Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (204)

Search Parameters:
Keywords = ANSYS CFX

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3462 KB  
Article
Multiphysics Simulation for Efficient and Reliable Systems for Low-Temperature Plasma Treatment of Metals
by Nina Yankova Penkova, Boncho Edward Varhoshkov, Valery Todorov, Hristo Antchev, Kalin Krumov and Vesselin Iliev
Materials 2026, 19(2), 382; https://doi.org/10.3390/ma19020382 - 17 Jan 2026
Viewed by 158
Abstract
Plasma nitriding is an advanced method to increase the hardness and wear resistance of different metal parts with complex shapes and geometries. The modelling is an appropriate approach for better understanding and improving such technologies based on multi-physical processes. Mathematical models of the [...] Read more.
Plasma nitriding is an advanced method to increase the hardness and wear resistance of different metal parts with complex shapes and geometries. The modelling is an appropriate approach for better understanding and improving such technologies based on multi-physical processes. Mathematical models of the coupled electromagnetic, fluid flow, and thermal processes in vacuum chambers for the low-temperature plasma treatment of metal parts have been developed. They were solved numerically via ANSYS/CFX software for a discretized solid and gas space of a plasma nitriding chamber. The specific electrical conductivity of the gas mixture, containing plasma, has been calibrated on the basis of an electrical model of the chamber and in situ measurements. The three-dimensional fields of pressure, temperature, velocity, turbulent characteristics, electric current density, and voltage in the chamber have been simulated and analysed. Methods for further development and application of the models and for technological and constructive enhancement of the plasma treatment technologies are discussed. Full article
(This article belongs to the Special Issue Advances in Plasma Treatment of Materials)
Show Figures

Figure 1

8 pages, 4189 KB  
Proceeding Paper
Aerodynamic Analysis of Small-Scale Turbines with Complex 3D Blade Shape
by Anastas Yangyozov, Aleksandrina Bankova, Stefan Tenev and Asparuh Atanasov
Eng. Proc. 2026, 122(1), 14; https://doi.org/10.3390/engproc2026122014 - 16 Jan 2026
Abstract
The paper presents a comprehensive aerodynamic analysis of toroidal blade turbines, proposing them as a novel approach to enhance efficiency in the conversion of airflow kinetic energy. The unique toroidal blade geometry allows for reduced vortex-induced losses and improved aerodynamic performance relative to [...] Read more.
The paper presents a comprehensive aerodynamic analysis of toroidal blade turbines, proposing them as a novel approach to enhance efficiency in the conversion of airflow kinetic energy. The unique toroidal blade geometry allows for reduced vortex-induced losses and improved aerodynamic performance relative to conventional blade configuration. The study encompasses crucial performance parameters, including the airflow velocity at the outlet of the aerodynamic channel, rotational speed of the turbine model, electrical current and voltage output, the electrical power produced by the generator, and the power coefficient. Explored are strategies for optimizing structure design to minimize losses and maximize the power coefficient. The findings reveal that toroidal blade designs can significantly increase the effectiveness of low-power turbines, establishing them as a promising alternative for renewable energy applications in both urban and rural environments. Full article
Show Figures

Figure 1

17 pages, 3747 KB  
Article
Design and Testing of the Residual Film Impurity Separation Device for the Recovery Machine of Plastic Film in the Tillage Layer
by Zechen Xu, Yihao Yin, Aiping Shi and Zhi Zhou
Coatings 2026, 16(1), 70; https://doi.org/10.3390/coatings16010070 - 7 Jan 2026
Viewed by 191
Abstract
Due to the continuous improvement in the usage area and retention quality of plastic films in China, the serious residue film pollution faced by China has become a major threat to crop production. To address the aforementioned issues and in accordance with the [...] Read more.
Due to the continuous improvement in the usage area and retention quality of plastic films in China, the serious residue film pollution faced by China has become a major threat to crop production. To address the aforementioned issues and in accordance with the actual demand for residue film recovery machines in the Xinjiang region of China, a residual film impurity separation device suitable for the recovery machine of crop residue films has been designed. The overall structure and working principle of the machine were elaborated. Numerical simulations of the through-flow fan device of the residual film recovery machine were carried out using the ANSYS 2022 (CFX) finite element analysis platform, and the corresponding wind speed range of the fan at rotational speeds of 1000–1400 r/min was obtained. Based on the simulation results, the Depth of Machine Insertion into the Ground, Fan Wind Speed, and Forward Speed of the Machinery were selected as experimental factors, while the residual film recovery rate was taken as the evaluation index. A response surface experiment was conducted, and the optimization analysis was performed using Design-Expert software. The final experimental validation results indicated that when the Depth of Machine Insertion into the Ground was 32 mm, the Forward Speed of the Machinery was 5.29 km/h, and the Fan Wind Speed was 13.67 m/s, the machine could effectively overcome the influence of complex field operating conditions. This parameter combination was identified as the optimal operating condition of the machine, providing a valuable reference for the design and optimization of related agricultural machinery. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

32 pages, 13923 KB  
Article
Design of a Hermetic Centrifugal Pump Impeller Using RSM and Evolutionary Algorithms with Application of SLS Technology
by Viorel Bostan, Andrei Petco, Dmitrii Croitor, Nadejda Proca and Vadim Zubac
Processes 2026, 14(1), 152; https://doi.org/10.3390/pr14010152 - 1 Jan 2026
Viewed by 429
Abstract
This study presents the development and validation of a comprehensive numerical optimisation methodology used to improve the energy efficiency of a pump with normal characteristics: volume flow rate, Q nom = 6.3 m3/h, and head, H = 20 mH2O. [...] Read more.
This study presents the development and validation of a comprehensive numerical optimisation methodology used to improve the energy efficiency of a pump with normal characteristics: volume flow rate, Q nom = 6.3 m3/h, and head, H = 20 mH2O. The methodology was implemented in ANSYS Workbench using ANSYS CFX and optiSLang. The optimisation process is based on data from 853 RANS (SST) calculations on a sample generated by the LHC method, varying the parameters of the blades and flow path. Response surfaces (RSM) were constructed using anisotropic and classical kriging, which were optimised using an Evolutionary Algorithm (EA). The optimised geometry was verified numerically by URANS SST and experimentally. For physical validation, the wheel was manufactured using SLS technology from PA-12 Industrial powder, a strength assessment FSI was performed, and the geometry was checked by 3D scanning. 3D scanning showed a high manufacturing accuracy (deviations of 0.1–0.3 mm). The result is a geometry that increases efficiency while maintaining head, which has been confirmed by experimental validation. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

18 pages, 2913 KB  
Article
The Effects of Operational Condition Changes in a Metal Hydride Hydrogen Storage Tank on Operational Continuity as a Means of Transport
by Milan Fiľo, Tomáš Brestovič, Marián Lázár and Natália Jasminská
Processes 2025, 13(12), 3861; https://doi.org/10.3390/pr13123861 - 29 Nov 2025
Viewed by 478
Abstract
In transport applications, metal hydride tanks represent a promising solution for safe and effective hydrogen storage. In this paper, we examine the effects of operational conditions on hydrogen supply continuity from MNTZV-159 tanks into the fuel cell of a hydrogen-powered vehicle. Numerical and [...] Read more.
In transport applications, metal hydride tanks represent a promising solution for safe and effective hydrogen storage. In this paper, we examine the effects of operational conditions on hydrogen supply continuity from MNTZV-159 tanks into the fuel cell of a hydrogen-powered vehicle. Numerical and analytical calculations are based on thermal field measurements, pressure and the hydrogen flow rate during absorption and desorption. Heat transport and tank thermal field homogeneity were identified in an ANSYS CFX environment, and the results were validated using an analytical model created based on thermal balances. The key outcome of this paper is the identification of the tank time constant—483 s—found in the tested conditions, something which is important in designing control strategies for technical transport systems. The results indicate that an appropriate combination of experimental measurements, numerical simulations and analytical calculations facilitates identifying a tank’s dynamic characteristics, as well as operation optimisation. These findings help in achieving the more reliable and efficient use of MNTZV-159 metal hydride tanks in hydrogen-powered vehicles and facilitating their integration into systems that strive for sustainable mobility and renewable energy use. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

31 pages, 5344 KB  
Article
Ground Effect Influence on UAV Propeller Thrust: Experimental and CFD Validation
by Mădălin Dombrovschi, Gabriel-Petre Badea, Tiberius-Florian Frigioescu, Maria Căldărar and Daniel-Eugeniu Crunțeanu
Technologies 2025, 13(12), 542; https://doi.org/10.3390/technologies13120542 - 21 Nov 2025
Viewed by 909
Abstract
This work investigates the influence of ground effect on the performance of a UAV propeller through a combined experimental, analytical, and numerical approach. A dedicated test bench was designed and constructed to enable controlled measurements of thrust and power under static conditions. During [...] Read more.
This work investigates the influence of ground effect on the performance of a UAV propeller through a combined experimental, analytical, and numerical approach. A dedicated test bench was designed and constructed to enable controlled measurements of thrust and power under static conditions. During experimental campaigns, it was observed that the measured thrust significantly exceeded theoretical free-air predictions, suggesting the presence of a ground-like amplification effect. To quantify and validate this phenomenon, complementary methods were employed: blade element momentum-based analytical modeling corrected for ground proximity and high-fidelity CFD simulations performed using ANSYS CFX. Three configurations were analyzed numerically—an isolated propeller, a propeller with a motor, and a propeller–motor–mounting plate configuration—highlighting the progressive impact of structural elements on the flow field. The results showed close agreement between corrected analytical predictions, CFD solutions, and experimental data, with deviations below 8%. The presence of the mounting plate induced pressure redistribution and jet reflection, analogous to the helicopter ground effect, leading to thrust amplification of up to 30% relative to free-air conditions. This study confirms the critical role of the experimental setup and mounting configuration in propeller characterization and establishes a validated methodology for capturing ground effect phenomena relevant to UAV propulsion systems. Full article
(This article belongs to the Special Issue Aviation Science and Technology Applications)
Show Figures

Graphical abstract

21 pages, 5705 KB  
Article
Research on Internal Flow and Runner Force Characteristics of Francis Turbine
by Jianwen Xu, Peirong Chen, Yanhao Li, Xuelin Yang and An Yu
Water 2025, 17(20), 3004; https://doi.org/10.3390/w17203004 - 19 Oct 2025
Viewed by 601
Abstract
Francis turbines are widely used due to their large capacity and broad head adaptability, placing higher demands on the internal flow characteristics and runner performance of the units. In this paper, numerical simulations of a Francis turbine model were conducted using ANSYS CFX [...] Read more.
Francis turbines are widely used due to their large capacity and broad head adaptability, placing higher demands on the internal flow characteristics and runner performance of the units. In this paper, numerical simulations of a Francis turbine model were conducted using ANSYS CFX 2022 R1. The SST turbulence model, ZGB cavitation model, and VOF multiphase flow model were selected for the calculations. The internal flow characteristics and pressure pulsations in the runner and draft tube under different operating conditions were analyzed, and the variations in normal and tangential forces acting on the runner blades during operation were investigated. The results indicate significant differences in the internal flow within the runner and draft tube under various guide vane opening conditions. The pressure pulsation in the unit is influenced by both the internal flow in the draft tube and the rotation of the runner. The mechanical load on the runner blades is affected by multiple factors, including the wake from upstream fixed guide vanes, rotor–stator interaction, and downstream vortex ropes. Under low-flow conditions, the variation in forces acting on the runner blades is relatively small, whereas under high-flow conditions, the runner blades are prone to abrupt force fluctuations at 0.6–0.8 times the rotational frequency. This is manifested as periodic abrupt force changes in both the X and Y directions of the runner blades under high-flow conditions. The normal force in the Z-direction of the runner blades increases instantaneously and then decreases immediately, while the tangential force decreases instantaneously and then increases promptly. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

12 pages, 2546 KB  
Proceeding Paper
Computational Analysis of Flow Field Variation with Grooved Probes in Transonic Axial Compressor
by Umair Munir and Asad Islam
Eng. Proc. 2025, 111(1), 10; https://doi.org/10.3390/engproc2025111010 - 16 Oct 2025
Viewed by 347
Abstract
This study aims to enhance total pressure probe performance in transonic axial compressors using passive flow control via circular grooves. Simulations in ANSYS CFX were performed on six probe configurations, one smooth baseline and five with groove depths of 0.1 to 0.5 mm, [...] Read more.
This study aims to enhance total pressure probe performance in transonic axial compressors using passive flow control via circular grooves. Simulations in ANSYS CFX were performed on six probe configurations, one smooth baseline and five with groove depths of 0.1 to 0.5 mm, across Mach numbers 0.3 to 0.86. The 0.1 mm grooved probe showed optimal results, reducing the drag coefficient from 15.23 to 14.33 and the lift from 0.0169 to 0.0042. A spanwise analysis from the hub to tip (55–95%) confirmed improved flow uniformity, while a streamwise analysis (zones 0–2) showed steadier downstream pressure and reduced wake-induced distortion. The 0.1 mm groove also minimized the shock strength and flow separation near blade tips. Results confirm that micro-grooving at 0.1 mm significantly stabilizes measurements and enhances aerodynamic efficiency, offering a practical optimization strategy for high-speed compressor applications. Full article
Show Figures

Figure 1

23 pages, 6268 KB  
Article
Investigation of Sediment Erosion of the Top Cover in the Francis Turbine Guide Vanes at the Genda Power Station
by Xudong Lu, Kang Xu, Tianlin Li, Yu Xiao, Kailiang Hu, Yaogang Xu and Xiaobing Liu
J. Mar. Sci. Eng. 2025, 13(10), 1923; https://doi.org/10.3390/jmse13101923 - 7 Oct 2025
Cited by 1 | Viewed by 622
Abstract
This study utilizes the Standard k-ε turbulence model and ANSYS CFX software to tackle silt erosion in the top cover clearances of guide vane of the Francis turbine at Genda Power Station (Minjiang River Basin section, 103°17′ E and 31°06′ N) [...] Read more.
This study utilizes the Standard k-ε turbulence model and ANSYS CFX software to tackle silt erosion in the top cover clearances of guide vane of the Francis turbine at Genda Power Station (Minjiang River Basin section, 103°17′ E and 31°06′ N) under sediment-laden flow conditions. A numerical simulation of a solid–liquid two-phase flow along the whole flow route was performed under rated operating circumstances to examine the impact of varying guide vane end clearance heights (0.3 mm, 0.5 mm, and 1.0 mm) on internal flow patterns and sediment erosion characteristics. The simulation parameters employed an average sediment concentration of 2.9 kg/m3 and a median particle size of 0.058 mm, indicative of the flood season. The findings demonstrate that augmenting the clearance height intensifies leaky flow and secondary flow, resulting in a 0.49% reduction in efficiency. As the gap expanded from 0.3 mm to 1.0 mm, the leakage flow velocity notably increased to 40 m/s, exacerbating flow separation, enlarging the vortex structures in the vaneless space, and augmenting the sediment velocity gradient and concentration, consequently heightening the risk of erosion. An experimental setup was devised based on the numerical results, and the dynamic resemblance between the constructed test section and the prototype turbine was confirmed for flow velocity, concentration, and Reynolds number. Tests on sediment erosion revealed that the erosion resistance of the anti-sediment erosion material 04Cr13Ni5Mo markedly exceeded that of the base cast steel, especially in high-velocity areas. This study delivers a systematic, quantitative analysis of clearance effects on flow and erosion, along with an experimental wear model specifically for the Gengda Power Station, thereby providing direct theoretical support and engineering guidance for its wear protection strategy and maintenance planning. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 2881 KB  
Article
Numerical and Experimental Analyses of Flue Gas Emissions, from Biomass Pellet Combustion in a Domestic Boiler
by Nevena Mileva, Penka Zlateva, Martin Ivanov, Kalin Krumov, Angel Terziev and Adriana Comarla
Eng 2025, 6(10), 257; https://doi.org/10.3390/eng6100257 - 2 Oct 2025
Cited by 1 | Viewed by 1209
Abstract
This study explores the combustion behavior of three biomass pellet types—wood (W), sunflower husk (SH), and a mixture of wood and sunflower husks (W/SH)—in a residential hot water boiler. Experiments were carried out under two air supply regimes (40%/60% and 60%/40% primary to [...] Read more.
This study explores the combustion behavior of three biomass pellet types—wood (W), sunflower husk (SH), and a mixture of wood and sunflower husks (W/SH)—in a residential hot water boiler. Experiments were carried out under two air supply regimes (40%/60% and 60%/40% primary to secondary air) to measure flue gas concentrations of oxygen (O2), carbon monoxide (CO), and nitrogen oxides (NOx). The results indicate that SH pellets generate the highest emissions (CO: 1095.3 mg/m3, NOx: 679.3 mg/m3), while W pellets achieve the lowest (CO: 0.3 mg/m3, NOx: 194.1 mg/m3). The mixed W/SH pellets produce intermediate values (CO: 148.7 mg/m3, NOx: 201.8 mg/m3). Overall boiler efficiency for all tested fuels ranged from 90.3% to 91.4%. Numerical simulations using ANSYS CFX (2024 R2 (24.2)) were performed to analyze temperature distribution, flue gas composition, and flow fields, showing good agreement with experimental outlet temperature and emission trends. These findings emphasize that both pellet composition and air distribution significantly influence efficiency and emissions, offering guidance for optimizing small-scale biomass boiler operation. Full article
Show Figures

Figure 1

37 pages, 28692 KB  
Article
Application of Cooling Layer and Thin Thickness Between Coolant and Cavity for Mold Temperature Control and Improving Filling Ability of Thin-Wall Injection Molding Product
by Tran Minh The Uyen, Pham Son Minh and Bui Chan Thanh
Polymers 2025, 17(19), 2658; https://doi.org/10.3390/polym17192658 - 30 Sep 2025
Cited by 2 | Viewed by 1031
Abstract
Effective thermal management of molds is a governing factor of the quality and stability of the injection molding process. This study introduces and validates an integrated cooling layer within a thin-walled insert mold designed to enhance thermal control and cavity filling performance. A [...] Read more.
Effective thermal management of molds is a governing factor of the quality and stability of the injection molding process. This study introduces and validates an integrated cooling layer within a thin-walled insert mold designed to enhance thermal control and cavity filling performance. A coupled heat transfer simulation model was developed and subsequently calibrated against experimental temperature measurements. To isolate the mold’s intrinsic thermal response, temperatures were measured during distinct heating and cooling cycles, free from the perturbations of polymer melt flow. The validated mold was then installed on a Haitian MA1200 III injection molding machine to conduct molding trials under various injection pressures. A strong correlation was found between the simulation and experimental results, particularly as pressure increased, which significantly improved cavity filling and reduced the deviation between the two methods. The integrated cooling layer was shown to enhance heat dissipation, minimize thermal gradients, and promote a more uniform thermal field. This, in turn, improved filling stability, especially at moderate injection pressures. These findings provide robust quantitative data for simulation model calibration and mold design optimization, highlighting the potential of advanced cooling strategies to significantly enhance injection molding performance. Full article
(This article belongs to the Special Issue Advances in Polymer Processing Technologies: Injection Molding)
Show Figures

Figure 1

18 pages, 9599 KB  
Article
Design and Development of Crossflow Turbine for Off-Grid Electrification
by Asfafaw H. Tesfay, Sirak A. Weldemariam and Kalekiristos G. Gebrelibanos
Energies 2025, 18(19), 5108; https://doi.org/10.3390/en18195108 - 25 Sep 2025
Cited by 1 | Viewed by 942
Abstract
Investing in large-scale hydropower is on the rise in Ethiopia in accordance with the country’s climate-resilient green economy strategy. Rural electrification is a top priority on the development agenda of the country, with very limited off-grid interventions. Although small-scale hydropower can bring various [...] Read more.
Investing in large-scale hydropower is on the rise in Ethiopia in accordance with the country’s climate-resilient green economy strategy. Rural electrification is a top priority on the development agenda of the country, with very limited off-grid interventions. Although small-scale hydropower can bring various social and economic benefits compared to other off-grid solutions, it is hardly localized in the country. The motivation for this research is to break this technological bottleneck by synergizing and strengthening the local capacity. Accordingly, this paper presents the full-scale crossflow turbine design and development process of a power plant constructed to give electricity access to about 450 households in a rural village called Amentila. Based on a site survey and the resource potential, the power plant was designed for a 125 kW peak at 0.3 m3/s of discharge with a 53 m head. The crossflow was selected based on the head, discharge, and simplicity of development with the available local capacities. The detailed design of the turbine and its auxiliary components was developed and simulated using SolidWorks and CFD ANSYS CFX. The power plant has a run-of-river design, targeting provision of power during peak hours. This study demonstrates an off-grid engineering solution with applied research on the water–energy–food–environment nexus. Full article
(This article belongs to the Special Issue Optimization Design and Simulation Analysis of Hydraulic Turbine)
Show Figures

Figure 1

27 pages, 6213 KB  
Article
Mathematical Modelling and Numerical Analysis of Turbulence Models (In a Two-Stage Laboratory Turbine)
by Vesna Antoska Knights, Tatjana Atanasova-Pacemska and Jasenka Gajdoš Kljusurić
Algorithms 2025, 18(9), 578; https://doi.org/10.3390/a18090578 - 13 Sep 2025
Viewed by 891
Abstract
This paper presents a mathematical modeling and numerical analysis of fluid-thermal processes in a two-stage steam turbine cascade, focusing on the application and comparative assessment of turbulence models in computational fluid dynamics (CFD) simulations. Using the finite volume method implemented in the ANSYS [...] Read more.
This paper presents a mathematical modeling and numerical analysis of fluid-thermal processes in a two-stage steam turbine cascade, focusing on the application and comparative assessment of turbulence models in computational fluid dynamics (CFD) simulations. Using the finite volume method implemented in the ANSYS CFX-Task Flow (ANSYS CFX 2022 R2) workflow, the study investigates the performance of standard k-ε, k-ω, and SST turbulence models in predicting flow structures, pressure fields, and velocity distributions within the turbine flow passages. The governing equations, including the Reynolds-Averaged Navier–Stokes (RANS) equations and associated energy and constitutive relations, are solved in conservative form under compressible flow conditions. Experimental data from turbine tests performed at the Institute of Fluid Machinery at Lodz University of Technology are used for validation. Results demonstrate that turbulence modeling significantly influences the accuracy of predicted flow phenomena. The study identifies strengths and limitations of the models in capturing complex three-dimensional flow structures and provides quantitative error margins and practical guidance for their application in industrial turbine flow simulations. Full article
Show Figures

Figure 1

25 pages, 8226 KB  
Article
Investigation of the Influence of Gyroid Lattice Dimensions on Cooling
by Anton Pulin, Ivan Talabira, Denis Konin, Kirill Alisov, Mikhail Kanakin, Mikhail Laptev, Evgenii Komlev, Viktor Barskov, Anatoliy Popovich and Kirill Starikov
Energies 2025, 18(17), 4552; https://doi.org/10.3390/en18174552 - 27 Aug 2025
Viewed by 1226
Abstract
This study investigates the influence of geometric parameters of a gyroid lattice structure on the thermal performance of internal cooling channels relevant to gas turbine blade design. Various gyroid configurations were analyzed using CFD simulations in ANSYS CFX to evaluate heat transfer effectiveness [...] Read more.
This study investigates the influence of geometric parameters of a gyroid lattice structure on the thermal performance of internal cooling channels relevant to gas turbine blade design. Various gyroid configurations were analyzed using CFD simulations in ANSYS CFX to evaluate heat transfer effectiveness (Nusselt number), cooling flow penetration depth (cooling depth coefficient), and aerodynamic losses (pressure drop and drag coefficient). A series of simulations were conducted, varying lattice wall thickness, structure period, and Reynolds number, followed by the development of regression models to identify key trends. Experimental verification was carried out using 3D printed samples tested on a specially assembled aerodynamic test rig. Results confirmed the existence of an optimal lattice density, providing a favorable balance between heat transfer and pressure losses. The study highlights the high potential of gyroid TPMS structures for turbine blade cooling systems, where additive manufacturing enables complex internal geometries unattainable by traditional methods. The research demonstrates the practical feasibility and thermo-hydraulic advantages of lattice-based cooling channels and provides accurate predictive models for further optimization of turbine blade designs under high-temperature turbomachinery conditions. Full article
Show Figures

Figure 1

11 pages, 2784 KB  
Proceeding Paper
Simulation of a Two-Phase Fluid Flow in a Design Solution of a Secondary Radial Settling Tank for Wastewater Treatment
by Aleksandrina Bankova, Anastas Yangyozov, Stefan Tenev and Asparuh Atanasov
Eng. Proc. 2025, 104(1), 21; https://doi.org/10.3390/engproc2025104021 - 25 Aug 2025
Cited by 3 | Viewed by 1906
Abstract
This report examined a design solution for a wastewater treatment facility in which—based on input data such as the amount of suspension at the inlet—the solid content in the suspension and sludge, the relative weight of the particles, the sedimentation rate, the diameter [...] Read more.
This report examined a design solution for a wastewater treatment facility in which—based on input data such as the amount of suspension at the inlet—the solid content in the suspension and sludge, the relative weight of the particles, the sedimentation rate, the diameter and height of the radial settler were determined. After determining the parameters, the design solution was created in the SolidWorks 2024 environment. In the design process, the shape of the fastening device was modified, which is of significant importance in the design of the facility, as it affects in a specific way the concentration of suspended substances in the thickened sludge and in the recirculated sludge flow. The design was transferred into the ANSYS CFX 2017 software for subsequent simulation of its purification function. Based on techniques in fluid mechanics, the boundary and end conditions for the analysis of the fluid flow were set. The study focused on the analysis of a CFD model to describe the movement of a two-phase fluid consisting of rainwater and sand with a particle size of 1–10 mm. Based on the analysis, the results of the influence of rotating elements on the movement of the solid phase and water in the fluid domain were reported. Full article
Show Figures

Figure 1

Back to TopTop