Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (911)

Search Parameters:
Keywords = Al-Si particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6409 KiB  
Article
Recycling Quarry Dust as a Supplementary Cementitious Material for Cemented Paste Backfill
by Yingying Zhang, Kaifeng Wang, Zhengkun Shi and Shiyu Zhang
Minerals 2025, 15(8), 817; https://doi.org/10.3390/min15080817 (registering DOI) - 1 Aug 2025
Abstract
Quarry dust (QD) landfill causes environmental issues that cannot be ignored. In this study, we systematically explore its potential application as a supplementary cementitious material (SCM) in cemented paste backfill (CPB), revealing the activated mechanism of modified QD (MQD) and exploring the hydration [...] Read more.
Quarry dust (QD) landfill causes environmental issues that cannot be ignored. In this study, we systematically explore its potential application as a supplementary cementitious material (SCM) in cemented paste backfill (CPB), revealing the activated mechanism of modified QD (MQD) and exploring the hydration process and workability of CPB containing QD/MQD. The experimental results show that quartz, clinochlore and amphibole components react with CaO to form reactive dicalcium silicate (C2S) and amorphous glass phases, promoting pozzolanic reactivity in MQD. QD promotes early aluminocarbonate (Mc) formation through CaCO3-derived CO32− release but shifts to hemicarboaluminate (Hc) dominance at 28 d. MQD releases active Al3+/Si4+ due to calcination and deconstruction, significantly increasing the amount of ettringite (AFt) in the later stage. With the synergistic effect of coarse–fine particle gradation, MQD-type fresh backfill can achieve a 161 mm flow spread at 20% replacement. Even if this replacement rate reaches 50%, a strength of 19.87 MPa can still be maintained for 28 days. The good workability and low carbon footprint of MQD-type backfill provide theoretical support for—and technical paths toward—QD recycling and the development of low-carbon building materials. Full article
Show Figures

Figure 1

26 pages, 8845 KiB  
Article
Occurrence State and Genesis of Large Particle Marcasite in a Thick Coal Seam of the Zhundong Coalfield in Xinjiang
by Xue Wu, Ning Lü, Shuo Feng, Wenfeng Wang, Jijun Tian, Xin Li and Hayerhan Xadethan
Minerals 2025, 15(8), 816; https://doi.org/10.3390/min15080816 (registering DOI) - 31 Jul 2025
Abstract
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with [...] Read more.
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with coal seams in some mining areas. A series of economic and environmental problems caused by the combustion of large-grained Fe-sulphide minerals in coal have seriously affected the economic, clean and efficient utilization of coal. In this paper, the ultra-thick coal seam of the Xishanyao formation in the Yihua open-pit mine of the Zhundong coalfield is taken as the research object. Through the analysis of coal quality, X-ray fluorescence spectrometer test of major elements in coal, inductively coupled plasma mass spectrometry test of trace elements, SEM-Raman identification of Fe-sulphide minerals in coal and LA-MC-ICP-MS test of sulfur isotope of marcasite, the coal quality characteristics, main and trace element characteristics, macro and micro occurrence characteristics of Fe-sulphide minerals and sulfur isotope characteristics of marcasite in the ultra-thick coal seam of the Xishanyao formation are tested. On this basis, the occurrence state and genesis of large particle Fe-sulphide minerals in the ultra-thick coal seam of the Xishanyao formation are clarified. The main results and understandings are as follows: (1) the occurrence state of Fe-sulphide minerals in extremely thick coal seams is clarified. The Fe-sulphide minerals in the extremely thick coal seam are mainly marcasite, and concentrated in the YH-2, YH-3, YH-8, YH-9, YH-14, YH-15 and YH-16 horizons. Macroscopically, Fe-sulphide minerals mainly occur in three forms: thin film Fe-sulphide minerals, nodular Fe-sulphide minerals, and disseminated Fe-sulphide minerals. Microscopically, they mainly occur in four forms: flake, block, spearhead, and crack filling. (2) The difference in sulfur isotope of marcasite was discussed, and the formation period of marcasite was preliminarily divided. The overall variation range of the δ34S value of marcasite is wide, and the extreme values are quite different. The polyflake marcasite was formed in the early stage of diagenesis and the δ34S value was negative, while the fissure filling marcasite was formed in the late stage of diagenesis and the δ34S value was positive. (3) The coal quality characteristics of the thick coal seam were analyzed. The organic components in the thick coal seam are mainly inertinite, and the inorganic components are mainly clay minerals and marcasite. (4) The difference between the element content in the thick coal seam of the Zhundong coalfield and the average element content of Chinese coal was compared. The major element oxides in the thick coal seam are mainly CaO and MgO, followed by SiO2, Al2O3, Fe2O3 and Na2O. Li, Ga, Ba, U and Th are enriched in trace elements. (5) The coal-accumulating environment characteristics of the extremely thick coal seam are revealed. The whole thick coal seam is formed in an acidic oxidation environment, and the horizon with Fe-sulphide minerals is in an acidic reduction environment. The acidic reduction environment is conducive to the formation of marcasite and is not conducive to the formation of pyrite. (6) There are many matrix vitrinite, inertinite content, clay content, and terrigenous debris in the extremely thick coal seam. The good supply of peat swamp, suitable reduction environment and pH value, as well as groundwater leaching and infiltration, together cause the occurrence of large-grained Fe-sulphide minerals in the extremely thick coal seam of the Xishanyao formation in the Zhundong coalfield. Full article
Show Figures

Figure 1

22 pages, 9293 KiB  
Article
Thermal Stability of the Ultra-Fine-Grained Structure and Mechanical Properties of AlSi7MgCu0.5 Alloy Processed by Equal Channel Angular Pressing at Room Temperature
by Miloš Matvija, Martin Fujda, Ondrej Milkovič, Marek Vojtko and Katarína Gáborová
Crystals 2025, 15(8), 701; https://doi.org/10.3390/cryst15080701 (registering DOI) - 31 Jul 2025
Abstract
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by [...] Read more.
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by equal channel angular pressing (ECAP) at room temperature and the mechanical properties of the AlSi7MgCu0.5 alloy were investigated. Prior to ECAP, the plasticity of the as-cast alloy was enhanced by a heat treatment consisting of solution annealing, quenching, and artificial aging to achieve an overaged state. Four repetitive passes via ECAP route A resulted in the homogenization of eutectic Si particles within the α-solid solution, the formation of ultra-fine grains and/or subgrains with high dislocation density, and a significant improvement in alloy strength due to strain hardening. The main objective of this work was to assess the microstructural and mechanical stability of the alloy after post-ECAP annealing in the temperature range of 373–573 K. The UFG microstructure was found to be thermally stable up to 523 K, above which notable grain and/or subgrain coarsening occurred as a result of discontinuous recrystallization of the solid solution. Mechanical properties remained stable up to 423 K; above this temperature, a considerable decrease in strength and a simultaneous increase in ductility were observed. Synchrotron radiation X-ray diffraction (XRD) was employed to analyze the phase composition and crystallographic characteristics, while transmission electron microscopy (TEM) was used to investigate substructural evolution. Mechanical properties were evaluated through tensile testing, impact toughness testing, and hardness measurements. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

18 pages, 8192 KiB  
Article
Microstructure, Mechanical Properties, and Tribological Behavior of Friction Stir Lap-Welded Joints Between SiCp/Al–Fe–V–Si Composites and an Al–Si Alloy
by Shunfa Xiao, Pinming Feng, Xiangping Li, Yishan Sun, Haiyang Liu, Jie Teng and Fulin Jiang
Materials 2025, 18(15), 3589; https://doi.org/10.3390/ma18153589 (registering DOI) - 30 Jul 2025
Viewed by 134
Abstract
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of [...] Read more.
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of brake disks, this study fabricated a bimetallic structure of SiCp/Al–Fe–V–Si aluminum matrix composite and cast ZL101 alloy using friction stir lap welding (FSLW). Then, the microstructural evolution, mechanical properties, and tribological behavior of the FSLW joints were studied by XRD, SEM, TEM, tensile testing, and tribological tests. The results showed that the FSLW process homogenized the distribution of SiC particle reinforcements in the SiCp/Al–Fe–V–Si composites. The Al12(Fe,V)3Si heat-resistant phase was not decomposed or coarsened, and the mechanical properties were maintained. The FSLW process refined the grains of the ZL101 aluminum alloy through recrystallization and fragmented eutectic silicon, improving elongation to 22%. A metallurgical bond formed at the joint interface. Tensile fracture occurred within the ZL101 matrix, demonstrating that the interfacial bond strength exceeded the alloy’s load-bearing capacity. In addition, the composites exhibited significantly enhanced wear resistance after FSLW, with their wear rate reduced by approximately 40% compared to the as-received materials, which was attributed to the homogenized SiC particle distribution and the activation of an oxidative wear mechanism. Full article
Show Figures

Figure 1

20 pages, 2411 KiB  
Article
Influencing Factors of Hexavalent Chromium Speciation Transformation in Soil from a Northern China Chromium Slag Site
by Shuai Zhu, Junru Chen, Yun Zhu, Baoke Zhang, Jing Jia, Meng Pan, Zhipeng Yang, Jianhua Cao and Yating Shen
Molecules 2025, 30(15), 3076; https://doi.org/10.3390/molecules30153076 - 23 Jul 2025
Viewed by 241
Abstract
Chromium slag sites pose severe environmental risks due to hexavalent chromium (Cr(VI)) contamination, characterized by high mobility and toxicity. This study focused on chromium-contaminated soil from a historical chromium slag site in North China, where long-term accumulation of chromate production residues has led [...] Read more.
Chromium slag sites pose severe environmental risks due to hexavalent chromium (Cr(VI)) contamination, characterized by high mobility and toxicity. This study focused on chromium-contaminated soil from a historical chromium slag site in North China, where long-term accumulation of chromate production residues has led to serious Cr(VI) pollution, with Cr(VI) accounting for 13–22% of total chromium and far exceeding national soil risk control standards. To elucidate Cr(VI) transformation mechanisms and elemental linkages, a combined approach of macro-scale condition experiments and micro-scale analysis was employed. Results showed that acidic conditions (pH < 7) significantly enhanced Cr(VI) reduction efficiency by promoting the conversion of CrO42− to HCrO4/Cr2O72−. Among reducing agents, FeSO4 exhibited the strongest effect (reduction efficiency >30%), followed by citric acid and fulvic acid. Temperature variations (−20 °C to 30 °C) had minimal impact on Cr(VI) transformation in the 45-day experiment, while soil moisture (20–25%) indirectly facilitated Cr(VI) reduction by enhancing the reduction of agent diffusion and microbial activity, though its effect was weaker than chemical interventions. Soil grain-size composition influenced Cr(VI) distribution unevenly: larger particles (>0.2 mm) in BC-35 and BC-36-4 acted as main Cr(VI) reservoirs due to accumulated Fe-Mn oxides, whereas BC-36-3 showed increased Cr(VI) in smaller particles (<0.074 mm). μ-XRF and correlation analysis revealed strong positive correlations between Cr and Ca, Fe, Mn, Ni (Pearson coefficient > 0.7, p < 0.01), attributed to adsorption–reduction coupling on iron-manganese oxide surfaces. In contrast, Cr showed weak correlations with Mg, Al, Si, and K. This study clarifies the complex factors governing Cr(VI) behavior in chromium slag soils, providing a scientific basis for remediation strategies such as pH adjustment (4–6) combined with FeSO4 addition to enhance Cr(VI) reduction efficiency. Full article
Show Figures

Graphical abstract

24 pages, 6934 KiB  
Article
In Situ High-Resolution Optical Microscopy Survey of the Initial Reactivity of Multiphase ZnAlMgSi Coating on Steel
by Guilherme Adinolfi Colpaert Sartori, Oumayma Gabsi, Tiago Machado Amorim, Viacheslav Shkirskiy and Polina Volovitch
Metals 2025, 15(8), 821; https://doi.org/10.3390/met15080821 - 23 Jul 2025
Viewed by 236
Abstract
The initial reactivity of a multiphase ZnAlMgSi coating with an Al content > 30 wt.% was studied by in situ reflective microscopy under alternating applied potentials +50 mV/−50 mV vs. open-circuit potential in 5 wt.% NaCl and 5 wt.% Na2SO4 [...] Read more.
The initial reactivity of a multiphase ZnAlMgSi coating with an Al content > 30 wt.% was studied by in situ reflective microscopy under alternating applied potentials +50 mV/−50 mV vs. open-circuit potential in 5 wt.% NaCl and 5 wt.% Na2SO4 aqueous solutions. In both environments, galvanic coupling between different coating phases and the anodic behavior decreased in the order binary ZnAl > binary Zn/Zn2Mg > Zn2Mg > Al(Zn); dendrites were evidenced for the coating exposed alone as well as in galvanic coupling with steel. Contrary to the observations known for Zn-rich ZnAlMg coatings, pure Zn2Mg was less reactive than the pure ZnAl phase, underlining the importance of the microstructure for reactivity. Si-needles were systematically cathodic, and Al(Zn) dendrites have shown cathodic behavior in some couplings. In the configuration of coupling with steel, corrosion started at the interfaces “binary ZnAl/steel substrate” or “binary ZnAl/Si particle”. The distribution and nature of the corrosion products formed during the experiment were assessed using X-ray microanalysis in scanning electron microscopy and confocal Raman microscopy. In the sulfate environment, a homogenous and stable corrosion product layer formed from the first steps of the degradation; this was in contrast to the chloride environment, where no surface film formed on the dendrites. Full article
Show Figures

Figure 1

23 pages, 4707 KiB  
Article
Fabrication of Novel Hybrid Al-SiC-ZrO2 Composites via Powder Metallurgy Route and Intelligent Modeling for Their Microhardness
by Pallab Sarmah, Shailendra Pawanr and Kapil Gupta
Ceramics 2025, 8(3), 91; https://doi.org/10.3390/ceramics8030091 - 19 Jul 2025
Viewed by 266
Abstract
In this work, the development of Al-based metal matrix composites (MMCs) is achieved using hybrid SiC and ZrO2 reinforcement particles for automotive applications. Powder metallurgy (PM) is employed with various combinations of important process parameters for the fabrication of MMCs. MMCs were [...] Read more.
In this work, the development of Al-based metal matrix composites (MMCs) is achieved using hybrid SiC and ZrO2 reinforcement particles for automotive applications. Powder metallurgy (PM) is employed with various combinations of important process parameters for the fabrication of MMCs. MMCs were characterized using scanning electron microscopy (SEM), X-ray diffractometry (XRD), and a microhardness study. All XRD graphs adequately exhibit Al, SiC, and ZrO2 peaks, indicating that the hybrid MMC products were satisfactorily fabricated with appropriate mixing and sintering at all the considered fabrication conditions. Also, no impurity peaks were observed, confirming high composite purity. MMC products in all the XRD patterns, suitable for the desired applications. According to the SEM investigation, SiC and ZrO2 reinforcement components are uniformly scattered throughout Al matrix in all produced MMC products. The occurrence of Al, Si, C, Zr, and O in EDS spectra demonstrates the effectiveness of composite ball milling and sintering under all manufacturing conditions. Moreover, an increase in interfacial bonding of fabricated composites at a higher sintering temperature indicated improved physical properties of the developed MMCs. The highest microhardness value is 86.6 HVN amid all the fabricated composites at 7% silica, 14% zirconium dioxide, 500° sintering temperature, 90 min sintering time, and 60 min milling time. An integrated Particle Swarm Optimization–Support Vector Machine (PSO-SVM) model was developed to predict microhardness based on the input parameters. The model demonstrated strong predictive performance, as evidenced by low values of various statistical metrics for both training and testing datasets, highlighting the PSO-SVM model’s robustness and generalization capability. Specifically, the model achieved a coefficient of determination of 0.995 and a root mean square error of 0.920 on the training set, while on the testing set, it attained a coefficient of determination of 0.982 and a root mean square error of 1.557. These results underscore the potential of the PSO-SVM framework, which can be effectively leveraged to optimize process parameters for achieving targeted microhardness levels for the developed Al-SiC-ZrO2 Composites. Full article
Show Figures

Figure 1

11 pages, 4974 KiB  
Article
Effect of Modulation Period on the Microstructure and Tribological Properties of AlCrTiVNbN/TiSiN Nano Multilayer Films
by Hongjuan Yan, Haoran Wang, Xiaona Li, Zhaoliang Dou and Fengbin Liu
Coatings 2025, 15(7), 839; https://doi.org/10.3390/coatings15070839 - 17 Jul 2025
Viewed by 259
Abstract
The impact of modulation periods on the microstructure, as well as the tribological and mechanical characteristics of the AlCrTiVNbN/TiSiN nano multilayer films, was investigated. The films were prepared with modulation periods ranging from 4 nm to 7 nm, and their properties were explored [...] Read more.
The impact of modulation periods on the microstructure, as well as the tribological and mechanical characteristics of the AlCrTiVNbN/TiSiN nano multilayer films, was investigated. The films were prepared with modulation periods ranging from 4 nm to 7 nm, and their properties were explored using X-ray diffraction (XRD), scanning electron microscope (SEM), nanoindentation, and a tribological tester. All nano multilayer films revealed a face-centered cubic (FCC) structure with a preferred planar direction of (200). As the modulation period increased, the XRD peak moved to higher angles, and the interplanar distance decreased. Also, the mechanical properties deteriorated, and the COF rose monotonically as a result. The nano multilayer film with a modulation period equal to 4 nm exhibited a smooth surface with minimal small particles, the highest hardness of 15.51 ± 0.16 GPa and elastic modulus of 182.89 ± 2.38 GPa, the highest values for the ratios of H/E and H3/E2, the lowest average friction coefficient of 0.73, and a wear rate equal to (8.2 9 ± 0.18) × 10−8 mm3·N−1·m−1. The improvement in the properties of the film was ascribed to the coherent growth and alternating stress field between the AlCrTiVNbN and TiSiN layers. Full article
(This article belongs to the Special Issue Surface Protection for Metal Materials)
Show Figures

Figure 1

16 pages, 5637 KiB  
Article
Optimizing High-Al2O3 Limonite Pellet Performance: The Critical Role of Basicity in Consolidation and Reduction
by Yufeng Guo, Yixi Zhang, Feng Chen, Shuai Wang, Lingzhi Yang, Yanqin Xie and Xinyao Xia
Metals 2025, 15(7), 801; https://doi.org/10.3390/met15070801 - 16 Jul 2025
Viewed by 241
Abstract
With the gradual depletion of high-quality iron ore resources, global steel enterprises have shifted their focus to low-grade, high-impurity iron ores. Using low-grade iron ore to produce pellets for blast furnaces is crucial for companies to control production costs and diversify raw material [...] Read more.
With the gradual depletion of high-quality iron ore resources, global steel enterprises have shifted their focus to low-grade, high-impurity iron ores. Using low-grade iron ore to produce pellets for blast furnaces is crucial for companies to control production costs and diversify raw material sources. However, producing qualified pellets from limonite and other low-grade iron ores remains highly challenging. This study investigates the mechanism by which basicity affects the consolidation and reduction behavior of high-Al2O3 limonite pellets from a thermodynamic perspective. As the binary basicity of the pellets increased from 0.01 under natural conditions to 1.2, the compressive strength of the roasted pellets increased from 1100 N/P to 5200 N/P. The enhancement in basicity led to an increase in the amount of low-melting-point calcium ferrite in the binding phase, which increased the liquid phase in the pellets, thereby strengthening the consolidation. CaO infiltrated into large-sized iron particles and reacted with Al and Si elements, segregating the contiguous large-sized iron particles and encapsulating them with liquid-phase calcium ferrite. Calcium oxide reacts with the Al and Si elements in large hematite particles, segmenting them and forming liquid calcium ferrite that encapsulates the particles. Additionally, this study used thermodynamic analysis to characterize the influence of CaO on aluminum elements in high-aluminum iron ore pellets. Adding CaO boosted the liquid phase’s ability to incorporate aluminum, lessening the inhibition by high-melting-point aluminum elements of hematite recrystallization. During the reduction process, pellets with high basicity exhibited superior reduction performance. Full article
Show Figures

Graphical abstract

20 pages, 5652 KiB  
Article
Capacitive Sensing of Solid Debris in Used Lubricant of Transmission System: Multivariate Statistics Classification Approach
by Surapol Raadnui and Sontinan Intasonti
Lubricants 2025, 13(7), 304; https://doi.org/10.3390/lubricants13070304 - 14 Jul 2025
Viewed by 331
Abstract
The quantification of solid debris in used lubricating oil is essential for assessing transmission system wear and optimizing maintenance strategies. This study introduces a low-cost capacitive proximity sensor for monitoring total solid particle contamination in lubricants, with a focus on ferrous (Fe), non-ferrous [...] Read more.
The quantification of solid debris in used lubricating oil is essential for assessing transmission system wear and optimizing maintenance strategies. This study introduces a low-cost capacitive proximity sensor for monitoring total solid particle contamination in lubricants, with a focus on ferrous (Fe), non-ferrous (Al), and non-metallic (SiO2) debris. Controlled tests were performed using five mixing ratios of large-to-small particles (100:0, 75:25, 50:50, 25:75, and 0:100) at a fixed debris mass of 0.5 g per 25 mL of SAE 85W-140 automotive gear oil. Cubic regression analysis yielded high predictive accuracy, with average R2 values of 0.994 for Fe, 0.943 for Al, and 0.992 for SiO2. Further dimensionality reduction using Principal Component Analysis (PCA), along with Linear Discriminant Analysis (LDA) of multivariate statistical analysis, effectively classifies debris types and enhances interpretability. These results demonstrate the potential of capacitive sensing as an offline, non-invasive alternative to traditional techniques for wear debris monitoring in transmission systems. These results confirm the potential of capacitive sensing, supported by statistical modeling, as a non-invasive, cost-effective technique for offline classification and monitoring of wear debris in transmission systems. Full article
(This article belongs to the Special Issue Tribological Research on Transmission Systems)
Show Figures

Figure 1

17 pages, 10366 KiB  
Article
Humped Flow Channel in Drum Magnetic Separator Leads to Enhanced Recovery of Magnetic Seeds in Magnetic Flocculation Process
by Shaohua Xu, Haisheng Han, Jianguo Liu, Wei Sun and Jianwei Qiu
Minerals 2025, 15(7), 732; https://doi.org/10.3390/min15070732 - 12 Jul 2025
Viewed by 317
Abstract
This study examines the effect of smooth and humped flow channels on the recovery of industrial magnetic seeds in a drum magnetic separator. The results demonstrate that under varying feeding slurry quantities and drum rotational speeds, the humped channel consistently achieves higher recovery [...] Read more.
This study examines the effect of smooth and humped flow channels on the recovery of industrial magnetic seeds in a drum magnetic separator. The results demonstrate that under varying feeding slurry quantities and drum rotational speeds, the humped channel consistently achieves higher recovery rates compared with the smooth channel, with an improvement of up to 3%. Scanning electron microscopy and vibrating sample magnetometry analyses of the samples reveal the presence of a small amount of impurities (predominantly consisting of elements, such as Al, Si, and Ti) in the industrial magnetite magnetic particles. These impurities exhibit lower magnetization, leading to reduced capture efficiency in the conventional smooth-channel drum magnetic separator. Simulations of the magnetic field, flow field, and particle trajectory indicate that the magnetic field force at the bottom of the smooth channel is only 0.6 kg2/(m·s4·A2), i.e., approximately 18 times lower than that at the roller surface. The incorporation of a humped channel shifts the impure magnetic seeds from a region with low magnetic field force to a region with higher magnetic field force, significantly enhancing the capture efficiency of the impure magnetic seeds. Full article
(This article belongs to the Special Issue Advances in the Theory and Technology of Physical Separation)
Show Figures

Figure 1

15 pages, 6309 KiB  
Article
Study on the Sustainability of Carbon Emission Reduction in China’s Cement Industry
by Kui Zhao, Congling Bao and Bingxin Zhang
Sustainability 2025, 17(14), 6349; https://doi.org/10.3390/su17146349 - 10 Jul 2025
Viewed by 430
Abstract
Recycled concrete fines (RCFs) have the potential to serve as a supplementary cementitious material (SCM) after carbonation. Traditionally, carbonation of RCFs results in calcium carbonate primarily in the form of calcite, which significantly limits the development of RCFs as an SCM. In this [...] Read more.
Recycled concrete fines (RCFs) have the potential to serve as a supplementary cementitious material (SCM) after carbonation. Traditionally, carbonation of RCFs results in calcium carbonate primarily in the form of calcite, which significantly limits the development of RCFs as an SCM. In this research, a wet grinding carbonation (WGC) technique was introduced to enhance the reactivity of RCFs. The research indicates that RCFs after WGC exhibit a finer particle size and a larger specific surface area. The carbonation products include calcite with smaller grains, metastable calcium carbonate, and nanoscale silica gel and Al-Si gel. When RCF-WGC is used as an SCM in ordinary Portland cement (OPC), it significantly promotes the hydration of the cement paste, as evidenced by the advancement and increased intensity of the exothermic peaks of aluminates and silicates. RCF-WGC can significantly enhance the compressive strength of hydrated samples, particularly at early ages. Specifically, at a curing age of 1 day, the compressive strength of WGC5, WGC10, and WGC20 samples increased by 9.9%, 22.5%, and 7.7%, respectively, compared to the Ref sample (0% RCF-WGC). At a curing age of 3 days, the compressive strength of the WGC5, WGC10, and WGC20 samples showed even more significant improvements, increasing by 20.8%, 21.9%, and 11.8%, respectively. The performance enhancement of the WGC samples is attributed to the chemical reactions involving nanoscale silica gel, Al-Si gel, and calcium carbonate in the RCFs. When RCF-WGC is used as an SCM to replace 5%, 10%, and 20% of cement, it can reduce carbon emissions by 27.5 kg/t, 55 kg/t, and 110 kg/t, respectively. Large-scale application of RCFs as a high-value SCM can significantly reduce the life-cycle carbon emissions of the cement industry, contributing to the achievement of carbon peaking in China’s cement sector. Full article
Show Figures

Figure 1

17 pages, 5900 KiB  
Article
Thermally Induced Phase Transformation of Ni-Exchanged LTA Zeolite as an Alternative Route of Obtaining Stable Ni-Spinel Pigment
by Miomir Krsmanović, Aleksandar Popović, Smilja Marković, Bojana Milićević, Dušan Bučevac, Marjetka Savić and Mia Omerašević
Materials 2025, 18(14), 3225; https://doi.org/10.3390/ma18143225 - 8 Jul 2025
Viewed by 305
Abstract
This study investigates the thermally induced phase transformation of Ni-exchanged LTA zeolite as a dual-purpose method for nickel immobilization and the synthesis of stable ceramic pigments. The process describes a cost-effective and sustainable alternative to conventional pigment production, aligning with circular economy principles. [...] Read more.
This study investigates the thermally induced phase transformation of Ni-exchanged LTA zeolite as a dual-purpose method for nickel immobilization and the synthesis of stable ceramic pigments. The process describes a cost-effective and sustainable alternative to conventional pigment production, aligning with circular economy principles. Upon thermal treatment at temperatures ranging between 900 °C and 1300 °C, Ni-exchanged LTA zeolite undergoes a transformation to NiAl2O4 spinel, confirmed by XRPD, FTIR, and thermal analysis. Initially, NiO is formed, but as the temperature increases, it dissolves and transforms into NiAl2O4. Colorimetric studies revealed intensified blue pigmentation with increasing temperature, correlating with crystallite growth and structural evolution. SEM analysis showed morphological changes from cubic particles to sintered agglomerates, enhancing pigment stability and hardness. The Ni-LTA sample calcined at 1300 °C showed the highest hue angle, which was consistent with the formation of over 99 wt.% of the nickel aluminate crystalline phase at this temperature. The results demonstrate that Ni-LTA zeolite can be effectively transformed into durable greenish-blue pigments suitable for application in porcelain. This transformation is especially evident at 1300 °C, where a spinel phase (NiAlSi2O4) forms, with colorimetric values: L = 58.94, a* = –16.08, and b* = –15.90. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

14 pages, 5112 KiB  
Article
Effect of Si Doping on Microstructure and Mechanical and Electrochemical Properties of (AlCrFeNi)100-xSix (x = 2, 4, 6) Dual-Phase Eutectic High-Entropy Alloys
by Subo Yu, Kaiwen Kang, Borui Zhang, Aoxiang Li and Gong Li
Metals 2025, 15(7), 762; https://doi.org/10.3390/met15070762 - 6 Jul 2025
Viewed by 287
Abstract
The effects of silicon (Si) doping on the microstructure, mechanical properties, and electrochemical corrosion behavior of dual-phase eutectic high-entropy alloys (AlCrFeNi)100-xSix (x = 2, 4, 6 at.%) were systematically investigated. The results reveal that with increasing Si content, all three [...] Read more.
The effects of silicon (Si) doping on the microstructure, mechanical properties, and electrochemical corrosion behavior of dual-phase eutectic high-entropy alloys (AlCrFeNi)100-xSix (x = 2, 4, 6 at.%) were systematically investigated. The results reveal that with increasing Si content, all three alloys maintain a sunflower-like eutectic microstructure composed of A2 and B2 phases, characterized by an expanding central region and a densification and refinement of the lamellar two-phase structure in the petal regions; the volume of phase B2 gradually increases, accompanied by the precipitation of nanoscale B2 particles. The test results of mechanical properties show that Si doping enhances the compressive strength and Vickers hardness but significantly reduces ductility, exhibiting a typical inverse strength–ductility relationship. Electrochemical corrosion tests demonstrate that higher Si content deteriorates corrosion resistance, with corrosion predominantly occurring in the B2 phase. Among the studied alloys, the Si2 variant exhibits the most balanced overall performance. This work provides valuable insights into the role of Si in tuning the microstructure and properties of eutectic high-entropy alloys and methodology for their compositional design and engineering applications. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Processing and Properties)
Show Figures

Figure 1

28 pages, 5228 KiB  
Article
Selective Separation of SiO2 and SnO2 Particles in the Submicron Range: Investigating Salt and Surfactant Adsorption Parameter
by Claudia Heilmann, Lisa Ditscherlein, Martin Rudolph and Urs Alexander Peuker
Powders 2025, 4(3), 19; https://doi.org/10.3390/powders4030019 - 3 Jul 2025
Viewed by 343
Abstract
The separation of particles smaller than 1 µm either by composition or by size is still a challenge. For the separation of SiO2 and SnO2, the creation of a selective separation feature and the specific adsorption of salts and surfactants [...] Read more.
The separation of particles smaller than 1 µm either by composition or by size is still a challenge. For the separation of SiO2 and SnO2, the creation of a selective separation feature and the specific adsorption of salts and surfactants were investigated. The adsorption of various salts, e.g., AlCl3, ZnCl2, MnCl2 and MgCl2 were therefore analyzed, and the necessary concentration for the charge reversal of the material was determined. It was noticed that the investigated materials differ in their isoelectric point (IEP) and therefore in their adsorption behavior because only ZnCl2 and MgCl2 are suitable for a charge reversal of both metal oxides. The phase transfer of the pure material at different pH values with ZnCl2 or MgCl2 and sodium dodecyl sulfate (SDS) revealed that the adsorption behavior of the particle has an influence on the phase transfer. As a result, the phase transfer of SiO2 is pH dependent, whereas the phase transfer of SnO2 operates over a wider pH range. This allowed the separation of SiO2 and SnO2 to be controlled by the salt and surfactant concentration as well as pH. The separation of SiO2 and SnO2 was investigated for various parameters such as salt and surfactant concentration, particle concentration and composition of the mixture. Also, pH 8, where a selective phase transfer for SiO2 occurs, and pH 6, where the greatest difference between the materials exists, were also investigated. By comparing the parameters, it was found that the combination of ZnCl2/SDS and MgCl2/SDS enables a selective separation of the materials. Furthermore, it was also found that the concentration of SDS has a significant effect on the separation, as the formation of a bilayer structure is important for the separation, and therefore, higher SDS concentrations are required at higher particle concentrations to increase the separation efficiency. Full article
Show Figures

Figure 1

Back to TopTop