Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,897)

Search Parameters:
Keywords = AlMg3 alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1362 KB  
Article
Synthesis of Glyceric Acid by Mixed-Metal Oxide-Supported AuPt Alloy Catalyst in Mild Conditions
by Zhiqing Wang, Jianchuan Jin, Aiqian Jin, Shiyu Li, Xinyue Chen, Tongjie Hu, Lingqin Shen and Hengbo Yin
Catalysts 2025, 15(10), 963; https://doi.org/10.3390/catal15100963 - 8 Oct 2025
Viewed by 192
Abstract
Thermal valorization of surplus biomass-derived feedstocks such as glycerol into high-value chemicals represents a sustainable strategy for biomass utilization and decarbonization of chemical manufacturing. However, conventional glycerol conversion processes are often restricted to low-value C1 products owing to rapid C–C bond cleavage during [...] Read more.
Thermal valorization of surplus biomass-derived feedstocks such as glycerol into high-value chemicals represents a sustainable strategy for biomass utilization and decarbonization of chemical manufacturing. However, conventional glycerol conversion processes are often restricted to low-value C1 products owing to rapid C–C bond cleavage during thermo-oxidation. Herein, we report highly efficient Au-Pt bimetallic alloy catalysts supported on mixed-oxide catalysts that enable the selective oxidation of glycerol under ambient conditions in the absence of a base. The synergistic interaction between Au and Pt promotes preferential oxidation of the terminal hydroxyl groups while preserving the C3 backbone, thereby affording the desirable C3 product, glyceric acid. The single-factor experiments and response surface analysis demonstrated that the Au-Pt bimetallic alloy catalysts supported on the mixed oxide MgO-Al2O3 exhibited a glycerol conversion of up to 82.0% and a glyceric acid selectivity of 62.1% under favorable reaction conditions. Kinetic studies further indicated that the activation energy of this catalyst in the reaction system is 32.7 kJ/mol. Full article
Show Figures

Graphical abstract

11 pages, 2975 KB  
Article
Analysis of the Mechanical Properties of the AlSi7CrMnCu2.5 Alloy and Their Changes After Heat Treatment
by Pavel Kraus, Nataša Náprstková, Jaromír Cais, Sylvia Kuśmierczak, Klára Caisová, Anna Rudawska and Jan Sviantek
Materials 2025, 18(19), 4586; https://doi.org/10.3390/ma18194586 - 2 Oct 2025
Viewed by 276
Abstract
The article deals with the analysis of the mechanical properties of the newly designed aluminum alloy Al-Si7CrMnCu2.5. The research was carried out in order to map a new alloy with a certain addition of chromium and manganese from the point of view of [...] Read more.
The article deals with the analysis of the mechanical properties of the newly designed aluminum alloy Al-Si7CrMnCu2.5. The research was carried out in order to map a new alloy with a certain addition of chromium and manganese from the point of view of mechanical properties and their changes after heat treatment (hardening, artificial aging) with defined parameters. Specifically, properties such as strength limit, yield strength, ductility, hardness, and microhardness were analyzed, both in the cast state and after heat treatment. The alloy was designed as an alternative to the standard Al-Si alloys already used in practice (AlSi7Mg, AlSi7Mg0.3, AlSi8Cu2Mn, AlSi8Cu3), which are mainly used in the production of engine parts and other components for the automotive and aviation industries. As can be seen from the presented results, the experimental AlSi7CrMnCu2.5 alloy exceeds the properties of the other selected alloys by tens of percent already in the cast state in many parameters. After heat treatment, the results achieved are comparable to the mentioned alloys, and in most cases, their values exceed them, especially in terms of ductility and hardness. Full article
(This article belongs to the Special Issue Characterization, Properties, and Applications of New Metallic Alloys)
Show Figures

Graphical abstract

17 pages, 5074 KB  
Article
Dynamic Recrystallization and Microstructural Evolution During Hot Deformation of Al-Cu-Mg Alloy
by Fangyan He, Xiaolan Wu, Zhizheng Rong, Xueqin Zhang, Xiangyuan Xiong, Shengping Wen, Kunyuan Gao, Wu Wei, Li Rong, Hui Huang and Zuoren Nie
Metals 2025, 15(10), 1100; https://doi.org/10.3390/met15101100 - 1 Oct 2025
Viewed by 265
Abstract
Isothermal hot compression tests were performed on an Al-4.8Cu-0.25Mg-0.32Mn-0.17Si alloy using a Gleeble-3500 thermomechanical simulator within the temperature range of 350–510 °C and strain rate range of 0.001–10 s−1, achieving a true strain of 0.9. The constitutive equation and hot processing [...] Read more.
Isothermal hot compression tests were performed on an Al-4.8Cu-0.25Mg-0.32Mn-0.17Si alloy using a Gleeble-3500 thermomechanical simulator within the temperature range of 350–510 °C and strain rate range of 0.001–10 s−1, achieving a true strain of 0.9. The constitutive equation and hot processing maps were established to predict the flow behavior of the alloy. The hot deformation mechanisms were investigated through microstructural characterization using inverse pole figure (IPF), grain boundary (GB), and grain orientation spread (GOS) analysis. The results demonstrate that both dynamic recovery (DRV) and dynamic recrystallization (DRX) occur during hot deformation. At high lnZ values (high strain rates and low deformation temperatures), discontinuous dynamic recrystallization (DDRX) dominates. Under middle lnZ conditions (low strain rate or high deformation temperature), both continuous dynamic recrystallization (CDRX) and DDRX are the primary mechanisms. Conversely, at low lnZ values (low strain rates and high temperatures), CDRX and geometric dynamic recrystallization (GDRX) become predominant. The DRX process in the Al-Cu-Mg alloy is controlled by the deformation temperature and strain rate. Full article
Show Figures

Figure 1

28 pages, 10701 KB  
Article
The Influence of Mg on the High-Temperature Chloride Salt Corrosion Behavior of High-Aluminum 310S
by Ying Wei, Peiqing La, Yuehong Zheng, Faqi Zhan, Min Zhu, Penghui Yang, Haicun Yu and Ruixin Li
Crystals 2025, 15(10), 860; https://doi.org/10.3390/cryst15100860 - 30 Sep 2025
Viewed by 139
Abstract
Concentrated Solar Power (CSP) technology is advancing toward higher operating temperatures and lower costs: current systems operate at 565 °C, while next-generation systems are targeted to reach 800 °C to overcome efficiency limitations. In this context, low-cost, adaptable molten chloride salts have emerged [...] Read more.
Concentrated Solar Power (CSP) technology is advancing toward higher operating temperatures and lower costs: current systems operate at 565 °C, while next-generation systems are targeted to reach 800 °C to overcome efficiency limitations. In this context, low-cost, adaptable molten chloride salts have emerged as ideal heat transfer and thermal energy storage media. Metallic materials are susceptible to performance degradation under such conditions, which not only shortens equipment service life but also entails potential safety hazards. Thus, the development of alloy protection technologies resistant to molten salt corrosion has become an urgent priority for the deployment of next-generation CSP plants. Research has indicated that high-aluminum stainless steel is a promising candidate due to its unique advantages: it can form a stable Al2O3 protective film in oxygen-containing anionic environments, effectively inhibiting the dissolution of Cr, Fe, and other elements, and preventing the penetration of corrosive species. Additionally, the incorporation of magnesium-based corrosion inhibitors into MgCl2-NaCl-KCl ternary molten salt systems has been proven to be an economically viable and efficient corrosion mitigation strategy. This study focused on high-aluminum 310S heat-resistant steel, with its performance validated through targeted experiments: samples subjected to pre-oxidation at 800 °C for 2 h were immersed in a specific ternary molten salt mixture (20.4 wt.% KCl, 55.1 wt.% MgCl2, 24.5 wt.% NaCl) containing magnesium corrosion inhibitors, followed by a 600 h static corrosion test at 800 °C. The results revealed that the addition of magnesium significantly enhanced the corrosion resistance of high-aluminum 310S. These findings demonstrate that this material holds application potential in the storage tank and pipeline systems of next-generation CSP plants. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

14 pages, 5326 KB  
Article
Microstructure, Hardness, and Corrosion Behavior of Oxidized AA6061 Using Potentiostatic Plasma Electrolytic Oxidation
by Salvacion B. Orgen and Eden May B. Dela Peña
Coatings 2025, 15(10), 1129; https://doi.org/10.3390/coatings15101129 - 29 Sep 2025
Viewed by 320
Abstract
Aluminum and its alloys are widely used in aerospace and industrial sectors due to their high specific strength, low density, and abundance. However, their low hardness, high corrosion susceptibility, and poor wear resistance limit broader applications. Surface treatments such as electroplating, PVD/CVD, and [...] Read more.
Aluminum and its alloys are widely used in aerospace and industrial sectors due to their high specific strength, low density, and abundance. However, their low hardness, high corrosion susceptibility, and poor wear resistance limit broader applications. Surface treatments such as electroplating, PVD/CVD, and anodizing have been used to enhance surface properties. Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), has emerged as a promising technique for producing durable ceramic coatings on light metals like Al, Mg, and Ti alloys. In this study, PEO was applied to AA6061 aluminum alloy using an AC power source in potentiostatic mode at 350 V and 400 V, 1000 Hz, and 80% duty cycle for 30 min in a silicate-based electrolyte (5 g/L Na2SiO3 + 5 g/L KOH) maintained at 25–40 °C. The effect of voltage on the coating morphology, thickness, and corrosion resistance was investigated. The coatings exhibited porous structures with pancake-like, crater, and nodular features, and thicknesses ranged from 0.053 to 83.64 µm. XRD analysis confirmed the presence of Al, α-Al2O3, Ƴ-Al2O3, and mullite. The 400 V-coated sample showed superior corrosion resistance ( Ecorr= 0.77 V; icorr=0.28 μA/cm2) and improved hardness (up to 233 HV), compared to 89 HV for the bare AA6061. Full article
Show Figures

Figure 1

15 pages, 5070 KB  
Article
The Effects of Deep Cryogenic Treatment with Regard to the Mechanical Properties and Microstructural Evolution of Al-Mg Alloys with Different Grain Sizes
by Wei Liu, Luxiang Zhang, Erli Xia, Jing Luo, Yiran Tian, Wentao Cai and Yuqing Gong
Materials 2025, 18(19), 4518; https://doi.org/10.3390/ma18194518 - 28 Sep 2025
Viewed by 293
Abstract
The tension behaviors of Al-Mg alloys were tested, and the influences of deep cryogenic treatment (DCT) and grain size on their tensile properties were explored. Optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the evolution [...] Read more.
The tension behaviors of Al-Mg alloys were tested, and the influences of deep cryogenic treatment (DCT) and grain size on their tensile properties were explored. Optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the evolution of the microstructure. It was concluded that the alloys with fine grain (FG) had a higher strain hardening capacity and strength, however, the alloys with coarse grain (CG) exhibited better plasticity. This can be explained by the alloy with fine grains having a higher density of grain boundary, which can hinder the motion of the dislocation; therefore, the deformation resistance was improved. For alloys with coarse grains, the dislocation has more freedom to move and is easier to rearrange, which is beneficial to the plasticity. Moreover, when given deep cryogenic treatment, the strength and plasticity of the alloys can be slightly improved, which can be attributed to the microplastic deformation that occurs during cryogenic treatment that can induce internal stress, as cold-induced internal stress is conductive in achieving a finer grain and higher density of dislocation. Full article
Show Figures

Figure 1

16 pages, 3860 KB  
Article
Tribological Properties of Eutectic White Cast Iron with Directional and Non-Directional Microstructure
by Małgorzata Trepczyńska-Łent and Jakub Wieczorek
Materials 2025, 18(19), 4516; https://doi.org/10.3390/ma18194516 - 28 Sep 2025
Viewed by 313
Abstract
Tribological tests were conducted on eutectic white cast iron subjected to directional solidification (resulting in a directionally oriented microstructure) and, for comparison, on white cast iron with an equiaxed (non-directional) structure. The tests were performed under dry sliding conditions on a pin-on-block rig [...] Read more.
Tribological tests were conducted on eutectic white cast iron subjected to directional solidification (resulting in a directionally oriented microstructure) and, for comparison, on white cast iron with an equiaxed (non-directional) structure. The tests were performed under dry sliding conditions on a pin-on-block rig using Cu, AlSi12CuNiMg alloy, AlSi12CuNiMg + SiC composite, and steel grade 1.3505. The friction coefficient and wear rates of these materials were systematically compared. Quantitative and qualitative evaluations of the wear tracks formed on the test specimens were carried out using profilometry. The results demonstrate that the directionally solidified white cast iron exhibits improved friction coefficient stability and reduced wear in the specific tribological pairs. The oriented directional structure demonstrated more favourable interactions when paired with AlSi12CuNiMg + SiC composite and 1.3505 steel. These tribological combinations exhibited reduced roughness values across selected cross-sectional analyses, resulting in correspondingly lower Sa parameter measurements. This finding suggests a promising new application for inserts made of directionally structured white cast iron in structural components requiring enhanced wear resistance at elevated temperatures. Full article
(This article belongs to the Special Issue Achievements in Foundry Materials and Technologies)
Show Figures

Figure 1

25 pages, 4563 KB  
Article
Metal Ion Release from PEO-Coated Ti6Al4V DMLS Alloy for Orthopedic Implants
by Shaghayegh Javadi, Laura Castro, Raúl Arrabal and Endzhe Matykina
J. Funct. Biomater. 2025, 16(10), 362; https://doi.org/10.3390/jfb16100362 - 28 Sep 2025
Viewed by 460
Abstract
This study investigates the influence of plasma electrolytic oxidation (PEO) on corrosion resistance of Ti6Al4V alloys produced by direct metal laser sintering (DMLS) for orthopedic implants. PEO (300 s) and flash-PEO (60 s) coatings containing Si, Ca, P, Mg and Zn were applied [...] Read more.
This study investigates the influence of plasma electrolytic oxidation (PEO) on corrosion resistance of Ti6Al4V alloys produced by direct metal laser sintering (DMLS) for orthopedic implants. PEO (300 s) and flash-PEO (60 s) coatings containing Si, Ca, P, Mg and Zn were applied on both DMLS and wrought Ti6Al4V alloys. Samples, coated and uncoated, were characterized for microstructure, morphology and composition. Electrochemical behaviour was assessed by potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF) at 37 °C. Ion release was quantified by inductively coupled plasma optical emission spectroscopy (ICP-OES). DMLS alloy was more passive than wrought Ti6Al4V, releasing ~60% less Ti and ~25% less Al, but ~900% more V. For both alloys, correlation of corrosion current and ion release indicated that 98–99% of oxidized Ti remained in the passive layer. Flash-PEO produced uniform porous coatings composed of anatase and rutile with ~50% amorphous phase, while PEO yielded heterogeneous layers due to soft sparking. In both cases, coatings were the main source of ions. For the DMLS alloy, the best protection was afforded by flash-PEO, releasing 0.01 μg cm−2 d−1 Ti, 26 μg cm−2 d−1 Al, and 0.25 μg cm−2 d−1 V over 30 days. Full article
(This article belongs to the Special Issue Advances in Biomedical Alloys and Surface Modification)
Show Figures

Figure 1

16 pages, 4544 KB  
Article
Simplified Chemical Treatments for Improved Adhesive Bonding Durability and Corrosion Protection of High-Pressure Die-Cast Aluminum Alloy AlSi10MnMg
by Changfeng Fan, Bo Yang, Xue Wang, Xianghua Zhan, Xiaoli Yin, Jianmin Shi, Wei Wang, Yancong Liu and Klaus Dilger
Coatings 2025, 15(10), 1122; https://doi.org/10.3390/coatings15101122 - 27 Sep 2025
Viewed by 329
Abstract
The adhesive bonding of high-pressure die-cast (HPDC) aluminum alloy AlSi10MnMg is extensively applied in the aerospace and automotive sectors. Surface pretreatment of HPDC aluminum prior to bonding is crucial for enhancing bonding strength and durability, as it regulates surface roughness, and chemical properties. [...] Read more.
The adhesive bonding of high-pressure die-cast (HPDC) aluminum alloy AlSi10MnMg is extensively applied in the aerospace and automotive sectors. Surface pretreatment of HPDC aluminum prior to bonding is crucial for enhancing bonding strength and durability, as it regulates surface roughness, and chemical properties. Traditional multi-step surface treatments including chromic acid anodizing for HPDC AlSi10MnMg are hazardous, complex, and often fail to balance adhesive bonding durability and corrosion protection, limiting their industrial applicability. This study examined the impact of various chemical treatments on the adhesive bonding performance of an AlSi10MnMg aluminum alloy. The treated surfaces were bonded using a structural adhesive, and bonding performance was evaluated via wedge tests under pristine conditions and after accelerated aging. A scanning electron microscope (SEM) was used to study the surface morphology, chemical composition, and corrosion characteristics of the treated surfaces. Energy dispersive spectroscopy (EDS), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization measurements were employed. Excellent adhesion characteristics, dominated by the cohesive failure of the adhesive, were observed in H2O2-treated samples. The H2O2-treated samples exhibited the shortest initial crack length, indicating a superior baseline bonding quality, and showed minimal crack propagation (only slight extension) after aging under extreme environmental conditions (70 °C and 100% relative humidity for 4 weeks). Electrochemical measurements revealed that the SG200-treated sample achieved the lowest corrosion current density (0.25 ± 0.03 μA/cm2) with an excellent corrosion resistance, while sol–gel-treated samples generally suffered from a poor adhesion, with interfacial failure. This study proposes a simplified, single-step chemical treatment using an H2O2 solution that effectively achieves both a strong adhesive bonding and an excellent corrosion resistance, without the drawbacks of conventional methods. It offers a viable alternative to conventional multi-step hazardous surface treatments. Full article
Show Figures

Figure 1

24 pages, 5651 KB  
Article
Coefficient of Thermal Expansion of AlSi10Mg, 316L Stainless Steel and Ti6Al4V Alloys Made with Laser Powder Bed Fusion
by Selami Emanet, Edem Honu, Kekeli Agbewornu, Evelyn Quansah, Congyuan Zeng and Patrick Mensah
Materials 2025, 18(19), 4468; https://doi.org/10.3390/ma18194468 - 25 Sep 2025
Viewed by 377
Abstract
This study investigates the coefficient of thermal expansion (CTE) behavior of LPBF-fabricated AlSi10Mg, 316L stainless steel, and Ti-6Al-4V alloys, focusing on the influence of laser power, scanning speed, and annealing. AlSi10Mg exhibits the highest CTE, but its thermal expansion is highly sensitive to [...] Read more.
This study investigates the coefficient of thermal expansion (CTE) behavior of LPBF-fabricated AlSi10Mg, 316L stainless steel, and Ti-6Al-4V alloys, focusing on the influence of laser power, scanning speed, and annealing. AlSi10Mg exhibits the highest CTE, but its thermal expansion is highly sensitive to porosity and balling defects. 316L stainless steel shows moderate and stable CTE values, with minimal changes after annealing due to its dense microstructure. Ti-6Al-4V has the lowest CTE, with annealing improving expansion. Higher laser power (100 W) improves fusion, reduces porosity, and stabilizes CTE, while lower power (50 W) increases defects, particularly in AlSi10Mg and Ti-6Al-4V. Scanning speed significantly influences porosity, with 0.4 m/s providing an optimal balance between melt efficiency and defect minimization. Annealing enhances CTE uniformity by reducing the lack of fusion defects and refining grain structures, with the greatest improvements seen in low-laser-energy conditions. These findings provide valuable insights for optimizing LPBF parameters to enhance thermal stability and reliability in aerospace, biomedical, and structural applications. Full article
(This article belongs to the Special Issue The Additive Manufacturing of Metallic Alloys (Second Edition))
Show Figures

Figure 1

19 pages, 6779 KB  
Article
Tailoring Strength and Corrosion Resistance in Al–Zn–Mg–Cu Alloys by Total (Zn + Mg) Content and Multi-Directional Forging Process
by Junfu Lin, Tangjian Liu, Mingdong Wu, Shuo Yuan, Zeyu Li, Yang Huang, Xiao Yin, Lanping Huang, Wensheng Liu and Daihong Xiao
Materials 2025, 18(19), 4476; https://doi.org/10.3390/ma18194476 - 25 Sep 2025
Viewed by 420
Abstract
The effects of (Zn + Mg) total content (9.6–11.7 wt.%) combined with multi-directional forging (MDF) on the microstructure and properties of high-strength Al–Zn–Mg–Cu alloys were systematically investigated. Our results demonstrate that the alloy obtains significant grain refinement, which is attributed to the dynamic [...] Read more.
The effects of (Zn + Mg) total content (9.6–11.7 wt.%) combined with multi-directional forging (MDF) on the microstructure and properties of high-strength Al–Zn–Mg–Cu alloys were systematically investigated. Our results demonstrate that the alloy obtains significant grain refinement, which is attributed to the dynamic recrystallization in the MDF process. Specifically, Al-8.6Zn-1.55Mg-1.9Cu-0.11Zr (Zn + Mg = 10.15 wt.%) obtains the maximum recrystallization ratio (51.8%) and the weakest texture strength, and also forms the mortise and tenon nested grain structure. Increasing the total (Zn + Mg) content can achieve significant performance enhancement, which is attributed to the refinement of the η′ phase; however, a higher total (Zn + Mg) content will lead to the continuous distribution of coarse η-MgZn2 phases formed along the grain boundary, accompanied by the broadening of precipitate-free precipitation zones (PFZs). Compared with other alloys, Al-8.6Zn-1.55Mg-1.9Cu-0.11Zr (Zn + Mg = 10.15 wt.%) maintains high strength while ensuring desirable plasticity due to its mortise and tenon nested grain structure. In addition, its desirable grain boundary precipitation behavior makes it exhibit the best corrosion resistance. These findings indicate that maintaining the total (Zn + Mg) content around 10 wt.% achieves a balance between strength and corrosion resistance, offering a theoretical foundation for the design of high-strength and corrosion-resistant Al–Zn–Mg–Cu alloys. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 4416 KB  
Article
High-Pressure Die Casting (HPDC) Process Parameters Optimization for Al-Mg-Fe Aluminum Alloy Structural Parts Manufacturing
by Mikel Merchán, Alejandro Pascual, Ane Jiménez, José Carlos García, Eva Anglada, Haize Galarraga and Naiara Ortega
Metals 2025, 15(10), 1071; https://doi.org/10.3390/met15101071 - 24 Sep 2025
Viewed by 529
Abstract
The increasing adoption of High-Pressure Die Casting (HPDC) technology in the production of automotive body structure components is driven by its potential for efficiency and performance. This technology, however, involves complex physical phenomena with numerous parameters that significantly influence casting quality. In this [...] Read more.
The increasing adoption of High-Pressure Die Casting (HPDC) technology in the production of automotive body structure components is driven by its potential for efficiency and performance. This technology, however, involves complex physical phenomena with numerous parameters that significantly influence casting quality. In this study, three key die casting parameters—plunger or shot speed, vacuum application, and intensification pressure (IP)—have been evaluated following a Design of Experiment (DoE) approach. The results demonstrate that IP application is instrumental in reducing porosity within the cast specimens, thereby enhancing their mechanical strength and elongation. Furthermore, the combined application of vacuum and IP yields further improvements in elongation by minimizing porosity. These findings are particularly relevant for silicon-free alloys, which eliminate the need for post-casting heat treatments to achieve the required mechanical properties. By optimizing HPDC processes, manufacturers can reduce rejection rates, lower production costs, and improve the overall efficiency of their operations, contributing to the production of high-quality and cost-effective components for the automotive industry. Full article
Show Figures

Figure 1

16 pages, 9544 KB  
Article
Solid-State Recycling of AA6063 Aluminum Chips via Accumulative Roll Bonding: A Green Pathway to High-Performance Materials
by Mauro Carta, Noomane Ben Khalifa, Pasquale Buonadonna, Francesco Aymerich and Mohamad El Mehtedi
Metals 2025, 15(9), 1042; https://doi.org/10.3390/met15091042 - 19 Sep 2025
Viewed by 335
Abstract
Accumulative Roll Bonding (ARB) is a severe plastic deformation process typically used to produce ultra-fine-grained structures. This study investigates the feasibility of using the ARB process to recycle aluminum chips from an Al-Mg-Si alloy (AA6063). The chips were first compacted under a 200 [...] Read more.
Accumulative Roll Bonding (ARB) is a severe plastic deformation process typically used to produce ultra-fine-grained structures. This study investigates the feasibility of using the ARB process to recycle aluminum chips from an Al-Mg-Si alloy (AA6063). The chips were first compacted under a 200 kN hydraulic press and then directly hot-rolled at 550 °C without prior heat treatment to a final sheet thickness of 1.5 mm. Subsequent ARB cycles were then applied to achieve full consolidation. Mechanical properties were evaluated through tensile testing and microhardness measurements, while microstructure was characterized using Optical Microscopy and SEM-EBSD. These analyses revealed significant grain refinement and improved homogeneity with increasing ARB cycles. Mechanical testing showed that the ARB process substantially enhanced both tensile strength and hardness of the recycled AA6063 chips while maintaining good ductility. The best results were obtained after two ARB cycles, yielding an ultimate tensile strength (UTS) of 170 MPa and an elongation at rupture of 15.7%. The study conclusively demonstrates that the ARB process represents a viable and effective method for recycling aluminum chips. This approach not only significantly improves mechanical properties and microstructural characteristics but also offers environmental benefits by eliminating the energy-intensive melting stage. Full article
Show Figures

Figure 1

22 pages, 7835 KB  
Article
Anodizing 3D-Printed AlSi10Mg Alloy and Its Fatigue Properties
by Hirotaka Kurita, Shinya Tako, Chika Tanaka, Kenji Hara, Kazunori Matsushima, Koji Satsukawa, Keita Watanabe and Hideki Kyogoku
Metals 2025, 15(9), 1022; https://doi.org/10.3390/met15091022 - 15 Sep 2025
Viewed by 493
Abstract
Two ways of anodizing 3D-printed AlSi10Mg alloy were characterized, and then their fatigue properties were evaluated. Test specimens were fabricated via a laser-powder bed fusion (L-PBF) process followed by machining. Normal and hard anodizing were both conducted in a sulfuric acid bath. The [...] Read more.
Two ways of anodizing 3D-printed AlSi10Mg alloy were characterized, and then their fatigue properties were evaluated. Test specimens were fabricated via a laser-powder bed fusion (L-PBF) process followed by machining. Normal and hard anodizing were both conducted in a sulfuric acid bath. The anodized layer was observed using FE-SEM/EDS. Fine Si particles dispersed in the matrix showing web-like patterns were incorporated in the anodized layer. By etching the Si particles away with Keller’s reagent, a characteristic maze-like 3D structure of anodized Al was observed. Then, rotating bending fatigue tests were carried out to evaluate the fatigue strength at 107 cycles. The fatigue strength of the as-machined, normal-anodized and hard-anodized specimens was 106, 100 and 95 MPa, respectively. The fatigue limits were proportional to the surface roughness with higher linearity. By reducing the surface roughness, the fatigue strength of the hard-anodized specimen was improved. This result demonstrates the possibility of improving the fatigue properties of anodized components by reducing their surface roughness. Lastly, a CASS (copper-accelerated acetic acid salt spray) test was conducted, and superior corrosion resistance of the normal- and hard-anodized layers was verified. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

29 pages, 11755 KB  
Article
Influence of Additive Manufacturing Printing Parameters via LPBF on the Mechanical Strength of Metallic Materials: Numerical Analysis by Gurson-Based Model
by Vinícius dos Santos Gonçalves, Omid Emadinia, Francisco Matos, Déborah De Oliveira, José Alexander Araújo and Lucival Malcher
Appl. Sci. 2025, 15(18), 10004; https://doi.org/10.3390/app151810004 - 12 Sep 2025
Viewed by 343
Abstract
This paper investigates the influence of initial porosity and its evolution on the mechanical behavior of metallic materials manufactured by additive manufacturing (AM), using the Gurson model to predict the initiation and propagation of damage in specimens produced via Laser Powder Bed Fusion [...] Read more.
This paper investigates the influence of initial porosity and its evolution on the mechanical behavior of metallic materials manufactured by additive manufacturing (AM), using the Gurson model to predict the initiation and propagation of damage in specimens produced via Laser Powder Bed Fusion (LPBF). The methodology combines experimental uniaxial tensile tests, numerical simulations based on the Gurson model, and the parametric identification method (PIP) to calibrate constitutive parameters (σy0, σ, δ, ξ). The specimens, made of AlSi10Mg with different printing directions (horizontal and vertical) and porosity levels, were evaluated to determine the relationship between density, anisotropy, and mechanical properties. The experimental results revealed that vertical printing accelerates fracture due to the concentration of stresses at the interfaces between layers, while the numerical simulations, compared with the von Mises model, showed greater accuracy of the Gurson model in predicting damage in porous materials. The analysis of porosity evolution highlighted the impact of void size and spacing on coalescence and ductility. The proposed methodology was validated, establishing a useful approach for evaluating the mechanical behavior of materials manufactured by AM. This work contributes to the advancement of the design of lightweight and resistant components, with applications in sectors such as aerospace and automotive, and suggests directions for future studies, including the investigation of other alloys and dynamic loading conditions. Full article
(This article belongs to the Special Issue Advances in Solid Mechanics and Its Applications)
Show Figures

Figure 1

Back to TopTop