AlF3-Modified Carbon Anodes for Aluminum Electrolysis: Oxidation Resistance and Microstructural Evolution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of AlF3 on Micromorphology of Carbon Anodes
2.2. Effect of AlF3 on Crystalline Microstructure of Carbon Anodes
2.3. Effect of AlF3 on Oxidation Resistance Properties of Carbon Anodes
2.4. Effect of AlF3 on Resistance Properties of Carbon Anodes
3. Materials and Methods
3.1. Experimental Materials and Preparation
3.2. Characterization Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, X.; Fei, X.; Wang, K.; Fang, T.; Chen, R. A novel SVD-UKFNN algorithm for predicting current efficiency of aluminum electrolysis. Sci. Rep. 2025, 15, 9173. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.; Irshad, A.; Margenot, A.; Zamanian, K.; Li, N.; Ullah, S.; Kuzyakov, Y. Inorganic carbon is overlooked in global soil carbon research: A bibliometric analysis. Geoderma 2024, 443, 116831. [Google Scholar] [CrossRef]
- Liang, Z. Selecting the proper material for a grain loss sensor based on DEM simulation and structure optimization to improve monitoring ability. Precis. Agric. 2021, 22, 1120–1133. [Google Scholar] [CrossRef]
- Zhou, C.; Okonkwo, C.E.; Inyinbor, A.A.; Yagoub, A.E.A.; Olaniran, A.F. Ultrasound, infrared and its assisted technology, a promising tool in physical food processing: A review of recent developments. Crit. Rev. Food Sci. Nutr. 2023, 63, 1587–1611. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.J.; Li, G.; Nazir, M.M.; Zulfiqar, F.; Siddique, K.H.; Iqbal, B.; Du, D. Harnessing soil carbon sequestration to address climate change challenges in agriculture. Soil Tillage Res. 2024, 237, 105959. [Google Scholar] [CrossRef]
- Wang, X.; Pan, Y.; Wang, X.; Guo, Y.; Ni, C.; Wu, J.; Hao, C. High performance hybrid supercapacitors assembled with multi-cavity nickel cobalt sulfide hollow microspheres as cathode and porous typha-derived carbon as anode. Ind. Crops Prod. 2022, 189, 115863. [Google Scholar] [CrossRef]
- Guan, W.; Guo, W.; Chen, F.; Han, X.; Wang, H.; Sun, W.; Zhao, Q.; Jia, D.; Wei, X.; Zhu, Q. Multi-Span Greenhouse Energy Saving by External Insulation: System Design and Implementation. Agriculture 2024, 14, 281. [Google Scholar] [CrossRef]
- Kallummal, M.; Gupta, A.K.; Khosla, S. Estimating Carbon Emission Intensity of Energy Intensive Firms: A Firm-Level Analyses. In FDI, MSMEs, Digitalization, and Green Industrialization: Challenges, Opportunities and Policy Lessons for India; Springer: Singapore, 2025; pp. 251–276. [Google Scholar]
- Kvande, H.; Saevarsdottir, G.; Welch, B. Decarbonizing the primary aluminum industry: Opportunities and challenges. Light Met. Age 2023, 81, 38–45. [Google Scholar]
- Zhang, Y.J.; He, P.Y.; Chen, H.; Liu, L.C. Green Transforming Metallurgical Residue into Alkali-Activated Silicomanganese Slag-Based Cementitious Material as Photocatalyst. Materials 2018, 11, 1773. [Google Scholar] [CrossRef]
- Han, J.; Zhu, W.; Chen, C. Identifying Emissions Reduction Opportunities in International Bilateral Emissions Trading Systems to Achieve China’s Energy Sector NDCs. Int. J. Environ. Res. Public Health 2023, 20, 1332. [Google Scholar] [CrossRef]
- Dai, Y.; Peng, W.; Ji, Y.; Wei, J.; Che, J.; Huang, Y.; Huang, W.; Yang, W.; Xu, W. A self-powered photoelectrochemical aptasensor using 3D-carbon nitride and carbon-based metal-organic frameworks for high-sensitivity detection of tetracycline in milk and water. J. Food Sci. 2024, 89, 8022–8035. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi-Chahardeh, A.; Mollaabbasi, R.; Picard, D.; Taghavi, S.M.; Alamdari, H. Discrete Element Method Modeling for the Failure Analysis of Dry Mono-Size Coke Aggregates. Materials 2021, 14, 2174. [Google Scholar] [CrossRef]
- Jiang, P.; Tian, Y.; Wang, B.; Guo, C. Design and analysis of centrifugal compressor in carbon dioxide heat pump system. Sci. Rep. 2024, 14, 5286. [Google Scholar] [CrossRef]
- Tkac, M.; Foosnæs, T.; Øye, H.A. Effect of vacuum vibroforming on porosity development during anode baking. Light Met. 2007, 2007, 885–890. [Google Scholar] [CrossRef]
- Morozov, Y.A.; Yalunin, V.S. Inert anode technology in the concept of green aluminum metallurgy. RUDN J. Eng. Res. 2022, 23, 15–22. [Google Scholar]
- Amara, B.; Kocaefe, D.; Kocaefe, Y.; Bhattacharyay, D.; Côté, J.; Gilbert, A. Partial Replacement of Petroleum Coke with Modified Biocoke During Production of Anodes Used in the Aluminum Industry: Effect of Additive Type. Appl. Sci. 2022, 12, 3426. [Google Scholar] [CrossRef]
- Gao, Z.; Cao, X.; Peng, J.; Li, Y.; Wang, Y.; Di, Y. Effects of vacuum-distilled carbon residue on the reactivity of carbon anode. Chin. J. Eng. 2024, 46, 230–238. [Google Scholar] [CrossRef]
- Lu, Y.; Hussein, A.; Lauzon-Gauthier, J.; Ollevier, T.; Alamdari, H. Biochar as an additive to modify biopitch binder for carbon anodes. ACS Sustain. Chem. Eng. 2021, 9, 12406–12414. [Google Scholar] [CrossRef]
- Altharan, Y.M.; Shamsudin, S.; Al-Alimi, S.; Saif, Y.; Zhou, W. A review on solid-state recycling of aluminum machining chips and their morphology effect on recycled part quality. Heliyon 2024, 10, e34433. [Google Scholar] [CrossRef]
- Ren, Y.J.; Sun, Z.; Quan, G.G. Effect of Aluminium Powder Additives upon CO2 Reactivity of Electrolytic Aluminium Carbon Anode with Calcined Anthracite. Adv. Mater. Res. 2014, 852, 44–50. [Google Scholar] [CrossRef]
- Hu, S.; Wang, D.; Hou, D.; Zhao, W.; Li, X.; Qu, T.; Zhu, Q. Research on the preparation parameters and basic properties of premelted calcium aluminate slag prepared from secondary aluminum dross. Materials 2021, 14, 5855. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.-D.; Preger, Y.; Burroughs, H.; Sun, C.; Ohodnicki, P.R. Fiber optic sensing technologies for battery management systems and energy storage applications. Sensors 2021, 21, 1397. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.B.; Qu, X.D.; Zhou, J.M. Coupled heat/mass-balance model for analyzing correlation between excess AlF3 concentration and aluminum electrolyte temperature. Trans. Nonferrous Met. Soc. China 2009, 19, 724–729. [Google Scholar] [CrossRef]
- Yu, Q.; Shi, T.; Xiong, Z.; Yuan, L.; Hong, H.; Gao, R.; Bao, Y. Oxidation affects dye binding of myofibrillar proteins via alteration in net charges mediated by a reduction in isoelectric point. Food Res. Int. 2023, 163, 112204. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, X.; Cui, Q.; Gu, S.; Liu, K.; Cai, Y.; Su, Y.; Zhang, D.; Ouyang, Q. Effect of reinforcement volume fraction and T6 heat treatment on microstructure, thermal and mechanical properties of mesophase pitch-based carbon fiber reinforced aluminum matrix composites. Mater. Sci. Eng. A 2022, 834, 142469. [Google Scholar] [CrossRef]
- Hulse, K.L. Understanding the Relationships Between Raw Material Characteristics, Formulation and Processing Parameters in the Manufacture of Green Carbon Anodes; R & D Carbon Limited: Granges, Switzerland, 2000. [Google Scholar]
- Sun, Y.; Wei, X.; Zhang, W.; Wang, Z.; Jiang, J.; Liu, F.; Liu, B.; Han, W. Carbon-Interacted AlF3 Clusters as Robust Catalyst for Dehydrofluorination Reaction with Enhanced Undercoordination and Stability. ACS Catal. 2024, 14, 2358–2368. [Google Scholar] [CrossRef]
- Guo, C.; Yang, H.; Naveed, A.; Nuli, Y.; Yang, J.; Cao, Y.; Yang, H.; Wang, J. AlF3-Modified carbon nanofibers as a multifunctional 3D interlayer for stable lithium metal anodes. Chem. Commun. 2018, 54, 8347–8350. [Google Scholar] [CrossRef]
- Yoshida, K.; Sugawara, Y.; Saitoh, M.; Matsumoto, K.; Hagiwara, R.; Matsuo, Y.; Kuwabara, A.; Ukyo, Y.; Ikuhara, Y. Microscopic characterization of the C–F bonds in fluorine—Graphite intercalation compounds. J. Power Sources 2020, 445, 227320. [Google Scholar] [CrossRef]
- Ahrweiler, E.; Schoetz, M.D.; Singh, G.; Bindschaedler, Q.P.; Sorroche, A.; Schoenebeck, F. Triply Selective & Sequential Diversification at Csp3: Expansion of Alkyl Germane Reactivity for C−C & C−Heteroatom Bond Formation. Angew. Chem. 2024, 136, e202401545. [Google Scholar] [CrossRef]
- Rodríguez, S.J.; Candia, A.E.; Stankovic, I.; Passeggi Jr, M.C.; Ruano, G.D. Study of in-plane and interlayer interactions during aluminum fluoride intercalation in graphite: Implications for the development of rechargeable batteries. ACS Appl. Nano Mater. 2023, 6, 16977–16985. [Google Scholar] [CrossRef]
- Luo, K.; Wang, D.; Chen, D.; Zhong, Y.; Zheng, Z.; Wang, G.; Liu, Y.; Zhong, B.; Wu, Z.; Guo, X. Solid electrolyte interphase composition regulation via coating AlF3 for a high-performance hard carbon anode in sodium-ion batteries. ACS Appl. Energy Mater. 2021, 4, 8242–8251. [Google Scholar] [CrossRef]
- Riello, D.; Zetterström, C.; Parr, C.; Braulio, M.; Moreira, M.; Gallo, J.; Pandolfelli, V. AlF3 reaction mechanism and its influence on α-Al2O3 mineralization. Ceram. Int. 2016, 42, 9804–9814. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Zhu, L.; Qi, H.; Fu, M. Effect of hydrated aluminium fluoride on phase transformation and morphology evolution of alumina. J. Aust. Ceram. Soc. 2025, 61, 321–331. [Google Scholar] [CrossRef]
- Wang, T.; Zang, X.; Wang, X.; Gu, X.; Shao, Q.; Cao, N. Recent advances in fluorine-doped/fluorinated carbon-based materials for supercapacitors. Energy Storage Mater. 2020, 30, 367–384. [Google Scholar] [CrossRef]
- Wei, X.; Jia, Z.; Wang, C.; Yu, H.; Wu, S.; Liu, B.; Han, W.; Lu, C. Under-coordinated AlF3 clusters confined in carbon matrix with robust sintering resistance for dehydrofluorination of hydrofluorocarbons. Chem. Eng. J. 2022, 431, 134178. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Zhang, Y.; Wu, S.; Jamil, S.; Niu, Y.; Qin, L.; Xu, M. In Situ Generation of AlF3 in Nanoporous Carbon to Enable Cathode–Electrolyte Interface Construction for Stable Li–Se Batteries. ACS Appl. Nano Mater. 2023, 6, 5414–5421. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, J.H.; Kim, W.S.; Roh, J.S. The Effect of the Heating Rate during Carbonization on the Porosity, Strength, and Electrical Resistivity of Graphite Blocks Using Phenolic Resin as a Binder. Materials 2022, 15, 3259. [Google Scholar] [CrossRef]
- Chao, Y.; Pang, J.; Bai, Y.; Wu, P.; Luo, J.; He, J.; Jin, Y.; Li, X.; Xiong, J.; Li, H. Graphene-like BN@ SiO2 nanocomposites as efficient sorbents for solid-phase extraction of Rhodamine B and Rhodamine 6G from food samples. Food Chem. 2020, 320, 126666. [Google Scholar] [CrossRef]
- Tahir, H.E.; Xiaobo, Z.; Jiyong, S.; Mariod, A.A.; Wiliam, T. Rapid determination of antioxidant compounds and antioxidant activity of Sudanese Karkade (Hibiscus sabdariffa L.) using near infrared spectroscopy. Food Anal. Methods 2016, 9, 1228–1236. [Google Scholar] [CrossRef]
AlF3 Content (wt.%) | 2θ (°) | FWHM | d002 (nm) | LC (nm) | N |
---|---|---|---|---|---|
0 | 25.914 | 2.983 | 0.3435 | 2.7017 | 7.8645 |
1 | 25.776 | 3.2993 | 0.3453 | 2.4425 | 7.07287 |
2 | 25.769 | 3.3239 | 0.3454 | 2.4244 | 7.0185 |
5 | 25.650 | 1.057 | 0.3470 | 7.6223 | 21.9655 |
7 | 25.815 | 0.960 | 0.3448 | 8.395 | 24.3459 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, G.; Ding, Y.; Bai, F.; Zhang, Y.; Yin, J.; Chen, C. AlF3-Modified Carbon Anodes for Aluminum Electrolysis: Oxidation Resistance and Microstructural Evolution. Inorganics 2025, 13, 165. https://doi.org/10.3390/inorganics13050165
Xu G, Ding Y, Bai F, Zhang Y, Yin J, Chen C. AlF3-Modified Carbon Anodes for Aluminum Electrolysis: Oxidation Resistance and Microstructural Evolution. Inorganics. 2025; 13(5):165. https://doi.org/10.3390/inorganics13050165
Chicago/Turabian StyleXu, Guifang, Yonggang Ding, Fan Bai, Youming Zhang, Jianhua Yin, and Caifeng Chen. 2025. "AlF3-Modified Carbon Anodes for Aluminum Electrolysis: Oxidation Resistance and Microstructural Evolution" Inorganics 13, no. 5: 165. https://doi.org/10.3390/inorganics13050165
APA StyleXu, G., Ding, Y., Bai, F., Zhang, Y., Yin, J., & Chen, C. (2025). AlF3-Modified Carbon Anodes for Aluminum Electrolysis: Oxidation Resistance and Microstructural Evolution. Inorganics, 13(5), 165. https://doi.org/10.3390/inorganics13050165