Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = Al2O3/graphite composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 6047 KB  
Article
Basic Concept of Purity Analysis of Facilities for High-Temperature Non-Oxide Crystal Growth
by Elena Voronina, Elena Mozhevitina, Karina Kim, Victoria Solomatina, Oleg Nefedov and Igor Avetissov
Crystals 2025, 15(12), 1059; https://doi.org/10.3390/cryst15121059 - 14 Dec 2025
Viewed by 195
Abstract
The general procedure for measurement of impurities in hot zones of high-temperature growth setups is proposed and developed. In the first step, we prepared extra-pure 15 × 15 × 8 mm collecting cubes from composite graphite by high-temperature annealing in dry dynamic vacuum. [...] Read more.
The general procedure for measurement of impurities in hot zones of high-temperature growth setups is proposed and developed. In the first step, we prepared extra-pure 15 × 15 × 8 mm collecting cubes from composite graphite by high-temperature annealing in dry dynamic vacuum. The collecting cubes were placed in different parts of the hot zones of growth setups. We tested two types of crystal growth setups: single- and multi-crucible growth setups of a VGF configuration for AIIIBV semiconductors’ crystal growth. The hot zones of the setups were built from different types of graphite materials and high-temperature dielectric ceramics (BN and Al2O3) as insulators. The growth setups with collecting cubes without raw crystal materials were heated to operating temperatures, exposed for certain operating periods, and cooled to room temperature. The cubes were taken off and analyzed by extraction of condensed impurities into an analytic super-pure acid. The extracted impurities in the acid were determined by ICP-MS analysis. We showed that the hot zone of a single-crucible growth setup was nearly twice as pure (averaged 2.45 mg/g) compared with the hot zone of a multi-crucible setup (averaging 4.06 mg/g) because of the different graphite materials of the constructions. Full article
(This article belongs to the Section Industrial Crystallization)
Show Figures

Figure 1

25 pages, 1343 KB  
Review
A Critical Review of Diffusion—Thermomechanical and Composite Reinforcement Approaches for Surface Hardening of Aluminum Alloys and Matrix Composites
by Narayana Swamy Rangaiah, Ananda Hegde, Sathyashankara Sharma, Gowrishankar Mandya Channegowda, Umanath R. Poojary and Niranjana Rai
J. Compos. Sci. 2025, 9(12), 689; https://doi.org/10.3390/jcs9120689 - 12 Dec 2025
Viewed by 434
Abstract
Aluminum alloys require improved surface performance to satisfy the demands of today’s aerospace, automotive, marine, and structural applications. This paper compares three key surface hardening methods: diffusion-assisted microalloying, thermomechanical deformation-based treatments, and composite/hybrid reinforcing procedures. Diffusion-assisted Zn/Mg enrichment allows for localized precipitation hardening [...] Read more.
Aluminum alloys require improved surface performance to satisfy the demands of today’s aerospace, automotive, marine, and structural applications. This paper compares three key surface hardening methods: diffusion-assisted microalloying, thermomechanical deformation-based treatments, and composite/hybrid reinforcing procedures. Diffusion-assisted Zn/Mg enrichment allows for localized precipitation hardening but is limited by the native Al2O3 barrier, slow solute mobility, alloy-dependent solubility, and shallow hardened depths. In contrast, thermomechanical techniques such as shot peening, surface mechanical attrition treatment (SMAT), and laser shock peening produce ultrafine/nanocrystalline layers, high dislocation densities, and deep compressive residual stresses, allowing for predictable increases in hardness, fatigue resistance, and corrosion performance. Composite and hybrid reinforcement systems, such as SiC, B4C, graphene, and graphite-based aluminum matrix composites (AMCs), use load transfer, Orowan looping, interfacial strengthening, and solid lubrication effects to enhance wear resistance and through-thickness strengthening. Comparative evaluations show that, while diffusion-assisted procedures are still labor-intensive and solute-sensitive, thermomechanical treatments are more industrially established and scalable. Composite and hybrid systems provide the best tribological and load-bearing performance but necessitate more sophisticated processing approaches. Recent corrosion studies show that interfacial chemistry, precipitate distribution, and galvanic coupling all have a significant impact on pitting and stress corrosion cracking (SCC). These findings highlight the importance of treating corrosion as a fundamental design variable in all surface hardening techniques. This work uses unified tables and drawings to provide a thorough examination of strengthening mechanisms, corrosion and fatigue behavior, hardening depth, alloy suitability, and industrial feasibility. Future research focuses on overcoming diffusion barriers, establishing next-generation gradient topologies and hybrid processing approaches, improving strength ductility corrosion trade-offs, and utilizing machine-learning-guided alloy design. This research presents the first comprehensive framework for selecting multifunctional aluminum surfaces in demanding aerospace, automotive, and marine applications by seeing composite reinforcements as supplements rather than strict alternatives to diffusion-assisted and thermomechanical approaches. Full article
(This article belongs to the Section Metal Composites)
Show Figures

Figure 1

18 pages, 4055 KB  
Article
Optimizing the Microscopic Structure of MIL-68(Al) by Co-Doping for Pollutant Removal and Mechanism
by Wenju Peng, Wenjie Yang, Meng Wang, Lin Zhang, Xianxiang Liu and Yaoyao Zhang
Catalysts 2025, 15(9), 900; https://doi.org/10.3390/catal15090900 - 17 Sep 2025
Viewed by 697
Abstract
Four different MIL-68(Al) catalysts were synthesized and characterized by XPS, SEM, TEM, XRD, DLS, Nitrogen adsorption removal, and other methods. An aluminum-based MOF (Metal Organic Framework) (MIL-68(Al))/graphite oxide (GO) composite with TiO2 showed the largest BET specific area with best adsorption performance. [...] Read more.
Four different MIL-68(Al) catalysts were synthesized and characterized by XPS, SEM, TEM, XRD, DLS, Nitrogen adsorption removal, and other methods. An aluminum-based MOF (Metal Organic Framework) (MIL-68(Al))/graphite oxide (GO) composite with TiO2 showed the largest BET specific area with best adsorption performance. Representation demonstrated that MIL-68(Al) and TiO2 nanoparticles are uniformly dispersed on the surface of the GO lamellar, and a tight heterojunction structure is formed between them. The MIL-68(Al)/GO/TiO2 exhibits good pore characteristics, structural morphology, and catalytic performance. Adsorption experiments of methyl orange can reach 99.7% with the effect of MIL-68(Al)/GO/TiO2 in water for 20 min. Moreover, the pH range can be applied to 1–13 and a high concentration of 200 mg/L methyl orange solution also worked well. In addition, this kind of catalyst can also be used for rhodamine B, methylene blue, congo red, and tetracycline in 20 min with good adsorption. Meanwhile, simple filtration can quickly recover MIL-68(Al)/GO/TiO2 and effectively reuse it. Free radical capture experiments showed a large number of •OH radicals during the adsorption of MO (Methyl Orange) solution by MIL-68(Al)/GO/TiO2. Meanwhile, the electrostatic interaction, π-π packing and hydrogen bonding make MIL-68(Al)/GO/TiO2 have a higher adsorption capacity for MO. Therefore, co-doping optimized the structure of MIL-68(Al), enhancing its stability in strong acids and bases while improving adsorption performance across a broader pH range than previously reported. This work addresses the instability of MIL-68(Al) under extreme conditions, demonstrating its significant potential for wastewater treatment applications. Full article
(This article belongs to the Special Issue TiO2 Photocatalysts: Design, Optimization and Application)
Show Figures

Figure 1

17 pages, 2954 KB  
Article
Reliability and Failure Probability Analysis of Al-Mg-Si/Al2O3–SiC Composites Cast Under Different Mold Conditions Using Classical and Bayesian Weibull Models
by Mohammed Y. Abdellah, Fadhel T. Alabdullah, Fadhel Alshqaqeeq and Mohamed K. Hassan
Crystals 2025, 15(9), 791; https://doi.org/10.3390/cryst15090791 - 4 Sep 2025
Cited by 1 | Viewed by 663
Abstract
This study analyzes the compressive behavior and reliability of Al-Mg-Si (6061) metal matrix composites reinforced with different weight fractions of Al2O3 and SiC ceramics and cast with graphite and steel molds. Compression tests were carried out according to ASTM E9 [...] Read more.
This study analyzes the compressive behavior and reliability of Al-Mg-Si (6061) metal matrix composites reinforced with different weight fractions of Al2O3 and SiC ceramics and cast with graphite and steel molds. Compression tests were carried out according to ASTM E9 with 0–8 wt.% reinforcement. The mold material significantly influenced the strength due to the cooling rate and interfacial adhesion. A two-parameter Weibull model assessed statistical reliability and extracted the shape (β) and scale (η) parameters using linear regression. Advanced models—lifelines (frequentist) and Bayesian models—were also applied. Graphite molds yielded composites with higher shape parameters (β = 6.27 for Al2O3; 5.49 for SiC) than steel molds (β = 4.66 for Al2O3; 4.79 for SiC). The scale values ranged from 490–523 MPa. The lifelines showed similar trends, with the graphite molds exhibiting higher consistency and scale (ρ = 7.45–9.36, λ = 479.71–517.49 MPa). Bayesian modeling using PyMC provided posterior distributions that better captured the uncertainty. Graphite mold samples had higher shape parameters (α = 6.98 for Al2O3; 8.46 for SiC) and scale values of 489.07–530.64 MPa. Bayesian models provided wider reliability limits, especially for SiC steel. Both methods confirmed the Weibull behavior. Lifelines proved to be computationally efficient, while Bayesian analysis provided deeper insight into reliability and variability. Full article
(This article belongs to the Special Issue Microstructural Characterization and Property Analysis of Alloys)
Show Figures

Figure 1

16 pages, 2397 KB  
Article
Electromagnetic Field Shielding Using Interior Paints Enhanced with Metal Powders
by Ján Zbojovský and Pavol Liptai
Materials 2025, 18(16), 3916; https://doi.org/10.3390/ma18163916 - 21 Aug 2025
Viewed by 1107
Abstract
This article deals with the issue of electromagnetic radiation, specifically methods of eliminating radiation using protective coatings. Protective coatings were created from commercially available fabricated but also recycled metal powders and commonly available interior paint. The aim of the experiments was to produce [...] Read more.
This article deals with the issue of electromagnetic radiation, specifically methods of eliminating radiation using protective coatings. Protective coatings were created from commercially available fabricated but also recycled metal powders and commonly available interior paint. The aim of the experiments was to produce protective coatings with different qualitative and quantitative compositions and subsequently test their shielding effects. For the preparation of the coatings, mixtures in the form of commercially produced powder with a particle size of <10 μm were used, namely aluminum oxide (Al2O3), manganese dioxide (MnO2), and graphite (C). Recycled powders are powdered iron (Fe) and zinc oxide (ZnO) with a particle size of <50 μm. The powders were mixed in various ratios and compounds into a commercially available white interior paint. Measurements were performed in the frequency range of 0.9–9 GHz with a step of 0.1 GHz, evaluating the shielding effectiveness, absorption, and reflection. The best shielding values were achieved for samples containing 100 g of carbon powder, 100 g of iron powder, and 100 g of manganese dioxide, ranging from 0.38 to 6.2 dB in the full measured frequency range. Full article
Show Figures

Graphical abstract

13 pages, 5833 KB  
Article
Wettability-Enhanced SiC–Graphite Synergy in Al2O3-SiC-C Castables: Carbon Resource Comparation, Sintering Response, and Latent Rheology Effects
by Benjun Cheng, Mingyang Huang, Guoqi Liu, Feng Wu and Xiaocheng Liang
Materials 2025, 18(15), 3618; https://doi.org/10.3390/ma18153618 - 31 Jul 2025
Viewed by 623
Abstract
Research on raw materials for Al2O3-SiC-C refractory castables used in blast furnace troughs is relatively well established. However, gaps remain in both laboratory and industrial trials concerning the performance of castables incorporating SiC-modified flake graphite and alternative carbon sources. [...] Read more.
Research on raw materials for Al2O3-SiC-C refractory castables used in blast furnace troughs is relatively well established. However, gaps remain in both laboratory and industrial trials concerning the performance of castables incorporating SiC-modified flake graphite and alternative carbon sources. This study investigated the sintering behavior, mechanical properties, and service performance of Al2O3-SiC-C castables utilizing varying contents of modified flake graphite, pitch, and carbon black as carbon sources. Samples were characterized using SEM, XRD, and EDS for phase composition and microstructural morphology analysis. Key findings revealed that the thermal expansion mismatch between the SiC coating and flake graphite in SiC-modified graphite generated a microcrack-toughening effect. This effect, combined with the synergistic reinforcement from both components, enhanced the mechanical properties. The SiC modification layer improved the wettability and oxidation resistance of the flake graphite. This modified graphite further contributed to enhanced erosion resistance through mechanisms of matrix pinning and crack deflection within the microstructure. However, the microcracks induced by thermal mismatch concurrently reduced erosion resistance, resulting in an overall limited net improvement in erosion resistance attributable to the modified graphite. Specimens containing 1 wt.% modified flake graphite exhibited the optimal overall performance. During industrial trials, this formulation unexpectedly demonstrated a water reduction mechanism requiring further investigation. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

20 pages, 3918 KB  
Article
Engineered Cu0.5Ni0.5Al2O4/GCN Spinel Nanostructures for Dual-Functional Energy Storage and Electrocatalytic Water Splitting
by Abdus Sami, Sohail Ahmad, Ai-Dang Shan, Sijie Zhang, Liming Fu, Saima Farooq, Salam K. Al-Dawery, Hamed N. Harharah, Ramzi H. Harharah and Gasim Hayder
Processes 2025, 13(7), 2200; https://doi.org/10.3390/pr13072200 - 9 Jul 2025
Viewed by 807
Abstract
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, [...] Read more.
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, addressing environmental challenges while meeting rising energy needs. In this study, the fabrication of a novel bifunctional catalyst, copper nickel aluminum spinel (Cu0.5Ni0.5Al2O4) supported on graphitic carbon nitride (GCN), using a solid-state synthesis process is reported. Because of its effective interface design and spinel cubic structure, the Cu0.5Ni0.5Al2O4/GCN nanocomposite, as synthesized, performs exceptionally well in electrochemical energy conversion, such as the oxygen evolution reaction (OER), the hydrogen evolution reaction (HER), and energy storage. In particular, compared to noble metals, Pt/C- and IrO2-based water-splitting cells require higher voltages (1.70 V), while for the Cu0.5Ni0.5Al2O4/GCN nanocomposite, a voltage of 1.49 V is sufficient to generate a current density of 10 mA cm−2 in an alkaline solution. When used as supercapacitor electrode materials, Cu0.5Ni0.5Al2O4/GCN nanocomposites show a specific capacitance of 1290 F g−1 at a current density of 1 A g−1 and maintain a specific capacitance of 609 F g−1 even at a higher current density of 5 A g−1, suggesting exceptional rate performance and charge storage capacity. The electrode’s exceptional capacitive properties were further confirmed through the determination of the roughness factor (Rf), which represents surface heterogeneity and active area enhancement, with a value of 345.5. These distinctive characteristics render the Cu0.5Ni0.5Al2O4/GCN composite a compelling alternative to fossil fuels in the ongoing quest for a viable replacement. Undoubtedly, the creation of the Cu0.5Ni0.5Al2O4/GCN composite represents a significant breakthrough in addressing the energy crisis and environmental concerns. Owing to its unique composition and electrocatalytic characteristics, it is considered a feasible choice in the pursuit of ecologically sustainable alternatives to fossil fuels. Full article
Show Figures

Graphical abstract

18 pages, 8036 KB  
Article
Research on High-Temperature Frictional Performance Optimization and Synergistic Effects of Phosphate-Based Composite Lubricating Coatings
by Yong Ding, Shengjun Wang, Youxin Zhou, Hongmei Lv and Baoping Yang
Coatings 2025, 15(6), 704; https://doi.org/10.3390/coatings15060704 - 11 Jun 2025
Viewed by 993
Abstract
In high-temperature, high-pressure, and corrosive industrial environments, frictional wear of metallic components stands as a critical determinant governing the long-term operational reliability of mechanical systems. To address the challenge of traditional lubricating coating failure under a broad temperature range (−50 to 500 °C), [...] Read more.
In high-temperature, high-pressure, and corrosive industrial environments, frictional wear of metallic components stands as a critical determinant governing the long-term operational reliability of mechanical systems. To address the challenge of traditional lubricating coating failure under a broad temperature range (−50 to 500 °C), this study developed a phosphate-based composite lubricating coating. Through air-spraying technology and orthogonal experimental optimization, the optimal formulation was determined as follows: binder/filler ratio = 6:4, 5% graphite, 15% MoS2, and 10% aluminum powder. Experimental results demonstrated that at 500 °C, the coating forms an Al–O–P cross-linked network structure, with MoS2 oxidation generating MoO3 and aluminum powder transforming into Al2O3, significantly enhancing density and oxidation resistance. Friction tests revealed that the composite coating achieves a friction coefficient as low as 0.12 at room temperature with a friction time of 260 min. At 500 °C, the friction coefficient stabilizes at 0.24, providing 40 min of effective protection. This technology not only resolves the high-temperature instability of traditional coatings but also ensures an environmentally friendly preparation process with no harmful emissions, offering a technical solution for the protection of high-temperature equipment such as thermal power plant boiler tubes and petrochemical reactors. Full article
Show Figures

Figure 1

11 pages, 3786 KB  
Article
AlF3-Modified Carbon Anodes for Aluminum Electrolysis: Oxidation Resistance and Microstructural Evolution
by Guifang Xu, Yonggang Ding, Fan Bai, Youming Zhang, Jianhua Yin and Caifeng Chen
Inorganics 2025, 13(5), 165; https://doi.org/10.3390/inorganics13050165 - 15 May 2025
Cited by 1 | Viewed by 1341
Abstract
The aluminum electrolysis industry faces significant challenges due to the high consumption and environmental impact of carbon anodes, which are prone to oxidation in high-temperature and strongly oxidizing environments. This study innovatively introduces aluminum fluoride (AlF3) as an additive to enhance [...] Read more.
The aluminum electrolysis industry faces significant challenges due to the high consumption and environmental impact of carbon anodes, which are prone to oxidation in high-temperature and strongly oxidizing environments. This study innovatively introduces aluminum fluoride (AlF3) as an additive to enhance the oxidation resistance of carbon anodes for aluminum electrolysis. By systematically exploring microstructural evolution through SEM, XRD, Raman spectroscopy, and permeability analyses, it reveals that AlF3 inserts fluorine atoms into carbon interlayers, forming F-C bonds that reduce interlayer spacing while promoting graphitization. Simultaneously, AlF3-derived α-Al2O3 particles densify the anode and make it more compact, reaching the optimum when 7 wt.% AlF3 is doped. The bulk density of the carbon anode increased to 2.08 g/cm3, porosity decreased to 0.315, and air permeability reached a minimum of 2.3 nPm. In addition, the fluorine intercalation reduces the electrical resistance to 2.12 Ω via conductive F-C clusters. The demonstrated efficacy of AlF3 additives in enhancing the oxidation resistance and conductivity of carbon anodes suggests strong potential for industrial adoption, particularly in optimizing anode composition to reduce energy consumption. Full article
Show Figures

Graphical abstract

19 pages, 6431 KB  
Article
Influence of Alumina and Silica Supports on the Performance of Nickel Catalysts for Methane Partial Oxidation
by Rasha S. A. Alanazi, Salwa B. Alreshaidan, Ahmed A. Ibrahim, Irfan Wazeer, Naif Alarifi, Omer A. Bellahwel, Ahmed E. Abasaeed and Ahmed S. Al-Fatesh
Catalysts 2025, 15(2), 102; https://doi.org/10.3390/catal15020102 - 22 Jan 2025
Cited by 6 | Viewed by 2444
Abstract
Rising greenhouse gas concentrations are causing climatic change that threatens ecosystem sustainability. This study investigated the impact of silica incorporation into alumina-supported nickel catalysts for the partial oxidation of methane (POM), a crucial process for syngas production. The investigation also focuses on the [...] Read more.
Rising greenhouse gas concentrations are causing climatic change that threatens ecosystem sustainability. This study investigated the impact of silica incorporation into alumina-supported nickel catalysts for the partial oxidation of methane (POM), a crucial process for syngas production. The investigation also focuses on the impact of using different calcination temperatures. The catalysts were synthesized using the impregnation method and structurally characterized with BET, TPR, FTIR, UV, XRD, TGA, Raman, and TEM analysis techniques. These characterization techniques revealed that increasing the silica content reduced the surface area and weakened the interaction between nickel and the support. The calcination temperature significantly influenced catalyst properties, affecting pore structure, nickel reducibility, and the formation of nickel aluminates and silicates. Activity tests of synthesized catalysts were performed in a packed-bed reactor at 600 °C with a 24 mL/min gas flow rate. The catalyst composition of 5Ni/10Si + 90Al demonstrated the highest activity, achieving optimal performance at lower calcination temperatures. This catalyst generates a greater concentration of active sites, primarily due to nickel oxide (NiO), which creates these sites through both mild and strong interactions. The degree of graphitization is notably lowest for the 5Ni/10Si + 90Al composition. This catalyst achieved an impressive hydrogen yield of approximately 54%, with an H2/CO ratio of 3.4 over a streaming period of up to 240 min. When the silica loading exceeds 10 wt.%, the interaction between the metal and the support weakens, resulting in a significant decrease in surface area and, subsequently, lower catalytic activity. The 5Ni/10Si + 90Al catalyst, which was prepared with calcination temperatures above 500 °C, has very few active sites during the Partial Oxidation of Methane (POM) reaction at a reaction temperature of 600 °C. This catalyst also exhibits a high degree of crystallinity, which leads to reduced exposure of the active sites. As a result, incorporating higher weight percentages of silica into the 5Ni/xSi + (100 − x) Al catalysts results in decreased activity. When the silica loading exceeds 10 wt.%, the interaction between the metal and the support weakens, resulting in a significant decrease in surface area and, subsequently, lower catalytic activity. The 5Ni/10Si + 90Al catalyst, which was prepared with calcination temperatures above 500 °C, has very few active sites during the POM reaction at a reaction temperature of 600 °C. This catalyst also exhibits a high degree of crystallinity, which leads to reduced exposure of the active sites. As a result, incorporating higher wt.% of silica into the 5Ni/xSi + (100 − x) Al catalysts results in decreased activity. These findings highlight the complex interplay between silica content, calcination temperature, and catalyst properties, significantly influencing catalytic performance in POM. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Graphical abstract

23 pages, 7326 KB  
Article
Significance of Tool Coating Properties and Compacted Graphite Iron Microstructure for Tool Selection in Extreme Machining
by Anna Maria Esposito, Qianxi He, Jose M. DePaiva and Stephen C. Veldhuis
Nanomaterials 2025, 15(2), 130; https://doi.org/10.3390/nano15020130 - 16 Jan 2025
Cited by 1 | Viewed by 1487
Abstract
This study aims to determine the extent to which coating composition and workpiece properties impact machinability and tool selection when turning Compacted Graphite Iron (CGI) under extreme roughing conditions. Two CGI workpieces, differing in pearlite content and graphite nodularity, were machined at a [...] Read more.
This study aims to determine the extent to which coating composition and workpiece properties impact machinability and tool selection when turning Compacted Graphite Iron (CGI) under extreme roughing conditions. Two CGI workpieces, differing in pearlite content and graphite nodularity, were machined at a cutting speed of 180 m/min, feed rate of 0.18 mm/rev, and depth of cut of 3 mm. To assess the impact of tool properties across a wide range of commercially available tools, four diverse multilayered cemented carbide tools were evaluated: Tool A and Tool B with a thin AlTiSiN PVD coating, Tool C with a thick Al2O3-TiCN CVD coating, and Tool D with a thin Al2O3-TiC PVD coating. The machinability of CGI and wear mechanisms were analyzed using pre-cutting characterization, in-process optical microscopy, and post-test SEM analysis. The results revealed that CGI microstructural variations only affected tool life for Tool A, with a 110% increase in tool life between machining CGI Grade B and Grade A, but that the effects were negligible for all other tools. Tool C had a 250% and 70% longer tool life compared to the next best performance (Tool A) for CGI Grade A and CGI Grade B, respectively. With its thick CVD-coating, Tool C consistently outperformed the others due to its superior protection of the flank face and cutting edge under high-stress conditions. The cutting-induced stresses played a more significant role in the tool wear process than minor differences in workpiece microstructure or tool properties, and a thick CVD coating was most effective in addressing the tool wear effects for the extreme roughing conditions. However, differences in tool life for Tool A showed that tool behavior cannot be predicted based on a single system parameter, even for extreme conditions. Instead, tool properties, workpiece properties, cutting conditions, and their interactions should be considered collectively to evaluate the extent that an individual parameter impacts machinability. This research demonstrates that a comprehensive approach such as this can allow for more effective tool selection and thus lead to significant cost savings and more efficient manufacturing operations. Full article
(This article belongs to the Special Issue Mechanical Properties and Applications for Nanostructured Alloys)
Show Figures

Figure 1

23 pages, 19953 KB  
Article
Microstructures and Mechanical Properties of Al Matrix Composites Reinforced with TiO2 and Graphitic Carbon Nitride
by Chen Wang, Xianyong Zhu, Ke Zhang, Jiaan Liu, Xiong Xiao, Cheng Jiang, Jinyuan Zhang, Changchun Lv and Zhaoxue Sun
Metals 2025, 15(1), 60; https://doi.org/10.3390/met15010060 - 11 Jan 2025
Cited by 4 | Viewed by 1365
Abstract
The scattering of reinforcement plays a crucial role in the microstructure and properties of metal matrix composites. In this study, an aluminum matrix composite (AMC) was reinforced by 10 wt% TiO2 (Al-10TiO2), with an average particle size of a submicron, [...] Read more.
The scattering of reinforcement plays a crucial role in the microstructure and properties of metal matrix composites. In this study, an aluminum matrix composite (AMC) was reinforced by 10 wt% TiO2 (Al-10TiO2), with an average particle size of a submicron, combined with a different content of graphitic carbon nitride (g-C3N4), which was fabricated by shift-speed ball milling (SSBM) combined with multi-pass friction stir processing (FSP). In addition to the high hardness of TiO2, g-C3N4 has functional groups to promote in situ reactions. SSBM improves the distribution of reinforcement, refines grain size, and reduces the structural destruction of g-C3N4. The in situ reaction was achieved after multi-pass FSP at a high rotational speed and low travel speeds, which can promote uniform dispersion and grain refinement. Moreover, the g-C3N4 shows the efficient enhancement of strength while maintaining the elongation of AMC. Because the exfoliation of g-C3N4 under the effect of processing reduces the agglomeration of TiO2, boosts the flattening of Al, and enhances interface integration with the base metal. In situ phases can reduce the generation of coarse phases and improve interfacial bonding ability to enhance mechanical properties. The maximum tensile strength has been found at about 172.5 MPa in the Al-10TiO2 containing 1 wt% g-C3N4, which was enhanced by 34% compared to that of the Al-10TiO2. The tensile strength increases when the g-C3N4 content increases from 0 to 1 wt%, but then reduces with a further increase of content. The hardness was increased by 50.2%, 60.2%, and 35% with a g-C3N4 content of 0.5, 1, and 2 wt% compared to AMCs without reinforcement, respectively. According to the test, the enhancement mechanism is mainly attributed to Orowan, grain refinement strengthening, and load transfer of scattered reinforcement. In summary, the utilization of hybrid reinforcements successfully enhances the microstructure and mechanical properties. Full article
Show Figures

Figure 1

10 pages, 3117 KB  
Article
Surface Tension of Cu-Ti Alloys and Wettability in a Liquid Alloy–Refractory Material-Gaseous Phase System
by Katarzyna Nowinska, Grzegorz Siwiec, Tomasz Matula, Alphonce Wikedzi, Beata Oleksiak, Jaroslaw Piatkowski, Tomasz Merder and Mariola Saternus
Materials 2024, 17(19), 4786; https://doi.org/10.3390/ma17194786 - 29 Sep 2024
Viewed by 1548
Abstract
The study involved measurements of surface tension of liquid binary copper-titanium alloys with respect to their chemical composition and temperature as well as investigations of the liquid alloy–refractory material-gaseous phase system wettability using usual refractory materials, i.e., graphite, aluminum oxide and magnesium oxide. [...] Read more.
The study involved measurements of surface tension of liquid binary copper-titanium alloys with respect to their chemical composition and temperature as well as investigations of the liquid alloy–refractory material-gaseous phase system wettability using usual refractory materials, i.e., graphite, aluminum oxide and magnesium oxide. The experiments were performed with the use of the sessile drop method and a high-temperature microscope coupled with a camera and a computer. The aim of this study was to determine the influence of titanium content in the Cu-Ti alloy on the surface tension and contact angle at the interface between the liquid alloy and the refractory material. The influence of temperature on these parameters was also examined. The tests were carried out for copper-titanium alloys with a maximum content of 1.5% wt. Ti, in the temperature range of 1373 to 1573 K. The test results indicate that as the titanium content in the alloy increases, its surface tension increases slightly. However, an increase in temperature causes a decrease in the surface tension of the alloys. In the case of an alloy containing 1.5% wt. Ti, surface tension at a temperature of 1373 K reaches 1351 mN∙m−1, and at a temperature of 1573 K, it decreases to 1315 mN∙m−1. As the temperature and titanium content in the alloy increase, a decrease in the contact angle is observed. The highest values of contact angles were recorded in the case of contact of the liquid alloy with graphite. For an alloy containing 0.1% wt. Ti at a temperature of 1373 K, the contact angle reaches 132°, while at a temperature of 1573 K, it decreases to 128°. For an alloy containing 1.5% wt. Ti, the values of contact angles are 100° and 96°, respectively. However, the contact angles have the lowest values for magnesium oxide. In the case of a temperature of 1573 K and an alloy containing 1.5% wt. Ti, the contact angle reaches 49°. Such a significant impact of titanium content on the contact angles may be due to its high affinity for oxygen (contact with a substrate made of Al2O3 and MgO and its reactivity with carbon (contact with graphite). Full article
Show Figures

Figure 1

17 pages, 7074 KB  
Article
Upcycling Mill Scale and Aluminum Dross for Sustainable Materials Processing: Synthesis of Hercynite via Fe2O3-Al2O3-C Combustion
by Nuntaporn Kongkajun, Benya Cherdhirunkorn and Somyote Kongkarat
Recycling 2024, 9(5), 80; https://doi.org/10.3390/recycling9050080 - 17 Sep 2024
Cited by 3 | Viewed by 2396
Abstract
This study investigates the potential of utilizing industrial by-products—mill scale (MS) and aluminum dross (AD)—as sources of Fe2O3 and Al2O3, respectively, for hercynite (FeAl2O4) production. Through combustion of MS-AD-graphite systems at 1550 [...] Read more.
This study investigates the potential of utilizing industrial by-products—mill scale (MS) and aluminum dross (AD)—as sources of Fe2O3 and Al2O3, respectively, for hercynite (FeAl2O4) production. Through combustion of MS-AD-graphite systems at 1550 °C under air atmosphere, hercynite-based refractory materials were synthesized. Results confirm the viability of this upcycling approach for hercynite synthesis. During the formation of hercynite, the development of a dendritic structure can be observed, which subsequently fuses into a grain shape. XRD phase analysis using the Rietveld method revealed that the major components of the product with a C/O ratio of 1 were 85.11% FeAl2O4, 10.99% Al2O3, and 3.9% C. For the product with a C/O ratio of 2, the composition was 82.4% FeAl2O4, 13.0% Al2O3, and 4.6% C. The combustion of raw pellets with a C/O ratio of 1 at 1550 °C for 1 h in a normal air atmosphere is economically viable for producing hercynite, yielding 85.11 wt%. This approach presents a sustainable and eco-friendly alternative to using commercial raw materials, potentially eliminating the need for virgin alumina and iron ore. By repurposing waste materials from the steel and aluminum industries, this study contributes to the circular economy and aligns with the goal of zero waste. Full article
Show Figures

Graphical abstract

18 pages, 10031 KB  
Article
Steam Reforming of Tar Impurities from Biomass Gasification with Ni-Co/Mg(Al)O Catalysts—Operating Parameter Effects
by Ask Lysne, Ida Saxrud, Kristin Ø. Madsen and Edd A. Blekkan
Fuels 2024, 5(3), 458-475; https://doi.org/10.3390/fuels5030025 - 28 Aug 2024
Cited by 7 | Viewed by 3249
Abstract
The elimination of tar impurities from biomass gasification by catalytic steam reforming can provide clean syngas for downstream biofuel synthesis (Fischer–Tropsch). The effects of key operating parameters in CH4/tar steam reforming were investigated. Ni-Co/Mg(Al)O catalyst performance was tested at model conditions [...] Read more.
The elimination of tar impurities from biomass gasification by catalytic steam reforming can provide clean syngas for downstream biofuel synthesis (Fischer–Tropsch). The effects of key operating parameters in CH4/tar steam reforming were investigated. Ni-Co/Mg(Al)O catalyst performance was tested at model conditions (10/35/25/25/5 wt% CH4/H2/CO/CO2/N2), changing the temperature (650–800 °C), steam-to-carbon ratio (2–5), tar loading (10–30 g/Nm3), and tar composition (toluene, 1-methylenaphthalene, and phenol). Complete tar elimination was achieved under all conditions, at the expense of catalyst deactivation by coke formation. Post-operation coke characterization was obtained with TPO-MS, Raman spectroscopy, and STEM analysis, providing vital insight into coke morphology and location. Critical low-temperature and high-tar loading limits were identified, where rapid deactivation was accompanied by increasing amounts of hard coke species. A coke classification scheme is proposed, including strongly adsorbed surface carbon species (soft coke A), initial scattered carbon filaments (hard coke B1.1), filament clusters and fused filaments (B2), and strongly deactivating bulk encapsulating coke (B3), formed through progressive filament cluster graphitization. High-molecular-weight tar was found to enhance the formation of strongly deactivating metal-particle-encapsulating coke (B1.2). The results contribute to the understanding of coke formation in the presence of biomass gasification tar impurities. Full article
Show Figures

Graphical abstract

Back to TopTop