Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (168)

Search Parameters:
Keywords = Acoustic Doppler Profiling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4162 KiB  
Article
Evaluation of Wake Structure Induced by Helical Hydrokinetic Turbine
by Erkan Alkan, Mehmet Ishak Yuce and Gökmen Öztürkmen
Water 2025, 17(15), 2203; https://doi.org/10.3390/w17152203 - 23 Jul 2025
Viewed by 160
Abstract
This study investigates the downstream wake characteristics of a helical hydrokinetic turbine through combined experimental and numerical analyses. A four-bladed helical turbine with a 20 cm rotor diameter and blockage ratio of 53.57% was tested in an open water channel under a flow [...] Read more.
This study investigates the downstream wake characteristics of a helical hydrokinetic turbine through combined experimental and numerical analyses. A four-bladed helical turbine with a 20 cm rotor diameter and blockage ratio of 53.57% was tested in an open water channel under a flow rate of 180 m3/h, corresponding to a Reynolds number of approximately 90 × 103. Velocity measurements were collected at 13 downstream cross-sections using an Acoustic Doppler Velocimeter, with each point sampled repeatedly. Standard error analysis was applied to quantify measurement uncertainty. Complementary numerical simulations were conducted in ANSYS Fluent using a steady-state k-ω Shear Stress Transport (SST) turbulence model, with a mesh of 4.7 million elements and mesh independence confirmed. Velocity deficit and turbulence intensity were employed as primary parameters to characterize the wake structure, while the analysis also focused on the recovery of cross-sectional velocity profiles to validate the extent of wake influence. Experimental results revealed a maximum velocity deficit of over 40% in the near-wake region, which gradually decreased with downstream distance, while turbulence intensity exceeded 50% near the rotor and dropped below 10% beyond 4 m. In comparison, numerical findings showed a similar trend but with lower peak velocity deficits of 16.6%. The root mean square error (RMSE) and mean absolute error (MAE) between experimental and numerical mean velocity profiles were calculated as 0.04486 and 0.03241, respectively, demonstrating reasonable agreement between the datasets. Extended simulations up to 30 m indicated that flow profiles began to resemble ambient conditions around 18–20 m. The findings highlight the importance of accurately identifying the downstream distance at which the wake effect fully dissipates, as this is crucial for determining appropriate inter-turbine spacing. The study also discusses potential sources of discrepancies between experimental and numerical results, as well as the limitations of the modeling approach. Full article
(This article belongs to the Special Issue Optimization-Simulation Modeling of Sustainable Water Resource)
Show Figures

Figure 1

31 pages, 9230 KiB  
Article
Particle Image Velocimetry Analysis of Bedload Sampling in a Sand-Bed River
by Rodrigo B. Pereira, Glauber A. Carvalho, Tobias Bleninger, Pedro A. P. Zamboni, Liege Wosiacki, Fábio V. Gonçalves and Johannes Gérson Janzen
Fluids 2025, 10(7), 165; https://doi.org/10.3390/fluids10070165 - 27 Jun 2025
Viewed by 419
Abstract
Both the excess and alteration of bed sediments in river systems can cause socioeconomic and environmental damage; thus, the quantification of bedload transport is an important tool to assess the health of rivers and help in decision-making imposed by the agencies responsible for [...] Read more.
Both the excess and alteration of bed sediments in river systems can cause socioeconomic and environmental damage; thus, the quantification of bedload transport is an important tool to assess the health of rivers and help in decision-making imposed by the agencies responsible for water resource management. This work aims to evaluate the efficiency of pressure-difference samplers (Helley–Smith) qualitatively and quantitatively when used in environments with sandy characteristics. The experiments were carried out in a stream with full transparency and two pressure-difference samplers with nozzle dimensions of 7.20 × 7.20 cm and 8.89 × 7.50 cm. The Particle Image Velocimetry technique was used to analyze the sampler efficiency simultaneously with an Acoustic Doppler Current Profiler. Qualitative results showed that the way the equipment is allocated at the bottom of the river can generate overestimated or underestimated sediment transport measurements. Additionally, evaluating it quantitatively, we see that the collection efficiency of the equipment varied between 15.45% and 534.78% when compared to the results obtained by the Particle Image Velocimetry technique. Full article
Show Figures

Figure 1

38 pages, 11886 KiB  
Article
The Estimation of Suspended Solids Concentration from an Acoustic Doppler Current Profiler in a Tidally Dominated Continental Shelf Sea Setting and Its Use as a Numerical Modelling Validation Technique
by Shauna Creane, Michael O’Shea, Mark Coughlan and Jimmy Murphy
Water 2025, 17(12), 1788; https://doi.org/10.3390/w17121788 - 14 Jun 2025
Viewed by 387
Abstract
Reliable coastal and offshore sediment transport data is a requirement for many engineering and environmental projects including port and harbour design, dredging and beach nourishment, sea shoreline protection, inland navigation, marine pollution monitoring, benthic habitat mapping, and offshore renewable energy (ORE). Novel sediment [...] Read more.
Reliable coastal and offshore sediment transport data is a requirement for many engineering and environmental projects including port and harbour design, dredging and beach nourishment, sea shoreline protection, inland navigation, marine pollution monitoring, benthic habitat mapping, and offshore renewable energy (ORE). Novel sediment transport numerical modelling approaches allow engineers and scientists to investigate the physical interactions involved in these projects both in the near and far field. However, a lack of confidence in simulated sediment transport results is evident in many coastal and offshore studies, mainly due to limited access to validation datasets. This study addresses the need for cost-effective sediment validation datasets by investigating the applicability of four new suspended load validation techniques to a 2D model of the south-western Irish Sea. This involves integrating an estimated spatial time series of suspended solids concentration (SSCsolids) derived from acoustic Doppler current profiler (ADCP) acoustic backscatter with several in situ water sample-based SSCsolids datasets. Ultimately, a robust spatial time series of ADCP-based SSCsolids was successfully calculated in this offshore, tidally dominated setting, where the correlation coefficient between estimated SSCsolids and directly measured SSCsolids is 0.87. Three out of the four assessed validation techniques are deemed advantageous in developing an accurate 2D suspended sediment transport model given the assumptions of the depth-integrated approach. These recommended techniques include (i) the validation of 2D modelled suspended sediment concentration (SSCsediment) using water sample-based SSCsolids, (ii) the validation of the flood–ebb characteristics of 2D modelled suspended load transport and SSCsediment using ADCP-based datasets, and (iii) the validation of the 2D modelled peak SSCsediment over a spring–neap cycle using the ADCP-based SSCsolids. Overall, the multi-disciplinary method of collecting in situ metocean and sediment dynamic data via acoustic instruments (ADCPs) is a cost-effective in situ data collection method for future ORE developments and other engineering and scientific projects. Full article
Show Figures

Figure 1

15 pages, 6419 KiB  
Article
Sediment Resuspension in the Yellow River Subaqueous Delta During Gale Events
by Jingjing Qi, Siyu Liu, Lulu Qiao, Xingyu Xu, Jianing Li, Haonan Li and Guangxue Li
J. Mar. Sci. Eng. 2025, 13(5), 914; https://doi.org/10.3390/jmse13050914 - 6 May 2025
Viewed by 359
Abstract
During winter, strong winds and waves significantly enhance sediment resuspension in the Yellow River Delta. Based on the continuous and high-resolution data on water levels, wave heights, current velocities, and echo intensities collected by the Acoustic Doppler Current Profiler at different depths (5 [...] Read more.
During winter, strong winds and waves significantly enhance sediment resuspension in the Yellow River Delta. Based on the continuous and high-resolution data on water levels, wave heights, current velocities, and echo intensities collected by the Acoustic Doppler Current Profiler at different depths (5 m and 12 m) in the northern Yellow River Delta simultaneously, this study investigated the sediment resuspension during gale events and tranquil conditions. In deeper waters (12 m), the suspended sediment volume concentration (SSVC) showed a strong correlation with current speed (r = 0.74), while in shallower waters (5 m), the SSVC correlated more closely with wave height (r = 0.72). The thorough analysis of gale events revealed that the maximum wave heights during northwest gales were 23.80% and 34.59% lower than that during northeast gales at deep and shallow stations, respectively, primarily due to the longer wind fetch associated with northeast gales. Conversely, the maximum current velocities during northwest gales were 10.34% and 37.31% higher than that during northeast gales at deep and shallow stations. In deeper waters, the maximum wave–current induced shear stress (τcw) and SSVC during northwest gales were 30.38% and 3.70% higher than those during northeast gales, highlighting current-driven resuspension. In contrast, in shallower waters, the maximum τcw and SSVC during northeast gales were 47.35% and 4.94% higher than those during northwest gales, underscoring the dominance of wave-induced resuspension. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

30 pages, 11394 KiB  
Article
Gap Impact on Rigid Submerged Vegetated Flow and Its Induced Flow Turbulence
by Heba Mals, Jaan H. Pu, Prashanth Reddy Hanmaiahgari, Bimlesh Kumar, Ebrahim Hamid Hussein Al-Qadami and Mohd Adib Mohammad Razi
J. Mar. Sci. Eng. 2025, 13(5), 829; https://doi.org/10.3390/jmse13050829 - 22 Apr 2025
Viewed by 441
Abstract
Submerged vegetation plays a crucial role in influencing flow hydrodynamics, generating turbulence, and shaping velocity distributions in aquatic environments. This study investigates the hydrodynamic effects of submerged rigid vegetation, specifically focusing on the local flow and turbulence alterations resulting from the removal of [...] Read more.
Submerged vegetation plays a crucial role in influencing flow hydrodynamics, generating turbulence, and shaping velocity distributions in aquatic environments. This study investigates the hydrodynamic effects of submerged rigid vegetation, specifically focusing on the local flow and turbulence alterations resulting from the removal of a single stem from an otherwise uniform vegetation array under controlled laboratory conditions. Experiments were conducted in a flume using Acoustic Doppler Velocimetry (ADV) to measure 3D (three-dimensional) flow characteristics, turbulence intensities, Reynolds shear stress (RSS), and quadrant analysis. In the fully vegetated scenario, vegetation significantly modified flow conditions, creating inflexion points and distinct peaks in velocity profiles, turbulence intensity, and RSS—particularly near two-thirds of the vegetation height—due to wake vortices and flow separation. The removal of a single stem introduced a localised gap, which redistributed turbulent energy, increased RSS and near-bed turbulent interactions, and disrupted the organised vortex structures downstream. While sweep and ejection events near the gap reached magnitudes similar to those in the fully vegetated setup, they lacked the characteristic coherent peaks linked to vortex generation. Overall, turbulence intensities and RSS were reduced, indicating a smoother flow regime and weaker energy redistribution mechanisms. These findings critically impact river restoration, flood management, and habitat conservation. By understanding how vegetation gaps alter flow hydrodynamics, engineers and ecologists can optimise vegetation placement in waterways to enhance flow efficiency, sediment transport, and aquatic ecosystem stability. This study bridges fundamental fluid mechanics with real-world applications in environmental hydraulics. Full article
Show Figures

Figure 1

18 pages, 7485 KiB  
Article
Flow Pattern and Turbulent Kinetic Energy Analysis Around Tandem Piers: Insights from k-ε Modelling and Acoustic Doppler Velocimetry Measurements
by Nima Ikani, Jaan H. Pu and Saba Soori
Water 2025, 17(7), 1100; https://doi.org/10.3390/w17071100 - 7 Apr 2025
Viewed by 597
Abstract
This study investigated the distribution and dynamics of the Turbulent Kinetic Energy (TKE) around a group of three tandem piers using a combination of numerical simulations and experimental measurements. The Volume of Fluid (VOF) method, coupled with the k-ε turbulence model, [...] Read more.
This study investigated the distribution and dynamics of the Turbulent Kinetic Energy (TKE) around a group of three tandem piers using a combination of numerical simulations and experimental measurements. The Volume of Fluid (VOF) method, coupled with the k-ε turbulence model, was implemented in ANSYS FLUENT to replicate the free-surface flow conditions. An experimental validation was conducted using Acoustic Doppler Velocimetry (ADV) to assess the model’s capability at capturing the turbulence characteristics. While the model effectively reproduced the near-bed turbulence, it consistently underestimated the TKE magnitudes across the flow domain, particularly in regions of strong vortex-induced turbulence. Discrepancies emerged in the confined regions between the piers, where the velocity profiles were overestimated at the surface and underestimated near the bed and mid-depth, impacting the TKE predictions. Despite these inconsistencies, the general pattern of the TKE distribution aligned with the experimental trends, though the absolute values remained underestimated due to the inherent limitations of the k-ε model. The model’s performance in less turbulent regions demonstrated improved accuracy, reinforcing its applicability for moderate turbulence simulations. To further examine the interaction between vortex structures and the TKE, velocity distributions were analyzed at three specific depths (z/h = 0.15, 0.4, and 0.62). The findings showed the critical role of vortex shedding in TKE generation and dissipation, with notable variations in the turbulence intensity influenced by structural confinement effects. This study offers a novel, high-resolution evaluation of the k-ε model’s ability to predict TKE distributions around tandem piers, using spatially detailed comparisons with the experimental data. Unlike previous studies that broadly acknowledged the model’s limitations, this work systematically identifies the specific regions, particularly vortex-dominated zones, where its predictive accuracy significantly degrades. Full article
Show Figures

Figure 1

24 pages, 7625 KiB  
Article
Optimization of Threshold Velocity Values for Sediment Transport at the Outer Bank of a 180-Degree Bend with Emergent Vegetation
by Nasim Rismani, Hossein Afzalimehr, Seyed-Amin Asghari-Pari, Mohammad Nazari-Sharabian and Moses Karakouzian
Water 2025, 17(7), 971; https://doi.org/10.3390/w17070971 - 26 Mar 2025
Cited by 1 | Viewed by 526
Abstract
The interaction between curvature-induced flow and vegetation plays a crucial role in regulating threshold velocity, influencing sediment transport dynamics. This experimental study investigates the effects of flow velocity and turbulence, induced by both emergent vegetation and curvature-driven flow, on the threshold of sediment [...] Read more.
The interaction between curvature-induced flow and vegetation plays a crucial role in regulating threshold velocity, influencing sediment transport dynamics. This experimental study investigates the effects of flow velocity and turbulence, induced by both emergent vegetation and curvature-driven flow, on the threshold of sediment motion around a vegetated patch. Using an Acoustic Doppler Velocimeter (ADV), a total of 504 velocity profiles were collected under vegetated and non-vegetated conditions, considering a range of vegetation densities (φ = 0.001–0.0099) in both a straight channel and a 180-degree bend. The results indicate that vegetation modifies turbulent kinetic energy (TKE) and velocity gradients, thereby enhancing sediment mobility. Specifically, vegetation significantly reduces maximum velocity by up to 37%, shifting the flow core to the center and enhancing TKE by up to 30 times. This analysis shows that channel curvature contributes a maximum of 34% and 17% to turbulent kinetic energy in the first and second halves of a 180-degree bend, respectively. Turbulence from the bed and vegetation accounts for 50% in straight paths, while in curved paths, it reaches 37% and 32% in the first half and 48% and 42% in the second half of a 180-degree bend. This study proposes a model for turbulent kinetic energy (kt) that incorporates velocity threshold constraints, validated through controlled laboratory experiments, highlighting the role of near-bed turbulence in modulating sediment transport. Furthermore, the findings demonstrate that sediment motion initiation is governed by both mean flow velocity and TKE, leading to the introduction of a novel criterion for assessing initial sediment transport conditions in curved and vegetated flows. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

11 pages, 3085 KiB  
Article
Development of a Practical Surface Image Flowmeter for Small-Sized Streams
by Kwonkyu Yu, Junhyeong Lee and Byungman Yoon
Water 2025, 17(4), 586; https://doi.org/10.3390/w17040586 - 18 Feb 2025
Viewed by 508
Abstract
The purpose of this study was to demonstrate the series of processes involved in designing, manufacturing, installing, and operating a practical Surface Image Flowmeter (SIF) system, complete with suitable hardware and software. By ‘practical’, we mean a system capable of automatically measuring discharges [...] Read more.
The purpose of this study was to demonstrate the series of processes involved in designing, manufacturing, installing, and operating a practical Surface Image Flowmeter (SIF) system, complete with suitable hardware and software. By ‘practical’, we mean a system capable of automatically measuring discharges in a river 24 h a day, 365 days a year, at 2 min intervals. The equipment required for this practical SIF includes a CCTV camera, a water level gauge, a Linux-based PC for analysis, and lighting for night-time measurements. We also developed software to operate the system. Furthermore, we applied a coordinate transformation method using projective transformation to calculate the area of the measurement cross-section according to changes in water level and to adjust the positions of velocity analysis points within the image. The CCTV captured 20 s video clips every 2 min, which were then analyzed using the Spatio-Temporal Image Velocimetry (STIV) method. For the STIV method, measurement points were set at appropriate intervals on the measurement cross-section, and spatio-temporal images (STIs) were constructed at these points for analysis. The STIs were captured parallel to the main flow direction (perpendicular to the cross-section), and the resulting STIs were analyzed using the hybrid STIV method to calculate the discharge. When the constructed SIF system was tested in a steep-sloped channel at the Andong River Experiment Center, the velocity distribution showed a difference of less than 9% compared to measurements from a traditional current meter, and the discharge showed a difference of around 10% compared to measurements from an Acoustic Doppler Current Profiler (ADCP). Full article
Show Figures

Figure 1

22 pages, 7209 KiB  
Article
Beyond Water Surface Profiles: A New Iterative Methodology for 2D Model Calibration in Rivers Using Velocity Data from Multiple Cross-Sections
by Fabian Rivera-Trejo, Gabriel Soto-Cortes, Kory M. Konsoer, Eddy J. Langendoen and Gaston Priego-Hernandez
Water 2025, 17(3), 377; https://doi.org/10.3390/w17030377 - 30 Jan 2025
Viewed by 1257
Abstract
Observed longitudinal water-surface profiles are commonly used to calibrate river hydrodynamic models, relying on assumptions of lateral uniformity in water surface elevation and velocity distribution. While suitable for 1D models, this approach has limitations in regard to 2D model calibration. When 2D flow [...] Read more.
Observed longitudinal water-surface profiles are commonly used to calibrate river hydrodynamic models, relying on assumptions of lateral uniformity in water surface elevation and velocity distribution. While suitable for 1D models, this approach has limitations in regard to 2D model calibration. When 2D flow measurements are available, a more robust quantitative evaluation is necessary to assess model accuracy. This study introduces a novel methodology to improve 2D model calibration and evaluate performance. High-resolution bathymetric and hydrodynamic data collected with a multibeam echosounder (MBES) and acoustic Doppler current profiler (ADCP) were aligned to compare observed and simulated flow velocities at matching spatial locations. Statistical metrics, including relative mean absolute error and root-mean-square error, were employed to assess hydrodynamic modeling. The methodology was tested using MBES and ADCP measurements alongside TELEMAC-2D simulations of a dynamic neck cutoff on the White River, Arkansas, USA. This approach provides a 2D calibration process, enhancing model accuracy and informing parameter selection, such as channel boundary roughness and downstream boundary water surface elevation. Full article
Show Figures

Figure 1

32 pages, 4670 KiB  
Article
Mapping River Flow from Thermal Images in Approximately Real Time: Proof of Concept on the Sacramento River, California, USA
by Carl J. Legleiter, Paul J. Kinzel, Michael Dille, Massimo Vespignani, Uland Wong, Isaac Anderson, Elizabeth Hyde, Chris Gazoorian and Jennifer M. Cramer
Remote Sens. 2024, 16(24), 4746; https://doi.org/10.3390/rs16244746 - 19 Dec 2024
Cited by 2 | Viewed by 1599
Abstract
Image velocimetry has become an effective method of mapping flow conditions in rivers, but this analysis is typically performed in a post-processing mode after data collection is complete. In this study, we evaluated the potential to infer flow velocities in approximately real time [...] Read more.
Image velocimetry has become an effective method of mapping flow conditions in rivers, but this analysis is typically performed in a post-processing mode after data collection is complete. In this study, we evaluated the potential to infer flow velocities in approximately real time as thermal images are being acquired from an uncrewed aircraft system (UAS). The sensitivity of thermal image velocimetry to environmental conditions was quantified by conducting 20 flights over four days and assessing the accuracy of image-derived velocity estimates via comparison to direct field measurements made with an acoustic Doppler current profiler (ADCP). This analysis indicated that velocity mapping was most reliable when the air was cooler than the water. We also introduced a workflow for River Velocity Measurement in Approximately Real Time (RiVMART) that involved transferring brief image sequences from the UAS to a ground station as distinct data packets. The resulting velocity fields were as accurate as those generated via post-processing. A new particle image velocimetry (PIV) algorithm based on staggered image sequences increased the number of image pairs available for a given image sequence duration and slightly improved accuracy relative to a standard PIV implementation. Direct, automated geo-referencing of image-derived velocity vectors based on information on the position and orientation of the UAS acquired during flight led to poor alignment with vectors that were geo-referenced manually by selecting ground control points from an orthophoto. This initial proof-of-concept investigation suggests that our workflow could enable highly efficient characterization of flow fields in rivers and might help support applications that require rapid response to changing conditions. Full article
Show Figures

Figure 1

34 pages, 8025 KiB  
Article
An ADCP Attitude Dynamic Errors Correction Method Based on Angular Velocity Tensor and Radius Vector Estimation
by Zhaowen Sun, Shuai Yao, Ning Gao and Ke Zhang
J. Mar. Sci. Eng. 2024, 12(11), 2018; https://doi.org/10.3390/jmse12112018 - 8 Nov 2024
Viewed by 854
Abstract
An acoustic Doppler current profiler (ADCP) installed on a platform produces rotational tangential velocity as a result of variations in the platform’s attitude, with both the tangential velocity and radial orientation varying between each pulse’s transmission and reception by the transducer. These factors [...] Read more.
An acoustic Doppler current profiler (ADCP) installed on a platform produces rotational tangential velocity as a result of variations in the platform’s attitude, with both the tangential velocity and radial orientation varying between each pulse’s transmission and reception by the transducer. These factors introduce errors into the measurements of vessel velocity and flow velocity. In this study, we address the errors induced by dynamic factors related to variations in attitude and propose an ADCP attitude dynamic error correction method based on angular velocity tensor and radius vector estimation. This method utilizes a low-sampling-rate inclinometer and compass data and estimates the angular velocity tensor based on a physical model of vessel motion combined with nonlinear least-squares estimation. The angular velocity tensor is then used to estimate the transducers’ radius vectors. Finally, the radius vectors are employed to correct the instantaneous tangential velocity within the measured velocities of the vessel and flow. To verify the effectiveness of the proposed method, field tests were conducted in a water pool. The results demonstrate that the proposed method surpasses the attitude static correction approach. In comparison with the ASC method, the average relative error in vessel velocity during free-swaying movement decreased by 20.94%, while the relative standard deviation of the error was reduced by 17.38%. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 9425 KiB  
Article
Characteristic Analysis of Vertical Tidal Profile Parameters at Tidal Current Energy Site
by Uk-Jae Lee, Dong-Hui Ko and Jin-Soon Park
J. Mar. Sci. Eng. 2024, 12(11), 1998; https://doi.org/10.3390/jmse12111998 - 6 Nov 2024
Viewed by 1341
Abstract
Many mathematical models have been proposed to estimate vertical tidal current profiles. However, as previous studies have shown that tidal current energy sites have different characteristics in their vertical tidal current profiles, it is necessary to estimate the profiles from field-measured data for [...] Read more.
Many mathematical models have been proposed to estimate vertical tidal current profiles. However, as previous studies have shown that tidal current energy sites have different characteristics in their vertical tidal current profiles, it is necessary to estimate the profiles from field-measured data for practical purposes. In this study, we measured layered tidal currents over two months using an acoustic Doppler current profiler (ADCP) to analyze the characteristics of vertical tidal current profiles at the Jangjuk Strait, a candidate site for tidal current energy. As a result, the power law parameter α and bed roughness β were estimated as 4.51–12.41 and 0.38–0.42, respectively. Additionally, the maximum roughness length representing seabed roughness in the logarithmic profile was estimated as 0.221 m, and the estimated friction velocity was 0.038–0.194 m/s. Furthermore, a high correlation was observed between the depth-averaged tidal current velocity and friction velocities at all sites during flood and ebb tide conditions. A high correlation was also found between the bed roughness, roughness length, and power law exponent at relatively deeper sites. Tidal current energy sites display distinct characteristics compared to other sea areas. Therefore, it is essential to account for field conditions when conducting numerical modeling and design. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

22 pages, 6169 KiB  
Article
Real-Time and Long-Term Monitoring of Coastal Water Turbidity Using an Ocean Buoy Equipped with an ADCP
by Jia-Wei Bian and Ching-Jer Huang
Sensors 2024, 24(21), 6979; https://doi.org/10.3390/s24216979 - 30 Oct 2024
Cited by 2 | Viewed by 1436
Abstract
In this study, an acoustic Doppler current profiler (ADCP) operating at 600 kHz was installed on an ocean data buoy in the Qigu waters, Taiwan, to gather real-time sound echo intensity data. These data were then correlated with turbidity measurements obtained by a [...] Read more.
In this study, an acoustic Doppler current profiler (ADCP) operating at 600 kHz was installed on an ocean data buoy in the Qigu waters, Taiwan, to gather real-time sound echo intensity data. These data were then correlated with turbidity measurements obtained by a turbidimeter mounted on the buoy’s mooring line at a water depth of 13 m. The data buoy operated from 6 June to 16 August 2017. During this period, turbidity measurements were recorded from 6 to 21 June 2017. This study established a calibration between the sound echo intensity measured by the ADCP and the turbidity measured using the turbidimeter; a strong linear correlation was discovered between these two variables. This correlation enabled the conversion of echo intensity data into a continuous time series of turbidity measurements, facilitating real-time and long-term monitoring of coastal water turbidity through the deployment of a buoy equipped with an ADCP. The relationships between turbidity and environmental factors such as rainfall, tides, current speeds, and wave activity over an extended period were then investigated. The results revealed that stronger tides and currents in the Qigu waters often lead to higher turbidity, suggesting that these two factors are the primary driving forces for sediment transport in the Qigu waters. Additionally, sampling of water in the Qigu area revealed sediment particles of size ranging from 2 to 120 μm. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

22 pages, 3309 KiB  
Article
Cross-Layer Routing Protocol Based on Channel Quality for Underwater Acoustic Communication Networks
by Jinghua He, Jie Tian, Zhanqing Pu, Wei Wang and Haining Huang
Appl. Sci. 2024, 14(21), 9778; https://doi.org/10.3390/app14219778 - 25 Oct 2024
Viewed by 1157
Abstract
Due to the physical characteristics of acoustic channels, the performance of underwater acoustic communication networks (UACNs) is more susceptible to the impacts of multipath and Doppler effects. Channel quality can serve as a measure of the reliability of underwater communication links. A cross-layer [...] Read more.
Due to the physical characteristics of acoustic channels, the performance of underwater acoustic communication networks (UACNs) is more susceptible to the impacts of multipath and Doppler effects. Channel quality can serve as a measure of the reliability of underwater communication links. A cross-layer routing protocol based on channel quality (CLCQ) is proposed to improve the overall network performance and resource utilization. First, the BELLHOP ray model is used to calculate the channel impulse response combined with the winter sound speed profile data of a specific sea area. Then, the channel impulse response is integrated into the communication system to evaluate the channel quality between nodes based on the bit error rate (BER). Finally, during the selection of the next hop node, a reinforcement learning algorithm is employed to facilitate cross-layer interaction within the protocol stack. The optimal relay node is determined by the channel quality index (BER) from the physical layer, the buffer state from the data link layer, and the node residual energy. To enhance the algorithm’s convergence speed, a forwarding candidate set selection method is proposed which takes into account node depth, residual energy, and buffer state. Simulation results show that the packet delivery rate (PDR) of the CLCQ is significantly higher than that of Q-Learning-Based Energy-Efficient and Lifetime-Extended Adaptive Routing (QELAR) and Geographic and Opportunistic Routing (GEDAR). Full article
(This article belongs to the Special Issue Recent Advances in Underwater Acoustic Signal Processing)
Show Figures

Figure 1

29 pages, 10011 KiB  
Article
Error Analysis and Correction of ADCP Attitude Dynamics under Platform Swing Conditions
by Zhaowen Sun and Shuai Yao
J. Mar. Sci. Eng. 2024, 12(10), 1820; https://doi.org/10.3390/jmse12101820 - 12 Oct 2024
Cited by 1 | Viewed by 1074
Abstract
The Acoustic Doppler Current Profiler (ADCP) on a platform generates rotational linear velocity due to dynamic factors in attitude changes, leading to measurement errors in vessel and water flow velocities. This study derives and analyzes these errors, focusing on factors such as emission [...] Read more.
The Acoustic Doppler Current Profiler (ADCP) on a platform generates rotational linear velocity due to dynamic factors in attitude changes, leading to measurement errors in vessel and water flow velocities. This study derives and analyzes these errors, focusing on factors such as emission angle, transducer position, water depth, and measured depth, while also accounting for the variation in linear velocity and radial direction during each transmit–receive pulse cycle in the simulations. A method is proposed that introduces the concept of an equivalent radial radius to correct vessel and flow velocities, specifically designed for the common scenario where the ADCP is installed on the central longitudinal section of a vessel undergoing free roll motion. This method is suited for shallow water conditions without waves, with measurements taken vertically downward. It uses least squares fitting with an exponentially decaying sinusoidal model to process low-sampling-rate inclinometer data from the ADCP. This approach requires only the processing of measured data based on existing ADCP hardware, without the need for additional equipment. Field tests in a pool demonstrate that the proposed method significantly reduces vessel velocity errors, outperforming the traditional attitude static correction method. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop