapeutic potential. This review examines the role of Aloe Vera polysaccharides as therapeutic agents in biomedical applications, highlighting their benefits [...] Read more.
Aloe Vera (Aloe barbadensis Miller), a historically revered medicinal plant, has garnered great scientific attention due to its polysaccharide-rich bioactive compounds with significant therapeutic potential. This review examines the role of Aloe Vera polysaccharides as therapeutic agents in biomedical applications, highlighting their benefits as well as the risks. Traditionally recognized for its anti-inflammatory and antimicrobial effects, which are very important in wound healing, the Aloe Vera relies on its polysaccharides, which confer immunomodulatory, antioxidant, and tissue-regenerative properties. These compounds have shown promise in various applications, including skin repair, tissue engineering scaffolds, and antiviral therapies, with their delivery being facilitated via gels, thin films, or oral formulations. This review explores also their mechanisms of action and applications in modern medicine, including in the development of topical gels, dietary supplements, and innovative delivery systems such as thin films and scaffolds. Despite the promising benefits, the review addresses the possible side effects too, including allergic reactions, gastrointestinal disorders, and drug interactions, emphasizing the importance of understanding these risks for their safe clinical use. Assessing both the advantages and challenges of Aloe Vera polysaccharide medical use, this review contributes to the ongoing dialog regarding the integration of natural products into therapeutic practices, ultimately supporting informed decisions regarding their clinical application. Full article
Show Figures

Graphical abstract

18 pages, 1822 KiB  
Article
Antimicrobial Activity of Teat Antiseptic Formulations Based on Plant Extracts for Controlling Bovine Mastitis: In Vitro and In Vivo Evaluation
by Gabriel Michelutti do Nascimento, Romário Alves Rodrigues, Heloisa Cristina Brugnera, José Carlos Barbosa, Flavio Rubens Favaron, Gabriel Augusto Marques Rossi, Caio Roberto Soares de Bragança, Ruben Pablo Schocken-Iturrino, Fernando Antônio de Ávila and Marita Vedovelli Cardozo
Vet. Sci. 2025, 12(4), 293; https://doi.org/10.3390/vetsci12040293 - 21 Mar 2025
Viewed by 817
Abstract
Pre- and post-milking teat antisepsis is one of the most effective methods for reducing the incidence of mastitis. Plant extracts have proven effective in reducing microorganisms, providing a natural alternative for antisepsis, along with additional benefits for teat health. This study aimed to [...] Read more.
Pre- and post-milking teat antisepsis is one of the most effective methods for reducing the incidence of mastitis. Plant extracts have proven effective in reducing microorganisms, providing a natural alternative for antisepsis, along with additional benefits for teat health. This study aimed to evaluate the antimicrobial and antiseptic effects of two newly formulated products, used as pre-dipping and post-dipping agents, respectively, based on plant extracts from papain (Carica papaya), aloe vera (Aloe barbadensis), andiroba (Carapa guianensis), copaiba (Copaifera officinalis), tea tree (Melaleuca alternifolia), and barbatimão (Stryphnodendron barbatiman). Minimum inhibitory concentration tests were performed in vitro, along with microbiological analyses of different bacterial groups and in vivo compliance assessments to evaluate the antimicrobial activity of the formulations, as well as the molecular identification of Staphylococcus aureus. The results demonstrated that the products were effective in vitro against the main pathogens that cause mastitis, including Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli. In the in vivo assays, similar performance was observed between the tested products and the control products, indicating that the plant-extract-based formulations, applied as pre-dipping and post-dipping agents, effectively reduced the microbial load on the teats. The effects were equivalent to those of hydrogen-peroxide- and iodine-based products, being able to reduce the total microbial load by more than 80%. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

9 pages, 1586 KiB  
Communication
Investigation and Identification of Fungal Diseases of Aloe barbadensis in China
by Guohui Zhang, Qingjia Wan, Xiangyang Li and Jie Deng
Biology 2025, 14(1), 89; https://doi.org/10.3390/biology14010089 - 17 Jan 2025
Viewed by 1140
Abstract
The Aloe barbadensis industry plays an important role in the economic development of Yuanjiang county of Yuxi city in Yunnan province, China. In order to reduce the harm of diseases and ensure the quality of products, the occurrence of A. barbadensis was investigated. [...] Read more.
The Aloe barbadensis industry plays an important role in the economic development of Yuanjiang county of Yuxi city in Yunnan province, China. In order to reduce the harm of diseases and ensure the quality of products, the occurrence of A. barbadensis was investigated. The pathogenic fungi of wild and cultivated species of A. barbadensis were isolated by a tissue separation method, and DNA sequencing was carried out by using the sequence analysis of the ribosomal rDNA-ITS region, and the pathogenic fungi were classified and identified by finally combining morphological observations. The results showed that the main fungal diseases were root rot and leaf rot disease caused by Fusarium oxysporum, leaf spot disease caused by Curvularia lunata, anthracnose caused by Colletotrichum boninense, and brown spot disease caused by Alternaria alternata on A. barbadensis. Full article
(This article belongs to the Collection Plant Growth-Promoting Bacteria: Mechanisms and Applications)
Show Figures

Figure 1

12 pages, 262 KiB  
Article
Quality Comparison of Chicken Meat Treated with Origanum syriacum L. and Origanum vulgare L. Essential Oil Incorporated with Aloe vera Gel
by Marwan A. Al-Hijazeen
Appl. Sci. 2025, 15(1), 37; https://doi.org/10.3390/app15010037 - 24 Dec 2024
Viewed by 773
Abstract
This comparison study assessed the antioxidant effectiveness of two oregano essential oils extracted from different plant species, namely, Origanum syriacum L. and Origanum vulgare subsp. hirtum, applied to 5% Aloe barbadensis miller gel using chicken meat. In addition, all treatment samples contained [...] Read more.
This comparison study assessed the antioxidant effectiveness of two oregano essential oils extracted from different plant species, namely, Origanum syriacum L. and Origanum vulgare subsp. hirtum, applied to 5% Aloe barbadensis miller gel using chicken meat. In addition, all treatment samples contained the same amount (5%) of Aloe vera gel. The results of the current research will help to distinguish between both oil types accurately. This study involved four different treatments: (1) Control, (2) 300 ppm of Origanum syriacum L. essential oil (OR-S), (3) 300 ppm of Origanum vulgare subsp. hirtum (OR-V), and (4) 14 ppm of butylated hydroxyanisole (BHA). Generally, natural antioxidants have many limitations when used for meat preservation compared to synthetic ones and should be combined with natural carriers. The treated meat patties were used to analyze lipid oxidation, color, total volatiles, and specific sensorial characteristics. Based on the current investigation, comparisons between treatments (OR-V, OR-S, and BHA) demonstrated that both of the combined oregano oils showed lower TBARS values. The control treatment showed the lowest preservation effect. Origanum syriacum L. (OR-S) and OR-V showed significant antioxidant effects compared to synthetic BHA. However, OR-S exhibited the strongest significant antioxidant effect and could be the best choice for industrial meat preservation. Full article
(This article belongs to the Special Issue New Insights into Natural Antioxidants in Foods: 2nd Edition)
54 pages, 5547 KiB  
Review
Soothing the Itch: The Role of Medicinal Plants in Alleviating Pruritus in Palliative Care
by Sara Gonçalves, Lisete Fernandes, Ana Caramelo, Maria Martins, Tânia Rodrigues and Rita S. Matos
Plants 2024, 13(24), 3515; https://doi.org/10.3390/plants13243515 - 16 Dec 2024
Cited by 6 | Viewed by 8034
Abstract
Chronic pruritus, or persistent itching, is a debilitating condition that severely impacts quality of life, especially in palliative care settings. Traditional treatments often fail to provide adequate relief or are associated with significant side effects, prompting interest in alternative therapies. This review investigates [...] Read more.
Chronic pruritus, or persistent itching, is a debilitating condition that severely impacts quality of life, especially in palliative care settings. Traditional treatments often fail to provide adequate relief or are associated with significant side effects, prompting interest in alternative therapies. This review investigates the antipruritic potential of eight medicinal plants: chamomile (Matricaria chamomilla), aloe vera (Aloe barbadensis), calendula (Calendula officinalis), curcumin (Curcuma longa), lavender (Lavandula angustifolia), licorice (Glycyrrhiza glabra), peppermint (Mentha piperita), and evening primrose (Oenothera biennis). These plants are analyzed for their traditional applications, active bioactive compounds, mechanisms of action, clinical evidence, usage, dosage, and safety profiles. Comprehensive searches were conducted in databases including PubMed, Web of Science, Scopus, and b-on, focusing on in vitro, animal, and clinical studies using keywords like “plant”, “extract”, and “pruritus”. Studies were included regardless of publication date and limited to English-language articles. Findings indicate that active compounds such as polysaccharides in aloe vera, curcuminoids in turmeric, and menthol in peppermint exhibit significant anti-inflammatory, antioxidant, and immune-modulating properties. Chamomile and calendula alleviate itching through anti-inflammatory and skin-soothing effects, while lavender and licorice offer antimicrobial benefits alongside antipruritic relief. Evening primrose, rich in gamma-linolenic acid, is effective in atopic dermatitis-related itching. Despite promising preclinical and clinical results, challenges remain in standardizing dosages and formulations. The review highlights the necessity of further clinical trials to ensure efficacy and safety, advocating for integrating these botanical therapies into complementary palliative care practices. Such approaches emphasize holistic treatment, addressing chronic pruritus’s physical and emotional burden, thereby enhancing patient well-being. Full article
Show Figures

Figure 1

24 pages, 725 KiB  
Review
Antibiofilm Effects of Novel Compounds in Otitis Media Treatment: Systematic Review
by Ana Jotic, Katarina Savic Vujovic, Andja Cirkovic, Dragana D. Božić, Snezana Brkic, Nikola Subotic, Bojana Bukurov, Aleksa Korugic and Ivana Cirkovic
Int. J. Mol. Sci. 2024, 25(23), 12841; https://doi.org/10.3390/ijms252312841 - 29 Nov 2024
Cited by 1 | Viewed by 2592
Abstract
Otitis media (OM) is a frequent disease with incidence rate of 5300 cases per 100,000 people. Recent studies showed that polymicrobial biofilm formation represents a significant pathogenic mechanism in recurrent and chronic forms of OM. Biofilm enables bacteria to resist antibiotics that would [...] Read more.
Otitis media (OM) is a frequent disease with incidence rate of 5300 cases per 100,000 people. Recent studies showed that polymicrobial biofilm formation represents a significant pathogenic mechanism in recurrent and chronic forms of OM. Biofilm enables bacteria to resist antibiotics that would typically be recommended in guidelines, contributing to the ineffectiveness of current antimicrobial strategies. Given the challenges of successfully treating bacterial biofilms, there is an growing interest in identifying novel and effective compounds to overcome antibacterial resistance. The objective of this review was to provide an overview of the novel compounds with antibiofilm effects on bacterial biofilm formed by clinical isolates of OM. The systematic review included studies that evaluated antibiofilm effect of novel natural or synthetic compounds on bacterial biofilm formed from clinical isolates obtained from patients with OM. The eligibility criteria were defined using the PICOS system: (P) Population: all human patients with bacterial OM; (I) Intervention: novel natural or synthetic compound with biofilm effect; (C) Control standard therapeutic antimicrobial agents or untreated biofilms, (O) Outcome: antibiofilm effect (biofilm inhibition, biofilm eradication), (S) Study design. The PRISMA protocol for systematic reviews and meta-analysis was followed. From 3564 potentially eligible studies, 1817 duplicates were removed, and 1705 were excluded according to defined exclusion criteria. A total of 41 studies with available full texts were retrieved by two independent authors. Fifteen articles were selected for inclusion in the systematic review which included 125 patients with OM. A total of 17 different novel compounds were examined, including N-acetyl-L-cysteine (NAC), tea tree oil, xylitol, eugenol, Aloe barbadensis, Zingiber officinale, Curcuma longa, Acacia arabica, antisense peptide nucleic acids, probiotics Streptococcus salivarius and Streptococcus oralis, Sodium 2-mercaptoethanesulfonate (MESNA), bioactive glass, green synthesized copper oxide nanoparticles, radish, silver nanoparticles and acetic acid. Staphylococcus aureus was the most commonly studied pathogen, followed by Pseudomonas aeruginosa and Haemophilus influenzae. Biofilm inhibition only by an examined compound was assessed in six studies; biofilm eradication in four studies, and both biofilm inhibition and biofilm eradication were examined in five studies. This systematic review indicates that some compounds like NAC, prebiotics, nanoparticles and MESNA that have significant effects on biofilm are safe and could be researched more extensively for further clinical use. However, a lack of data about reliable and efficient compounds used in therapy of different types of otitis media still remains in the literature. Full article
(This article belongs to the Special Issue Biofilm Antimicrobial Strategies: Outlook and Future Perspectives)
Show Figures

Figure 1

17 pages, 9462 KiB  
Article
Aloe Extracellular Vesicles as Carriers of Photoinducible Metabolites Exhibiting Cellular Phototoxicity
by Eleonora Calzoni, Agnese Bertoldi, Alessio Cesaretti, Husam B. R. Alabed, Giada Cerrotti, Roberto Maria Pellegrino, Sandra Buratta, Lorena Urbanelli and Carla Emiliani
Cells 2024, 13(22), 1845; https://doi.org/10.3390/cells13221845 - 7 Nov 2024
Cited by 3 | Viewed by 1886
Abstract
The growing interest in plant-origin active molecules with medicinal properties has led to a revaluation of plants in the pharmaceutical field. Plant-derived extracellular vesicles (PDEVs) have emerged as promising candidates for next-generation drug delivery systems due to their ability to concentrate and deliver [...] Read more.
The growing interest in plant-origin active molecules with medicinal properties has led to a revaluation of plants in the pharmaceutical field. Plant-derived extracellular vesicles (PDEVs) have emerged as promising candidates for next-generation drug delivery systems due to their ability to concentrate and deliver a plethora of bioactive molecules. These bilayer membranous vesicles, whose diameter ranges from 30 to 1000 nm, are released by different cell types and play a crucial role in cross-kingdom communication between plants and humans. Notably, PDEVs have demonstrated efficacy in treating various diseases, including cancer, alcoholic liver disease, and inflammatory bowel disease. However, further research on plant vesicles is necessary to fully understand their traits and purposes. This study investigates the phototoxic effects of extracellular vesicles (EVs) from Aloe arborescens, Aloe barbadensis, and Aloe chinensis on the human melanoma cell line SK-MEL-5, focusing on their anthraquinone content, recognized as natural photosensitizers. The phototoxic impact of Aloe EVs is associated with ROS production, leading to significant oxidative stress in melanoma cells, as validated by a metabolome analysis. These findings suggest that EVs from Aloe arborescens, Aloe barbadensis, and Aloe chinensis hold promise as potential photosensitizers, thus highlighting their potential for future application in photodynamic cancer therapy and providing valuable insights into the possible utilization of PDEVs for therapeutic purposes. Full article
Show Figures

Graphical abstract

10 pages, 343 KiB  
Article
Aloe vera Cuticle: A Promising Organic Water-Retaining Agent for Agricultural Use
by Wilmer E. Luligo-Montealegre, Santiago Prado-Alzate, Alfredo Ayala-Aponte, Diego F. Tirado and Liliana Serna-Cock
Horticulturae 2024, 10(8), 797; https://doi.org/10.3390/horticulturae10080797 - 27 Jul 2024
Cited by 2 | Viewed by 2030
Abstract
Water is an important resource for both human and environmental survival. However, due to current human practices, we are facing a serious crisis in accessing water. Thus, solutions must be explored to optimize the use of this resource. In the search for an [...] Read more.
Water is an important resource for both human and environmental survival. However, due to current human practices, we are facing a serious crisis in accessing water. Thus, solutions must be explored to optimize the use of this resource. In the search for an organic water-retaining agent for agricultural use, the techno-functional properties of Aloe vera (Aloe barbadensis Miller) cuticle, an agro-industrial residue generated after gel extraction, were evaluated. The residue was dried and ground. The effects of particle size (180 µm and 250 µm), temperature (10 °C, 20 °C, 30 °C, and 40 °C), and pH (4.5, 6.0, and 7.0) on the solubility and water-holding capacity (WHC) of the obtained product (i.e., hydrogel) were then evaluated. The treatment with the highest WHC was selected and compared with the WHC of a commercial synthetic polyacrylamide gel widely used in agriculture. The effects of KNO3 and Ca(NO3)2 at different concentrations (10 g L−1, 20 g L−1, 30 g L−1, and 40 g L−1) on the WHC of the gels were assessed. Particle size, temperature, and pH interactions had statistically significant effects on solubility, while the WHC was affected by particle size × temperature and pH × temperature interactions. The highest product solubility (75%) was obtained at the smallest particle size (i.e., 180 µm), pH 4.5, and 20 °C. Meanwhile, the highest WHC (18 g g−1) was obtained at the largest particle size (i.e., 250 µm), pH 6.0, and 20 °C. This optimized gel kept its WHC across both salts and their concentrations. In contrast, the commercial gel significantly decreased its WHC with salt concentration. The product elaborated with A. vera cuticle could have bioeconomic potential as a water-retention agent for agricultural use, with the advantage that it is not affected by the addition of salts used for plant fertilization. Full article
Show Figures

Figure 1

32 pages, 7722 KiB  
Article
Thymol, a Monoterpenoid within Polymeric Iodophor Formulations and Their Antimicrobial Activities
by Zehra Edis and Samir Haj Bloukh
Int. J. Mol. Sci. 2024, 25(9), 4949; https://doi.org/10.3390/ijms25094949 - 1 May 2024
Cited by 6 | Viewed by 2533
Abstract
Antimicrobial resistance (AMR) poses an emanating threat to humanity’s future. The effectiveness of commonly used antibiotics against microbial infections is declining at an alarming rate. As a result, morbidity and mortality rates are soaring, particularly among immunocompromised populations. Exploring alternative solutions, such as [...] Read more.
Antimicrobial resistance (AMR) poses an emanating threat to humanity’s future. The effectiveness of commonly used antibiotics against microbial infections is declining at an alarming rate. As a result, morbidity and mortality rates are soaring, particularly among immunocompromised populations. Exploring alternative solutions, such as medicinal plants and iodine, shows promise in combating resistant pathogens. Such antimicrobials could effectively inhibit microbial proliferation through synergistic combinations. In our study, we prepared a formulation consisting of Aloe barbadensis Miller (AV), Thymol, iodine (I2), and polyvinylpyrrolidone (PVP). Various analytical methods including SEM/EDS, UV-vis, Raman, FTIR, and XRD were carried out to verify the purity, composition, and morphology of AV-PVP-Thymol-I2. We evaluated the inhibitory effects of this formulation against 10 selected reference strains using impregnated sterile discs, surgical sutures, gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thymol-I2 were assessed through disc diffusion methods against 10 reference strains in comparison with two common antibiotics. The 25-month-old formulation exhibited slightly lower inhibitory zones, indicating changes in the sustained-iodine-release reservoir. Our findings confirm AV-PVP-Thymol-I2 as a potent antifungal and antibacterial agent against the reference strains, demonstrating particularly strong inhibitory action on surgical sutures, cotton bandages, and face masks. These results enable the potential use of the formulation AV-PVP-Thymol-I2 as a promising antimicrobial agent against wound infections and as a spray-on contact-killing agent. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

14 pages, 3047 KiB  
Article
Innovative Solar Dryer for Sustainable Aloe Vera Gel Preservation in Colombia
by Oscar Ariza, Ingrid Casallas and Arturo Fajardo
Sustainability 2024, 16(8), 3392; https://doi.org/10.3390/su16083392 - 18 Apr 2024
Viewed by 2278
Abstract
Aloe Barbadensis Miller, commonly known as Aloe vera, has been widely used in different applications, such as medicinal treatments and cosmetic products. However, its transportation and handling present challenges due to oxidation and property loss caused by direct environmental exposure. A strategy [...] Read more.
Aloe Barbadensis Miller, commonly known as Aloe vera, has been widely used in different applications, such as medicinal treatments and cosmetic products. However, its transportation and handling present challenges due to oxidation and property loss caused by direct environmental exposure. A strategy to mitigate these effects is dehydration, where different industrial-scale methods such as freeze-drying, spraying, refractory windows, and convective drying can be applied. Despite their effectiveness, those dehydration techniques are both energetically and economically costly. Solar drying technology offers a cost-effective, lower-energy alternative addressing sustainability, socioeconomic, scientific progress, and integrated sustainable development challenges. Nevertheless, solar drying through direct sunlight exposure has been minimally explored for drying high-water-content products like Aloe vera, potentially due to the inherent challenges of drying under uncontrolled environmental conditions. In response, this paper introduces a methodology for pre-treating and pre-drying Aloe vera gel using a low-cost solar dryer prototype, achieving up to 50% water activity reduction in experimental tests under uncontrolled conditions in Colombia, South America. The proposed prototype features a drying cabinet with energy autonomy and forced convection. The experimental evaluation compares the quality of pre-dried Aloe vera gel with freeze-dried samples, demonstrating comparable attributes under favorable environmental conditions. The results demonstrate the feasibility of pre-drying Aloe vera gel within 13 to 48 h, with a maximum drying rate of 0.38 g/min. During this process, water activity decreased from an initial value of 0.975 to a final value ranging between 0.472 and 0.748. Furthermore, the quality of the dehydrated gel was assessed through color analysis, comparing it with a freeze-dried sample. Subsequent color analysis of the freeze-dried samples revealed minor changes in product quality compared to those dried using the proposed solar drying method. These results demonstrate the effectiveness of the proposed solar dryer in pre-dehydrating Aloe vera gel, yielding characteristics similar to those achieved through conventional methods. Full article
(This article belongs to the Special Issue Agricultural Product Quality Safety and Sustainable Development)
Show Figures

Figure 1

2 pages, 132 KiB  
Abstract
Towards Skin Longevity: The Development of a Novel Plant-Based Combination with a Potent Stimulation of Collagen I Synthesis In Vitro
by Viktor Filatov and Elizaveta Patronova
Proceedings 2024, 103(1), 65; https://doi.org/10.3390/proceedings2024103065 - 12 Apr 2024
Viewed by 767
Abstract
Human skin is constantly exposed to various endogenous and exogenous factors, including UV radiation and vitamin deficiency, which can influence the earlier appearance of visible wrinkles and decrease skin firmness and elasticity. This process is related to decreased collagen I synthesis in the [...] Read more.
Human skin is constantly exposed to various endogenous and exogenous factors, including UV radiation and vitamin deficiency, which can influence the earlier appearance of visible wrinkles and decrease skin firmness and elasticity. This process is related to decreased collagen I synthesis in the dermis. However, the use of retinol derivatives, synthetic molecules, and growth factors is associated with significant adverse effects, low bioavailability, and instability in dermatological products. Thus, our research was focused on the investigation of a novel plant-based combination for the stimulation of collagen I synthesis in deep skin layers and the prevention of accelerated skin ageing. Aloe barbadensis leaf extract, trimethylglycine, and panthenol were chosen as potential candidates using in silico modelling. A Way2Drug tool predicted anti-inflammatory, anti-psoriatic, and antioxidant activities beneficial for the prophylaxis of skin ageing. An in vitro study was conducted to determine collagen I synthesis in skin fibroblasts in the presence of single substances and their composition using a colorimetric analysis. It was revealed that the combination of Aloe barbadensis leaf extract, trimethylglycine, and panthenol in a specific mass ratio of 2:4:1 and at a concentration of 0.5% significantly increased the amount of collagen I in the skin fibroblasts by up to +18% within 24 h (p < 0.001). This effect was comparable to that of TGF-β1 (10 ng/mL), with a 37% collagen I increase (p < 0.001). The single compounds and the combination of Aloe barbadensis leaf extract and trimethylglycine showed a negative effect on collagen I synthesis, with an unpredictable decrease in this protein in fibroblasts. The combination of the compounds made it possible to achieve a synergistic effect, boosting the natural rejuvenation process in fibroblasts. Overall, the results indicate that the developed plant-based composition in the specific mass ratio and concentration given above could increase collagen I synthesis and can be considered a promising substance for dermatological products with reverse anti-ageing effects. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biomolecules)
17 pages, 2028 KiB  
Article
Synergetic Effects of Aloe Vera Extract with Trimethylglycine for Targeted Aquaporin 3 Regulation and Long-Term Skin Hydration
by Viktor Filatov, Anna Sokolova, Natalya Savitskaya, Mariya Olkhovskaya, Andrey Varava, Egor Ilin and Elizaveta Patronova
Molecules 2024, 29(7), 1540; https://doi.org/10.3390/molecules29071540 - 29 Mar 2024
Cited by 8 | Viewed by 4380
Abstract
Aquaporin 3 (AQP3) channels are tetrameric membrane-bound channels that facilitate the transport of water and other small solutes across cell membranes in the skin. Decreased AQP3 expression is associated with skin dryness, skin aging, psoriasis, and delayed wound healing. Thus, our study focused [...] Read more.
Aquaporin 3 (AQP3) channels are tetrameric membrane-bound channels that facilitate the transport of water and other small solutes across cell membranes in the skin. Decreased AQP3 expression is associated with skin dryness, skin aging, psoriasis, and delayed wound healing. Thus, our study focused on a novel combination based on Aloe barbadensis leaf extract and trimethylglycine for targeted AQP3 regulation in skin keratinocytes and deep skin moisturization. Firstly, a dose-finding cytotoxicity assay of the selected substances was performed with a 2,5-diphenyl-2H-tetrazolium bromide (MTT) indicator on HaCaT cells. The substances’ ability to increase the amount of AQP3 in keratinocytes was evaluated in a keratinocyte cell culture by means of ELISA. Additionally, the deep skin hydration effect was confirmed in clinical research with healthy volunteers. According to the results, the maximum tolerated doses providing viability at 70% (MTDs) values for Aloe barbadensis leaf extract and trimethylglycine were 24.50% and 39.00%, respectively. Following the research and development, a complex based on Aloe barbadensis leaf extract and trimethylglycine in a 1:1 mass ratio exhibited a good cytotoxicity profile, with an MTDs value of 37.90%. Furthermore, it was shown that the combination had a clear synergetic effect and significantly increased AQP3 by up to 380% compared to the negative control and glyceryl glucoside (p < 0.001). It was clinically confirmed that the developed shower gel containing Aloe barbadensis leaf extract and trimethylglycine safely improved skin hydration after one use and over 28 days. Thus, this novel plant-based combination has promising potential for AQP3 regulation in the skin epidermis and a role in the development of dermatological drugs for the treatment of skin xerosis and atopic-related conditions. Full article
(This article belongs to the Special Issue Natural Products and Analogues with Promising Biological Profiles)
Show Figures

Graphical abstract

20 pages, 1347 KiB  
Article
The Indiscriminate Chemical Makeup of Secondary Metabolites Derived from Endophytes Harvested from Aloe barbadensis Miller in South Africa’s Limpopo Region
by Mpho Mamphoka Nchabeleng, Thierry Youmbi Fonkui and Green Ezekiel
Molecules 2024, 29(6), 1297; https://doi.org/10.3390/molecules29061297 - 14 Mar 2024
Cited by 4 | Viewed by 2072
Abstract
The efficacy of 23 bacterial isolates obtained from surface-sterilized stems and leaves of three medicinal plants (Aloe barbadensis Miller, Artemisia afra, and Moringa oleifera) was investigated in an endeavour to prevent the growth of Mycobacterium bovis using the cross-streak method. [...] Read more.
The efficacy of 23 bacterial isolates obtained from surface-sterilized stems and leaves of three medicinal plants (Aloe barbadensis Miller, Artemisia afra, and Moringa oleifera) was investigated in an endeavour to prevent the growth of Mycobacterium bovis using the cross-streak method. Endophytes were isolated by incubating sterile plant materials on nutrient agar at 30 °C for 5 days. Two isolates showing activity were subsequently utilized to produce the extracts. Whole-genome sequencing (WGC) was used to identify the isolates. Secondary metabolites produced after 7 days of growth in nutrient broth were harvested through extraction with ethyl acetate. The extracts were chemically profiled using gas chromatography–high resolution time-of-flight mass spectrometry (GC–HRTOF-MS). NCBI BLAST search results revealed that the isolated endophytes belonged to the Pseudomonas and Enterobacter genera, based on WGC. Two endophytes, Aloe I4 and Aloe I3–I5 from Aloe barbadensis, exhibited potency based on the cross-streak method. The metabolite profiling of the selected endophytes identified 34 metabolites from Aloe I4, including ergotamine, octadecane, L-proline and 143 other metabolites including quinoline and valeramide, which inhibit microbial quorum sensing. These findings suggest that bacterial endophytes from medicinal plants, particularly Aloe barbadensis, hold promise as sources of antimycobacterial agents for human health applications. Full article
Show Figures

Figure 1

27 pages, 11756 KiB  
Article
Porous Mg–Hydroxyapatite Composite Incorporated with Aloe barbadensis Miller for Scaphoid Fracture Fixation: A Natural Drug Loaded Orthopedic Implant
by Divyanshu Aggarwal, Siddharth Sharma and Manoj Gupta
Appl. Sci. 2024, 14(4), 1512; https://doi.org/10.3390/app14041512 - 13 Feb 2024
Viewed by 1685
Abstract
The current study focused on developing a biodegradable implant composite material that could work in a multitude of applications. The fabricated composite showcases a porous matrix of Mg–hydroxyapatite developed through the spacer-holder technique. The composite was incorporated with a natural medicinal plant, i.e., [...] Read more.
The current study focused on developing a biodegradable implant composite material that could work in a multitude of applications. The fabricated composite showcases a porous matrix of Mg–hydroxyapatite developed through the spacer-holder technique. The composite was incorporated with a natural medicinal plant, i.e., Aloe barbadensis miller, commonly known as the Aloe vera plant. The final composite was enveloped under a thin layer of PLA to work as an encapsulated drug as well as a composite material for implant applications. Further, the mechanical and microstructural properties were analyzed along with corrosion analysis through the weight loss method and pH change. The experiments showed an improvement in the corrosion rate when tested under cell culture medium. The antibacterial rates were experimented with under different aloe vera concentrations against Gram-positive B. subtilis and Gram-negative E. coli, and finally, a minimum inhibitory value was formulated for further experimentations. Hemocompatibility and surface wettability tests were also performed, which revealed improved surface hydrophilicity with a reduced hemolysis rate. An in vitro cell viability analysis was performed against the MG63 osteoblast cell line to indicate the cytotoxicity and cytocompatibility of the samples. This research proposed a novel composite material that provides antibacterial and non-toxic properties and retains its strength under a physiological environment. Full article
Show Figures

Figure 1

Back to TopTop