The Influence of Mg on the High-Temperature Chloride Salt Corrosion Behavior of High-Aluminum 310S
Abstract
1. Introduction
2. Experimental Methods
2.1. Alloy Sample Preparation
2.2. Molten Salt Treatment
2.3. Static Corrosion Testing
2.4. Determination of Corrosion Rate
2.5. Subsequent Sample Preparation for Cross-Sectional Microstructural and Compositional Analysis
3. Experimental Results
3.1. Corrosion Performance and Surface Composition of High-Aluminium 310S Under Magnesium Corrosion Inhibitor Conditions
3.2. Corrosion Surface Cross-Section Morphology and Structure of High-Aluminium 310S
3.3. Morphology and Structure of the Corrosion Section of High Aluminium 310S Under Mg Corrosion Inhibitor
4. Discussion
4.1. Corrosion Mechanism of High-Temperature Chloride Salts of Pre-Oxidized High Aluminum 310S
4.2. Mechanism of Action of Mg on High-Temperature Chloride Salts of High-Aluminium 310S
5. Conclusions
- (1)
- High-aluminum 310S exhibits excellent corrosion resistance in molten chloride salts at 800 °C. The corrosion mechanism of 310S containing 2.81 wt.% Al in such environments is characterized by an “oxidation–chlorination” synergistic reaction.
- (2)
- After 120 h of exposure, a protective Al2O3 oxide layer formed on the surface of the pre-oxidized high-aluminum 310S, effectively retarding further corrosion.
- (3)
- The addition of Mg corrosion inhibitor to the molten salt significantly enhanced the corrosion resistance of high-aluminum 310S. This improvement can be attributed to the formation of a thick and continuous protective layer composed of MgO and spinel phases on the alloy surface.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sarvghad, M.; Steinberg, T.A.; Will, G. Corrosion of stainless steel 316 in eutectic molten salts for thermal energy storage. Sol. Energy 2018, 172, 198–203. [Google Scholar] [CrossRef]
- Fernández, A.G.; Gomez-Vidal, J.; Oró, E.; Kruizenga, A.; Solé, A.; Cabeza, L.F. Mainstreaming commercial CSP systems: A technology review. Renew. Energy 2019, 140, 152–176. [Google Scholar] [CrossRef]
- Gong, Q.; Shi, H.; Chai, Y.; Yu, R.; Weisenburger, A.; Wang, D.; Bonk, A.; Bauer, T.; Ding, W. Molten chloride salt technology for next-generation CSP plants: Compatibility of Fe-based alloys with purified molten MgCl2-KCl-NaCl salt at 700 °C. Appl. Energy 2022, 324, 119708. [Google Scholar] [CrossRef]
- Sah, S.P.; Tada, E.; Nishikata, A. Corrosion behaviour of austenitic stainless steels in carbonate melt at 923 K under controlled CO2-O2 environment. Corros. Sci. 2018, 133, 310–317. [Google Scholar] [CrossRef]
- Wang, J.W.; Zhang, C.Z.; Li, Z.H.; Zhou, H.X.; He, J.X.; Yu, J.C. Corrosion behavior of nickel-based superalloys in thermal storage medium of molten eutectic NaCl-MgCl2 in atmosphere. Sol. Energy Mater. Sol. Cells 2017, 164, 146–155. [Google Scholar] [CrossRef]
- Fernández, A.G.; Cabeza, L.F. Corrosion evaluation of eutectic chloride molten salt for new generation of CSP plants. Part 2: Materials screening performance. Energy Storage 2020, 29, 101381. [Google Scholar] [CrossRef]
- Kondo, M.; Nagasaka, T.; Sagara, A.; Noda, N.; Muroga, T.; Xu, Q.; Nagura, M.; Suzuki, A.; Terai, T. Metallurgical study on corrosion of austenitic steels in molten salt LiF–BeF2 (Flibe). J. Nucl. Mater. 2009, 386, 685–688. [Google Scholar] [CrossRef]
- Bell, S.; Steinberg, T.; Will, G. Corrosion mechanisms in molten salt thermal energy storage for concentrating solar power. Renew. Sustain. Energy Rev. 2019, 114, 109328. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, P.; Wang, J.Q. Corrosion problems related with molten nitrate salts for heat transfer and thermal storage. Corros. Sci. Prot. Technol. 2017, 29, 567–574. [Google Scholar]
- Ruiz-Cabañas, F.J.; Prieto, C.; Madina, V.; Fernández, A.I.; Cabeza, L.F. Materials selection for thermal energy storage systems in parabolic trough collector solar facilities using high chloride content nitrate salts. Sol. Energy Mater. Sol. Cells 2017, 163, 134–147. [Google Scholar] [CrossRef]
- Williams, D.F.; Toth, L.M.; Clarno, K.T. Assessment of Candidate Molten Salt Coolants for the Advanced High-Temperature Reactor; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2006. Available online: https://info.ornl.gov/sites/publications/Files/Pub57476.pdf (accessed on 30 August 2025).
- Pint, B.A.; Brese, R.G.; Keiser, J.R. Effect of pressure on supercritical CO2 compatibility of structural alloys at 750 °C. Mater. Corros. 2017, 68, 151–158. [Google Scholar] [CrossRef]
- Luo, J.; Deng, C.K.; Tariq, N.U.H.; Li, N.; Han, R.F.; Liu, H.H.; Wang, J.Q.; Cui, X.Y.; Xiong, T.Y. Corrosion behavior of SS316L in ternary Li2CO3–Na2CO3–K2CO3 eutectic mixture salt for concentrated solar power plants. Sol. Energy Mater. Sol. Cells 2020, 217, 110679. [Google Scholar] [CrossRef]
- Guo, L.; Liu, Q.; Yin, H.; Pan, T.J.; Tang, Z. Excellent corrosion resistance of 316 stainless steel in purified NaCl-MgCl2 eutectic salt at high temperature. Corros. Sci. 2020, 166, 108473. [Google Scholar] [CrossRef]
- Ma, L.; Wu, Y.; Zhang, C.; Lu, Y.; Dong, Y.; Jiao, X. Research on the dynamic corrosion behavior of austenitic stainless steel in quaternary nitrates. ACTA Energiae Solaris Sin. 2023, 44, 497–503. [Google Scholar]
- Gomez-Vidal, J.C.; Tirawat, R. Corrosion of alloys in a chloride molten salt (NaCl-LiCl) for solar thermal technologies. Sol. Energy Mater. Sol. Cells 2016, 157, 234–244. [Google Scholar] [CrossRef]
- Ding, W.; Shi, H.; Xiu, Y.; Bonk, A.; Weisenburger, A.; Jianu, A.; Bauer, T. Hot corrosion behavior of commercial alloys in thermal energy storage material of molten MgCl2/KCl/NaCl under inert atmosphere. Sol. Energy Mater. Sol. Cells 2018, 184, 22–30. [Google Scholar] [CrossRef]
- Fernandez, A.G.; Cabeza, L.F. Corrosion evaluation of eutectic chloride molten salt for new generation of CSP plants. Part 1: Thermal treatment assessment. Energy Storage 2020, 27, 101125. [Google Scholar] [CrossRef]
- Mohan, G.; Venkataraman, M.; Gomez-Vidal, J.; Coventry, J. Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage. Energy Convers. Manag. 2018, 167, 156–164. [Google Scholar] [CrossRef]
- García-Martín, G.; Lasanta, M.; Encinas-Sánchez, V.; de Miguel, M.; Pérez, F. Evaluation of corrosion resistance of A516 steel in a molten nitrate salt mixture using a pilot plant facility for application in CSP plants. Sol. Energy Mater. Sol. Cells 2017, 161, 226–231. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Y.; Ni, Y.; Wu, A.; Li, J. Investigation on static and dynamic corrosion behaviors of thermal energy transfer and storage system materials by molten salts in concentrating solar power plants. Mater. Corros. 2019, 70, 102–109. [Google Scholar] [CrossRef]
- Sarvghad, M.; Maher, S.D.; Collard, D.; Tassan, M.; Will, G.; Steinberg, T.A. Materials compatibility for the next generation of concentrated solar power plants. Energy Storage Mater. 2018, 14, 179–198. [Google Scholar] [CrossRef]
- Chen, H.-Z.; Li, B.-R.; Wen, B.; Ye, Q.; Zhang, N.-Q. Corrosion behaviors of iron-chromium-aluminium steel near the melting point of various eutectic salts. Sol. Energy Mater. Sol. Cells 2020, 210, 110510. [Google Scholar] [CrossRef]
- Bhuyan, P.; Pradhan, S.; Mitra, R.; Mandal, S. Evaluating the efficiency of grain boundary serrations in attenuating high-temperature hot corrosion degradation in Alloy 617. Corros. Sci. 2019, 149, 164–177. [Google Scholar] [CrossRef]
- Fernández, A.G.; Pineda, F.; Walczak, M.; Cabeza, L.F. Corrosion evaluation of alumina-forming alloys in carbonate molten salt for CSP plants. Renew. Energy 2019, 140, 227–233. [Google Scholar] [CrossRef]
- Wei, Y.; Cao, J.; Yu, H.; Sheng, J.; La, P. Effect of Mg addition on molten chloride salt corrosion tance of 310S stainless steel with aluminum. Metals 2024, 14, 1109. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Jena, P.S.M.; Chaithanya, P.V.S.; Singh, R. Enhancement of molten salt corrosion resistance of Ni-based superalloy through adding inhibitor. Trans. Indian Inst. Met. 2024, 77, 1323–1328. [Google Scholar] [CrossRef]
- Hu, X.; Ye, S.; Qi, M.; Yang, P.; Zhang, Y.; Wu, W.; Lu, X. Microstructure and mechanical properties evolution of 310S and GH3536 in hydrogen metallurgy service. Int. J. Hydrogen Energy 2025, 107, 426–437. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Y.; Jin, J. Mechanism of Al content on the microstructure and properties of hot-rolled heat-resistant steel. J. Iron Steel Res. Int. 2024, 36, 348–358. [Google Scholar]
- Ding, W.; Shi, H.; Jianu, A.; Xiu, Y.; Bonk, A.; Weisenburger, A.; Bauer, T. Molten chloride salts for next generation concentrated solar power plants: Mitigation strategies against corrosion of structural materials. Sol. Energy Mater. Sol. Cells 2019, 193, 298–313. [Google Scholar] [CrossRef]
- ASTM G1-03-E; Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. ASTM: West Conshohocken, PA, USA, 1999; pp. 1–8.
- Li, T. High-Temperature Oxidation and Thermal Corrosion; Chemical Industry Press: Beijing, China, 2003; pp. 208–215. [Google Scholar]
- Yin, Z.; Chen, W.; Li, J. The influence of F− on phase transformation of Alumina and microstructure of α-Al2O3. Bull. Chin. Ceram. Soc. 2007, 26, 640–644. [Google Scholar]
- Fernandez, A.G.; Perez, F.J. Improvement of the corrosion properties in ternary molten nitrate salts for direct energy storage in CSP plants. Sol. Energy 2016, 134, 468–478. [Google Scholar] [CrossRef]
- Zhang, S. Corrosion and Protection of Metallic Materials; Beijing Institute of Technology Press: Beijing, China, 2023; pp. 10–21. [Google Scholar]




















| Ref. | Alloy | Molten Salt (wt.%) | Corrosion Condition | Corrosion Rate (μm/y) | Corrosion Product |
|---|---|---|---|---|---|
| 6 | 304 | NaCl-KCl-MgCl2 (24.5-20.5-55) | 720 °C, 8 h, electrochemical corrosion | 8190 | Fe, Cr, Mg oxides |
| 16 | 347 | NaCl-LiCl (34.42-65.58) | 650 °C, inert gas, electrochemical corrosion | 7490 | Not specified |
| 16 | 310 | NaCl-LiCl (34.42-65.58) | 650 °C, inert gas 700 °C, electrochemical corrosion | 6420 12,451 | Cr2O3, Ni, Fe, Cr-rich oxides |
| 17 | 310 | MgCl2/KCl/NaCl | 700 °C, 500 h | 1581 | MgO, MgCr2O4, MgSiO3 |
| Material Composition | |||||||
|---|---|---|---|---|---|---|---|
| Alloy | Al | Cr | Ni | Mn | Si | C | Fe |
| High-aluminium 310S | 2.81 | 9.46 | 18.75 | 1.93 | 1.42 | 0.025 | Bal. |
| Salts | Content | Purity |
|---|---|---|
| KCl | PO4 0.0005%; N 0.001%; SO4 0.002%; H2O 0.005%; iodide(I) 0.002%; bromide(Br) 0.02%; | Analysis purity (AR) |
| NaCl | PO4 0.001%; N 0.001%; SO4 0.002%; H2O 0.005%; Pb 0.0005%; bromide(Br) 0.01%; | Analysis purity (AR) |
| MgCl2∙6H2O | MgCl2∙6H2O 98.0%; SO4 0.005%; PO4 0.001%; Pb 0.0005%; H2O 0.005%; Ca 0.05%; Fe 0.0005%; N 0.005%; | Analysis purity (AR) |
| Metal Oxide | Al2O3 | Cr2O3 | MgO | FeO | SiO2 | MnO | Na2O |
| P-B Ratio | 1.28 | 1.99 | 0.99 | 1.77 | 2.27 | 1.79 | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; La, P.; Zheng, Y.; Zhan, F.; Zhu, M.; Yang, P.; Yu, H.; Li, R. The Influence of Mg on the High-Temperature Chloride Salt Corrosion Behavior of High-Aluminum 310S. Crystals 2025, 15, 860. https://doi.org/10.3390/cryst15100860
Wei Y, La P, Zheng Y, Zhan F, Zhu M, Yang P, Yu H, Li R. The Influence of Mg on the High-Temperature Chloride Salt Corrosion Behavior of High-Aluminum 310S. Crystals. 2025; 15(10):860. https://doi.org/10.3390/cryst15100860
Chicago/Turabian StyleWei, Ying, Peiqing La, Yuehong Zheng, Faqi Zhan, Min Zhu, Penghui Yang, Haicun Yu, and Ruixin Li. 2025. "The Influence of Mg on the High-Temperature Chloride Salt Corrosion Behavior of High-Aluminum 310S" Crystals 15, no. 10: 860. https://doi.org/10.3390/cryst15100860
APA StyleWei, Y., La, P., Zheng, Y., Zhan, F., Zhu, M., Yang, P., Yu, H., & Li, R. (2025). The Influence of Mg on the High-Temperature Chloride Salt Corrosion Behavior of High-Aluminum 310S. Crystals, 15(10), 860. https://doi.org/10.3390/cryst15100860

