Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (957)

Search Parameters:
Keywords = ATG2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3146 KiB  
Article
TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
by Geonildo Rodrigo Disner, Emma Wincent, Carla Lima and Monica Lopes-Ferreira
Pharmaceuticals 2025, 18(8), 1146; https://doi.org/10.3390/ph18081146 (registering DOI) - 1 Aug 2025
Abstract
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling [...] Read more.
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (cyp3a65, cyp1a) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (myhb/mylz3) enhancing wound repair and tlr5-cdc42 signaling fine-tuning inflammation; (3) proteolytic cascades (c6ast4, prss1) coupled to autophagy (ulk1a, atg2a) and metabolic rewiring (g6pca.1-tg axis); and (4) melanogenesis-circadian networks (pmela/dct-fbxl3l) linked to ubiquitin-mediated protein turnover. Key findings highlight TnP’s unique coordination of rapid (protease activation) and sustained (metabolic adaptation) responses, enabled by short network path lengths (1.6–2.1 edges). Hub genes, such as nr1i2 (pxr), ppara, and bcl6aa/b, mediate crosstalk between these systems, while potential risks—including muscle hypercontractility (myhb overexpression) or cardiovascular effects (ace2-ppp3ccb)—underscore the need for targeted delivery. The zebrafish model validated TnP-conserved mechanisms with human relevance, particularly in drug metabolism and tissue repair. TnP’s ability to synchronize extracellular matrix remodeling, immune resolution, and metabolic homeostasis supports its development for the treatment of fibrosis, metabolic disorders, and inflammatory conditions. Conclusions: Future work should focus on optimizing tissue-specific delivery and assessing genetic variability to advance clinical translation. This system-level analysis positions TnP as a model example for next-generation multi-pathway therapeutics. Full article
Show Figures

Graphical abstract

34 pages, 1543 KiB  
Article
Smart Money, Greener Future: AI-Enhanced English Financial Text Processing for ESG Investment Decisions
by Junying Fan, Daojuan Wang and Yuhua Zheng
Sustainability 2025, 17(15), 6971; https://doi.org/10.3390/su17156971 (registering DOI) - 31 Jul 2025
Abstract
Emerging markets face growing pressures to integrate sustainable English business practices while maintaining economic growth, particularly in addressing environmental challenges and achieving carbon neutrality goals. English Financial information extraction becomes crucial for supporting green finance initiatives, Environmental, Social, and Governance (ESG) compliance, and [...] Read more.
Emerging markets face growing pressures to integrate sustainable English business practices while maintaining economic growth, particularly in addressing environmental challenges and achieving carbon neutrality goals. English Financial information extraction becomes crucial for supporting green finance initiatives, Environmental, Social, and Governance (ESG) compliance, and sustainable investment decisions in these markets. This paper presents FinATG, an AI-driven autoregressive framework for extracting sustainability-related English financial information from English texts, specifically designed to support emerging markets in their transition toward sustainable development. The framework addresses the complex challenges of processing ESG reports, green bond disclosures, carbon footprint assessments, and sustainable investment documentation prevalent in emerging economies. FinATG introduces a domain-adaptive span representation method fine-tuned on sustainability-focused English financial corpora, implements constrained decoding mechanisms based on green finance regulations, and integrates FinBERT with autoregressive generation for end-to-end extraction of environmental and governance information. While achieving competitive performance on standard benchmarks, FinATG’s primary contribution lies in its architecture, which prioritizes correctness and compliance for the high-stakes financial domain. Experimental validation demonstrates FinATG’s effectiveness with entity F1 scores of 88.5 and REL F1 scores of 80.2 on standard English datasets, while achieving superior performance (85.7–86.0 entity F1, 73.1–74.0 REL+ F1) on sustainability-focused financial datasets. The framework particularly excels in extracting carbon emission data, green investment relationships, and ESG compliance indicators, achieving average AUC and RGR scores of 0.93 and 0.89 respectively. By automating the extraction of sustainability metrics from complex English financial documents, FinATG supports emerging markets in meeting international ESG standards, facilitating green finance flows, and enhancing transparency in sustainable business practices, ultimately contributing to their sustainable development goals and climate action commitments. Full article
21 pages, 1762 KiB  
Article
Kinetics of Procalcitonin, CRP, IL-6, and Presepsin in Heart Transplant Patients Undergoing Induction with Thymoglobulin (rATG)
by Lorenzo Giovannico, Vincenzo Ezio Santobuono, Giuseppe Fischetti, Federica Mazzone, Domenico Parigino, Luca Savino, Maria Alfeo, Aldo Domenico Milano, Andrea Igoren Guaricci, Marco Matteo Ciccone, Massimo Padalino and Tomaso Bottio
J. Clin. Med. 2025, 14(15), 5369; https://doi.org/10.3390/jcm14155369 - 29 Jul 2025
Viewed by 182
Abstract
Background/Objectives: Heart transplantation (HTx) is a lifesaving procedure for end-stage heart failure patients; however, postoperative infections remain a major challenge due to immunosuppressive therapy and surgical complications. Traditional biomarkers such as C-reactive protein (CRP) and procalcitonin (PCT) have limitations in distinguishing infections [...] Read more.
Background/Objectives: Heart transplantation (HTx) is a lifesaving procedure for end-stage heart failure patients; however, postoperative infections remain a major challenge due to immunosuppressive therapy and surgical complications. Traditional biomarkers such as C-reactive protein (CRP) and procalcitonin (PCT) have limitations in distinguishing infections from systemic inflammatory response syndrome (SIRS). Emerging markers such as Presepsin and interleukin-6 (IL-6) may improve diagnostic accuracy. This study aimed to evaluate the kinetics and reliability of these four inflammatory biomarkers in heart transplant recipients in the immediate postoperative period. Methods: This retrospective observational study included 126 patients who underwent HTx at Policlinic of Bari between January 2022 and November 2024. Patients were categorized into infected (n = 26) and non-infected (n = 100) groups based on clinical and microbiological criteria. Biomarkers (CRP, PCT, Presepsin, and IL-6) were measured preoperatively and on postoperative days (PODs) 1, 2, 3, 4, 5, and 10. Statistical analyses included the Mann–Whitney U test and logistic regression to identify the independent predictors of infection. Results: CRP and PCT levels differed significantly between the groups only on day 10, limiting their use as early infection markers. In contrast, Presepsin levels were significantly elevated in infected patients from day 1 (p < 0.001), whereas IL-6 levels showed significant differences from day 3 onward. Presepsin showed the strongest association with infection in the early postoperative phase. Conclusions: Presepsin and IL-6 outperformed CRP and PCT in detecting early postoperative infections in heart transplant recipients. Their early elevation supports their use as reliable markers for guiding timely clinical intervention and improving patient outcomes. Further research is needed to validate these findings in larger cohorts and with different immunosuppressive regimens. Full article
(This article belongs to the Section Cardiology)
Show Figures

Graphical abstract

20 pages, 2847 KiB  
Article
Oxidative Stress Disrupts Gill Function in Eriocheir sinensis: Consequences for Ion Transport, Apoptosis, and Autophagy
by Wenrong Feng, Qinghong He, Qiqin Yang, Yuanfeng Xu, Gang Jiang, Jianlin Li, Jun Zhou, Rui Jia and Yongkai Tang
Antioxidants 2025, 14(8), 897; https://doi.org/10.3390/antiox14080897 - 22 Jul 2025
Viewed by 263
Abstract
Oxidative stress is a key mediator of physiological dysfunction in aquatic organisms under environmental challenges, yet its comprehensive impacts on gill physiology require further clarification. This study investigated the molecular and cellular responses of Eriocheir sinensis gills to hydrogen peroxide (H2O [...] Read more.
Oxidative stress is a key mediator of physiological dysfunction in aquatic organisms under environmental challenges, yet its comprehensive impacts on gill physiology require further clarification. This study investigated the molecular and cellular responses of Eriocheir sinensis gills to hydrogen peroxide (H2O2)-induced oxidative stress, integrating antioxidant defense, ion transport regulation, and stress-induced cell apoptosis and autophagy. Morphological alterations in the gill filaments were observed, characterized by septum degeneration, accumulation of haemolymph cells, and pronounced swelling. For antioxidant enzymes like catalase (CAT) and glutathione peroxidase (GPx), activities were enhanced, while superoxide dismutase (SOD) activity was reduced following 48 h of exposure. Overall, the total antioxidant capacity (T-AOC) showed a significant increase. The elevated concentrations of malondialdehyde (MDA) and H2O2 indicated oxidative stress. Ion transport genes displayed distinct transcription patterns: Na+-K+-2Cl co-transporter-1 (NKCC1), Na+/H+ exchanger 3 (NHE3), aquaporin 7 (AQP7), and chloride channel protein 2 (CLC2) were significantly upregulated; the α-subunit of Na+/K+-ATPase (NKAα) and carbonic anhydrase (CA) displayed an initial increase followed by decline; whereas vacuolar-type ATPase (VATP) consistently decreased, suggesting compensatory mechanisms to maintain osmotic balance. Concurrently, H2O2 triggered apoptosis (Bcl2, Caspase-3/8) and autophagy (beclin-1, ATG7), likely mediated by MAPK and AMPK signaling pathways. These findings reveal a coordinated yet adaptive response of crab gills to oxidative stress, providing new insights into the mechanistic basis of environmental stress tolerance in crustaceans. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health—2nd Edition)
Show Figures

Figure 1

21 pages, 4501 KiB  
Article
Functional Characterization of Dual-Initiation Codon-Derived V2 Proteins in Tomato Yellow Leaf Curl Virus
by Zhiyuan Wang, Pan Gong, Siwen Zhao, Fangfang Li and Xueping Zhou
Agronomy 2025, 15(7), 1726; https://doi.org/10.3390/agronomy15071726 - 17 Jul 2025
Viewed by 274
Abstract
Tomato yellow leaf curl virus (TYLCV) is a highly destructive pathogen of global tomato crops. The open reading frame (ORF) of TYLCV V2 contains two initiation codons (ATG1/V2-1 and ATG2/V2-2), producing distinct protein isoforms. Using custom antibodies, we confirmed V2-1 [...] Read more.
Tomato yellow leaf curl virus (TYLCV) is a highly destructive pathogen of global tomato crops. The open reading frame (ORF) of TYLCV V2 contains two initiation codons (ATG1/V2-1 and ATG2/V2-2), producing distinct protein isoforms. Using custom antibodies, we confirmed V2-1 and V2-2 expression in infected Nicotiana benthamiana and tomato plants. Deletion mutants revealed their specialized roles: V2-1 was indispensable for viral replication and systemic spread—its loss severely reduced pathogenicity and genome accumulation. V2-2 acted as an auxiliary factor, and its deletion attenuated symptoms but kept the virus infection. Host-specific effects were observed—V2-1 deletion led to lower viral DNA/coat protein levels in N. benthamiana than in tomato, suggesting host-dependent regulation. Mutant viruses declined progressively in tomato, indicating host defense clearance. Heterologous co-expression of both isoforms via potato virus X induced systemic necrosis in N. benthamiana, demonstrating functional synergy between isoforms. Both initiation codons were essential for V2-mediated suppression of transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). This study uncovers the mechanistic divergence of V2 isoforms in TYLCV infection, highlighting their collaborative roles in virulence and host manipulation. The findings advance understanding of geminivirus coding complexity and offer potential targets for resistance strategies. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

19 pages, 42627 KiB  
Article
Molecular Remodeling of the Sperm Proteome Following Varicocele Sclero-Embolization: Implications for Semen Quality Improvement
by Domenico Milardi, Edoardo Vergani, Francesca Mancini, Fiorella Di Nicuolo, Emanuela Teveroni, Emanuele Pierpaolo Vodola, Alessandro Oliva, Giuseppe Grande, Alessandro Cina, Roberto Iezzi, Michela Cicchinelli, Federica Iavarone, Silvia Baroni, Alberto Ferlin, Andrea Urbani and Alfredo Pontecorvi
Proteomes 2025, 13(3), 34; https://doi.org/10.3390/proteomes13030034 - 15 Jul 2025
Viewed by 345
Abstract
Background: Varicocele is a common condition involving the dilation of veins in the scrotum, often linked to male infertility and testicular dysfunction. This study aimed to elucidate the molecular effects of successful varicocele treatment on sperm proteomes following percutaneous sclero-embolization. Methods: High-resolution tandem [...] Read more.
Background: Varicocele is a common condition involving the dilation of veins in the scrotum, often linked to male infertility and testicular dysfunction. This study aimed to elucidate the molecular effects of successful varicocele treatment on sperm proteomes following percutaneous sclero-embolization. Methods: High-resolution tandem mass spectrometry was performed for proteomic profiling of pooled sperm lysates from five patients exhibiting improved semen parameters before and after (3 and 6 months) varicocele sclero-embolization. Data were validated by Western blot analysis. Results: Seven proteins were found exclusively in varicocele patients before surgery—such as stathmin, IFT20, selenide, and ADAM21—linked to inflammation and oxidative stress. After sclero-embolization, 55 new proteins emerged, including antioxidant enzymes like selenoprotein P and GPX3. Thioredoxin (TXN) and peroxiredoxin (PRDX3) were upregulated, indicating restoration of key antioxidant pathways. Additionally, the downregulation of some histones and the autophagy-related protein ATG9A suggests a shift toward an improved chromatin organization and a healthier cellular environment post-treatment. Conclusions: Varicocele treatment that improves sperm quality and fertility parameters leads to significant proteome modulation. These changes include reduced oxidative stress and broadly restored sperm maturation. Despite the limited patient cohort analyzed, these preliminary findings provide valuable insights into how varicocele treatment might enhance male fertility and suggest potential biomarkers for improved male infertility treatment strategies. Full article
(This article belongs to the Section Proteomics of Human Diseases and Their Treatments)
Show Figures

Graphical abstract

16 pages, 2434 KiB  
Article
Identification of Critical Candidate Genes Controlling Monokaryon Fruiting in Flammulina filiformis Using Genetic Population Construction and Bulked Segregant Analysis Sequencing
by Peng Wang, Ya Yu, Lei Xia, Qi Yan, Xiao Tan, Dongyin Wang, Xue Wang, Zhibin Zhang, Jiawei Wen and Xiao Huang
J. Fungi 2025, 11(7), 512; https://doi.org/10.3390/jof11070512 - 8 Jul 2025
Viewed by 562
Abstract
Fruiting body formation in edible fungi is a critical development process for both scientific understanding and industrial cultivation, yet the underlying genetic mechanisms remain poorly elucidated. This study aimed to identify key genes regulating monokaryotic fruiting in Flammulina filiformis. A genetic segregation [...] Read more.
Fruiting body formation in edible fungi is a critical development process for both scientific understanding and industrial cultivation, yet the underlying genetic mechanisms remain poorly elucidated. This study aimed to identify key genes regulating monokaryotic fruiting in Flammulina filiformis. A genetic segregation population was constructed through selfing purification and hybrid segregation of the FF002 strain, followed by mapping candidate genes with bulked segregant analysis sequencing (BSA-seq). A 10 kb genomic region on scaffold19 was identified, pinpointing the gene FV-L110034160, which encodes a U2 snRNP complex component involved in pre-mRNA splicing. A T→G SNP located 121 bp downstream of the ATG codon caused a serine-to-alanine substitution, disrupting a conserved domain and altering fruiting phenotypes. Phylogenetic analysis further revealed conservation of this gene in fungal genera. These findings elucidate a key regulatory gene controlling monokaryotic fruiting in F. filiformis, providing novel insights into fruiting body formation mechanisms and establishing a foundation for genetic studies in other edible fungi. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

12 pages, 697 KiB  
Article
Dietary Gluten-Free Regimen Does Not Affect the Suppression of the Inflammatory Response in the Arachidonic Acid Cascade in Hashimoto’s Disease
by Małgorzata Szczuko, Lidia Kwiatkowska, Urszula Szczuko, Leon Rudak, Karina Ryterska, Anhelli Syrenicz, Jakub Pobłocki and Arleta Drozd
Int. J. Mol. Sci. 2025, 26(13), 6507; https://doi.org/10.3390/ijms26136507 - 6 Jul 2025
Viewed by 469
Abstract
The incidence of Hashimoto’s disease (HD) increases with age and in people who have other autoimmune diseases. It is characterized by lymphocytic infiltration, fibrosis, and atrophy of the thyroid parenchyma with the simultaneous presence of thyroid peroxidase antibodies (ATPO) and/or thyroglobulin antibodies (ATG). [...] Read more.
The incidence of Hashimoto’s disease (HD) increases with age and in people who have other autoimmune diseases. It is characterized by lymphocytic infiltration, fibrosis, and atrophy of the thyroid parenchyma with the simultaneous presence of thyroid peroxidase antibodies (ATPO) and/or thyroglobulin antibodies (ATG). Eicosanoids are formed via the cyclooxygenase (COX), lipoxygenase (LOX), and monooxygenase (CYP450) pathways with arachidonic acid (ARA), resulting in the production of epoxyeicosatrienoic acids (EETs) or hydroxyeicosatetraenoic acids (HETEs). These eicosanoids can act in an autocrine or paracrine manner on target cells. This study aimed to examine whether a gluten-free diet (GFD) can modulate the enzymatic pathways of the pro-inflammatory ARA cascade. The study material consisted of serum samples from Caucasian female patients with HD aged 18–55 years. Participants were enrolled in the study based on the presence of an ultrasound characteristic of HD, and elevated serum levels of anti-thyroid peroxidase antibodies and anti-thyroglobulin antibodies. Patients with confirmed celiac disease did not participate in the study. A total of 78 samples were analyzed, with 39 collected after 3 months of following a GFD. Eicosanoids (thromboxane B2, prostaglandin E2, leukotriene B4, and 16R-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid (16-RS HETE)) were extracted using high-performance liquid chromatography. The contribution of leukotriene (LTB) was analyzed in the LOX pathway, prostaglandins (PGE2) and thromboxane (TXB2) were selected for the involvement of the COX pathway, and 16RS HETE was used for the CYP450 pathway. All parameters were analyzed before and after a 3-month dietary intervention that included a gluten-free diet. In the obtained results, only one mediator, leukotriene B4, was significant (p < 0.05). The mean level on the initial visit was 0.202 ± 0.11 (SD), while it was 0.421 ± 0.27 (SD) on the subsequent visit, indicating a significant increase in its level after implementing a GFD. Although there was a trend in the CYP 450 pathway of decreased 16-RS HETE, the presented correlations show that thromboxane B4 and 16RS-HETE were positively correlated with the body mass and body fat mass of the examined patients. There was a trend in the CYP 450 pathway of decreased 16-RS HETE after GFD. Thromboxane B4 and 16RS-HETE levels before GFD were positively correlated with the body mass and body fat mass of the examined patients. A gluten-free diet in HD does not suppress the synthetic pathways of LOX, COX, or cytochrome P450 (CYP450). The level of adipose tissue has a greater impact on the inflammatory processes in HD than a gluten-free diet. This study does not confirm the suppressive effect of a gluten-free diet on the pro-inflammatory arachidonic acid cascade in any of the three analyzed mediator synthesis LOX, COX, CYP450 pathways. Full article
Show Figures

Figure 1

18 pages, 11436 KiB  
Article
Interaction of Potato Autophagy-Related StATG8 Family Proteins with Pathogen Effector and WRKY Transcription Factor in the Nucleus
by Sung Un Huh
Microorganisms 2025, 13(7), 1589; https://doi.org/10.3390/microorganisms13071589 - 5 Jul 2025
Viewed by 288
Abstract
Autophagy is an essential eukaryotic catabolic process through which damaged or superfluous cellular components are degraded and recycled via the formation of double-membrane autophagosomes. In plants, autophagy-related genes (ATGs) are primarily expressed in the cytoplasm and are responsible for orchestrating distinct stages of [...] Read more.
Autophagy is an essential eukaryotic catabolic process through which damaged or superfluous cellular components are degraded and recycled via the formation of double-membrane autophagosomes. In plants, autophagy-related genes (ATGs) are primarily expressed in the cytoplasm and are responsible for orchestrating distinct stages of autophagosome biogenesis. Among these, ATG8 proteins, orthologous to the mammalian LC3 family, are conserved ubiquitin-like modifiers that serve as central hubs in selective autophagy regulation. Although ATG8 proteins are localized in both the cytoplasm and nucleus, their functions within the nucleus remain largely undefined. In the present study, the ATG8-interacting motif (AIM) was identified and functionally characterized in the potato ATG8 homolog (StATG8), demonstrating its capacity for selective target recognition. StATG8 was shown to form both homodimeric and heterodimeric complexes with other ATG8 isoforms, implying a broader regulatory potential within the ATG8 family. Notably, StATG8 was found to interact with the Ralstonia solanacearum type III effector PopP2, a nuclear-localized acetyltransferase, suggesting a possible role in effector recognition within the nucleus. In addition, interactions between StATG8 and transcription factors AtWRKY40 and AtWRKY60 were detected in both cytoplasmic autophagosomes and the nuclear compartment. These observations provide novel insights into the noncanonical, nucleus-associated roles of plant ATG8 proteins. The nuclear interactions with pathogen effectors and transcriptional regulators suggest that ATG8 may function beyond autophagic degradation, contributing to the regulation of nuclear signaling and plant immunity. These findings offer a foundational basis for further investigation into the functional diversification of ATG8 in plant cellular compartments. Full article
Show Figures

Figure 1

19 pages, 783 KiB  
Article
Variants in Nucleotide Sequences; Gene Expression; and Hematological, Immune, and Antioxidant Biomarkers Linked to Pneumonia Risk in Holstein Calves
by Ahmed El-Sayed, Attia Eissa, Doaa Ebrahim, Ahmed Ateya, Hossam Gadalla, Hanan M. Alharbi, Khairiah M. Alwutayd, Manal A. Babaker and Aya Aly Elzeer
Vet. Sci. 2025, 12(7), 620; https://doi.org/10.3390/vetsci12070620 - 26 Jun 2025
Viewed by 653
Abstract
Pneumonia is a major issue that affects calves’ health and performance and causes numerous losses despite treatment. Investigating genetic and molecular differences, as well as immunological and antioxidant responses, in calves at risk for pneumonia was the aim of this study. A total [...] Read more.
Pneumonia is a major issue that affects calves’ health and performance and causes numerous losses despite treatment. Investigating genetic and molecular differences, as well as immunological and antioxidant responses, in calves at risk for pneumonia was the aim of this study. A total of 225 calves were studied, including 180 Holstein calves with respiratory signs and 45 calves that were apparently healthy. Blood samples were collected for CBC, RNA extractions, and immunological and antioxidant analysis. In contrast to the control group, the pneumonic one showed a considerable (p < 0.05) increase in the expression levels of cytokines and antioxidant genes IL1α, IL-1β, IL-6, IFN-γ, TNF-α, and NOX4. In contrast, the values of IL10, PRDX6, ATG7, and NDUFS6 were in the opposite range. The pneumonic and healthy calves were found to differ in the nucleotide sequences of the genes under analysis. In pneumonic calves, a substantial (p ˂0.05) reduction was detected in RBCs, Hb count, PCV%, and lymphocytes count, and a notable (p ˂ 0.05) increase in WBCs and neutrophil count was correlated with healthy control calves. The findings of the serum profile showed that there was a meaningful (p ˂ 0.05) rise in the serum values of IL-1α, IL-1β, IL-6, TNF-α, IFN-γ, and MDA, with significant reductions in the SOD, GSH, TAC, and IL-10 in the pneumonic compared to the healthy calves. Our results provide valuable information about the nucleotide sequence, gene expression, and serum profile differences of putative indicators for pneumonia in calves. This could be applied in monitoring calves’ pneumonia through the discriminate breeding of naturally resistant animals. Full article
Show Figures

Figure 1

28 pages, 2595 KiB  
Review
Autophagy: Shedding Light on the Mechanisms and Multifaceted Roles in Cancers
by Hongmei You, Ling Wang, Hongwu Meng, Jun Li and Guoying Fang
Biomolecules 2025, 15(7), 915; https://doi.org/10.3390/biom15070915 - 22 Jun 2025
Cited by 1 | Viewed by 763
Abstract
Autophagy, an evolutionarily conserved self-degradation catabolic mechanism, is crucial for recycling breakdown products and degrading intracellular components such as cytoplasmic organelles, macromolecules, and proteins in eukaryotes. The process, which can be selective or non-selective, involves the removal of specific ribosomes, protein aggregates, and [...] Read more.
Autophagy, an evolutionarily conserved self-degradation catabolic mechanism, is crucial for recycling breakdown products and degrading intracellular components such as cytoplasmic organelles, macromolecules, and proteins in eukaryotes. The process, which can be selective or non-selective, involves the removal of specific ribosomes, protein aggregates, and organelles. Although the specific mechanisms governing various aspects of selective autophagy have not been fully understood, numerous studies have revealed that the dysregulation of autophagy-related genes significantly influences cellular homeostasis and contributes to a wide range of human diseases, particularly cancers, neurodegenerative disorders and inflammatory diseases. Notably, accumulating evidence highlights the complex, dual role of autophagy in cancer development. Thus, this review systematically summarizes the molecular mechanisms of autophagy and presents the latest research on its involvement in both pro- and anti-tumor progression. Furthermore, we discuss the role of autophagy in cancer development and summarize advancement in tumor therapies targeting autophagy. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

22 pages, 12120 KiB  
Article
Identification of Glucose-6-Phosphate Dehydrogenase Family Members Associated with Cold Stress in Pepper (Capsicum annuum L.)
by Jianwei Zhang, Jianxin Fan, Zhiying Tan, Yao Jiang, Xianjun Chen, Qin Yang and Huanxiu Li
Horticulturae 2025, 11(7), 719; https://doi.org/10.3390/horticulturae11070719 - 20 Jun 2025
Viewed by 334
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) is a critical enzyme in the pentose phosphate pathway, playing an essential role in plant growth, development, and adaptation to abiotic stress. In this study, we identified four members of the G6PDH gene family in the ‘Zunla-1’ genome, designating them [...] Read more.
Glucose-6-phosphate dehydrogenase (G6PDH) is a critical enzyme in the pentose phosphate pathway, playing an essential role in plant growth, development, and adaptation to abiotic stress. In this study, we identified four members of the G6PDH gene family in the ‘Zunla-1’ genome, designating them as CaG6PDH1-CaG6PDH4. Multiple sequence alignment revealed that the four protein sequences of pepper contain three unique binding sites characteristic of G6PDH: the substrate binding site, the NADP binding site and the Rossmann fold. The phylogenetic tree, motifs, and gene structure analysis indicate that the CaG6PDH gene sequence is relatively conserved and structurally similar, with a close relationship to the sequence of Solanaceae G6PDH members. The collinearity analysis showed that there were two pairs of collinearity between the CaG6PDH genes and the AtG6PDH genes, as well as the SiG6PDH genes. Additionally, numerous cis-elements associated with stress responses, hormone regulation, development, and light responses were identified in the promoter region of the CaG6PDH gene. Furthermore, the various members of the pepper CaG6PDH gene family exhibit specific expression patterns across different tissues and demonstrate significant variations in response to abiotic stress and phytohormone treatments, particularly the CaG6PDH1 and CaG6PDH2 genes. Subcellular localization studies indicate that CaG6PDH2 is located in chloroplasts. We conducted further investigations into the role of CaG6PDH2 in response to cold stress using Virus-Induced Gene Silencing (VIGS) technology. The tissues of seedlings with silenced CaG6PDH2 exhibited significant damage and displayed a more pronounced cold damage phenotype. This observation is further supported by the accumulation of reactive oxygen species (ROS), the activity of antioxidant enzymes, and a reduction in the expression of cold-responsive genes. In conclusion, the findings of this study indicate that CaG6PDH2 plays an important role in cold stress response and may serve as a potential gene for cultivating cold-tolerant pepper varieties. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

21 pages, 5095 KiB  
Article
Molecular Adaptations and Quality Enhancements in a Hybrid (Erythroculter ilishaeformis ♀ × Ancherythroculter nigrocauda ♂) Cultured in Saline–Alkali Water
by Lang Zhang, Qiuying Qin, Qing Li, Yali Yu, Ziwei Song, Li He, Yanhong Sun, Liting Ye, Guiying Wang and Jing Xu
Biology 2025, 14(6), 718; https://doi.org/10.3390/biology14060718 - 18 Jun 2025
Viewed by 562
Abstract
Declining freshwater resources have spurred interest in saline–alkali (SA) water aquaculture, with species like tilapia and rainbow trout demonstrating ecological plasticity in such environments. However, the molecular mechanisms underlying fish adaptation and quality impacts remain unclear. This study investigated the hybrid fish “Xianfeng [...] Read more.
Declining freshwater resources have spurred interest in saline–alkali (SA) water aquaculture, with species like tilapia and rainbow trout demonstrating ecological plasticity in such environments. However, the molecular mechanisms underlying fish adaptation and quality impacts remain unclear. This study investigated the hybrid fish “Xianfeng No. 1” (Erythroculter ilishaeformis × Ancherythroculter nigrocauda), a key aquaculture species in China, under 60-day SA exposure. The results showed increased levels of oxidative stress markers (MDA) and antioxidant enzymes (SOD, CAT, GSH-Px), alongside improved quality traits. Transcriptomics revealed differentially expressed genes (DEGs) in muscle tissue associated with oxidative stress (UQCRFS1, UQCR10, CYC1), ion transport (COX5A, COX7C, COX7B), and the immune response (ATG9A, ATG2B, ATG2A, ULK1, ULK2, CFI, CFH). Metabolomics identified increased non-volatile flavors (e.g., glycine, proline) and collagen-related compounds. Integrated analysis highlighted the upregulation of GSR and GGT, and the downregulation of CHDH and GBSA, potentially driving glycine accumulation. These findings suggest that SA stress enhances antioxidant capacity, activates immune pathways, and modulates ion transport, enabling adaptation while improving meat quality. This study elucidates molecular mechanisms of fish acclimation to SA environments, providing insights for sustainable aquaculture development and breeding of stress-tolerant species in SA regions. Full article
(This article belongs to the Special Issue Nutrition, Environment, and Fish Physiology)
Show Figures

Graphical abstract

21 pages, 6501 KiB  
Article
Bioinformatics-Driven Identification of Ferroptosis-Related Gene Signatures Distinguishing Active and Latent Tuberculosis
by Rakesh Arya, Hemlata Shakya, Viplov Kumar Biswas, Gyanendra Kumar, Sumendra Yogarayan, Harish Kumar Shakya and Jong-Joo Kim
Genes 2025, 16(6), 716; https://doi.org/10.3390/genes16060716 - 18 Jun 2025
Viewed by 631
Abstract
Background: Tuberculosis (TB) remains a major global public health challenge, and diagnosing it can be difficult due to issues such as distinguishing active TB from latent TB infection (LTBI), as well as the sample collection process, which is often time-consuming and lacks sensitivity [...] Read more.
Background: Tuberculosis (TB) remains a major global public health challenge, and diagnosing it can be difficult due to issues such as distinguishing active TB from latent TB infection (LTBI), as well as the sample collection process, which is often time-consuming and lacks sensitivity and specificity. Ferroptosis is emerging as an important factor in TB pathogenesis; however, its underlying molecular mechanisms are not fully understood. Thus, there is a critical need to establish ferroptosis-related diagnostic biomarkers for tuberculosis (TB). Methods: This study aimed to identify and validate potential ferroptosis-related genes in TB infection while enhancing clinical diagnostic accuracy through bioinformatics-driven gene identification. The microarray expression profile dataset GSE28623 from the Gene Expression Omnibus (GEO) database was used to identify ferroptosis-related differentially expressed genes (FR-DEGs) associated with TB. Subsequently, these genes were used for immune cell infiltration, Gene Set Enrichment Analysis (GSEA), functional enrichment and correlation analyses. Hub genes were identified using Weighted Gene Co-expression Network Analysis (WGCNA) and validated in independent datasets GSE37250, GSE39940, GSE19437, and GSE31348. Results: A total of 21 FR-DEGs were identified. Among them, four hub genes (ACSL1, PARP9, TLR4, and ATG3) were identified as diagnostic biomarkers. These biomarkers were enriched in immune-response related pathways and were validated. Immune cell infiltration, GSEA, functional enrichment and correlation analyses revealed that multiple immune cell types could be activated by FR-DEGs. Throughout anti-TB therapy, the expression of the four hub gene signatures significantly decreased in patients cured of TB. Conclusions: In conclusion, ferroptosis plays a key role in TB pathogenesis. These four hub gene signatures are linked with TB treatment effectiveness and show promise as biomarkers for differentiating TB from LTBI. Full article
(This article belongs to the Special Issue Advances in Bioinformatics of Human Diseases)
Show Figures

Figure 1

23 pages, 5297 KiB  
Article
Integrated Multi-Omics Analysis Reveals the Mechanisms of Intestinal Cell Injury Under Different Levels of Heat Stress
by Yuchao Feng, Decheng Suo, Ping Gong, Peiling Wei, Lu Zhang, Shu Zhang, Xiaonan Li, Changyuan Wang and Xia Fan
Int. J. Mol. Sci. 2025, 26(12), 5798; https://doi.org/10.3390/ijms26125798 - 17 Jun 2025
Viewed by 409
Abstract
Given the escalating global temperatures and the consequent exacerbation of heat stress, dietary interventions have emerged as a promising therapeutic strategy. The gastrointestinal tract, being exquisitely sensitive to thermal challenges, revealing the underlying mechanisms of intestinal cell injury under high temperature, is essential [...] Read more.
Given the escalating global temperatures and the consequent exacerbation of heat stress, dietary interventions have emerged as a promising therapeutic strategy. The gastrointestinal tract, being exquisitely sensitive to thermal challenges, revealing the underlying mechanisms of intestinal cell injury under high temperature, is essential for developing strategies to prevent heat stress. Here, we integrated metabolomic and transcriptomic analyses to investigate the metabolic and genetic changes in murine intestinal cells in response to different levels of heat stress. The results identified the PI3k-Akt-FoxO pathway as the major heat stress regulatory pathway Kin MODE-K cells. The possible regulatory mechanism is to reduce the expression of the FoxO gene through the downstream phosphorylation of PI3K under the stimulation of growth factors such as INS, IGF1 and TGF-β. Then, through acetylation modification, it regulates the expression of the Gadd45 gene, promotes the expression of p19 and BNIP3 genes, and inhibits the expression of the ATG8 gene, thus inducing apoptosis to remove cells that cannot be repaired. It also promotes cyclinB, PLK, and Bcl-6 gene expression in cells surrounding apoptotic cells to inhibit apoptosis. It promotes the expression of RAG1/2 to enhance cellular immunity and regulates the G6pc gene to maintain the homeostasis of glycogen metabolism and glucose under heat stress. Our findings provide a basis for the regulation of intestinal cell damage due to heat stress through dietary interventions. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop