Computational Analysis of Flow Field Variation with Grooved Probes in Transonic Axial Compressor †
Abstract
1. Introduction
2. Problem Formulation
3. Computational Setup and Boundary Conditions
4. Mathematical Modeling
5. Numerical Solution Procedure
6. Validation
7. Results
8. Stall Margin
9. Stable Operating Range
10. Forces
At Rotor
11. Conclusions
- The 0.1 mm grooved probe consistently delivered the best aerodynamic performance, with lower Mach numbers, early boundary layer reattachment, and improved flow stability across all regions.
- The simple (ungrooved) probe exhibited high Mach numbers, delayed reattachment, strong vortex shedding, and poor shock control, leading to significant total pressure losses.
- The 0.5 mm groove introduced excessive turbulence, resulting in flow instability, poor pressure recovery, and impaired reattachment in both spanwise and streamwise directions.
- Circumferentially, the 0.1 mm groove achieved the highest pressure recovery between 10° and 50°, indicating an efficient velocity-to-pressure conversion, while the simple probe had the lowest.
- In the spanwise direction, the 0.1 mm probe delayed the stall near blade tips (55–95%), whereas the 0.5 mm groove increased the risk of shock and reverse flow.
- Overall, deeper grooves (0.375 mm and 0.5 mm) degraded performance, while the 0.1 mm groove proved to be the most efficient design for minimizing losses and enhancing compressor stability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cameron, J.; Gendrich, C.; Morris, S.; Corke, T. A Transonic Axial Compressor Facility for Fundamental Research and Flow Control Development. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006. [Google Scholar]
- Islam, A.; Ma, H. Numerical study of probe parameters on performance of a transonic axial compressor. PLoS ONE 2021, 16, e0245711. [Google Scholar] [CrossRef]
- Xia, K.; Feng, J.; Zhu, M.; Deng, H.; Qiang, X.; Teng, J. Numerical Research on Near Stall Characteristics of a Transonic Axial Compressor Based on Wavelet Analysis. In Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, Rotterdam, The Netherlands, 13–17 June 2022. [Google Scholar]
- Sitaram, N.; Lakshminarayana, B.; Ravindranath, A. Conventional Probes for the Relative Flow Measurement in a Turbomachinery Rotor Blade Passage. J. Eng. Power 1981, 103, 406–414. [Google Scholar] [CrossRef]
- Mojaddam, M.; Hajilouy-Benisi, A. Experimental and numerical flow field investigation through two types of radial flow compressor volutes. Exp. Therm. Fluid Sci. 2016, 78, 137–146. [Google Scholar] [CrossRef]
- Hongwei, M.; Asad, I. Influence of probe measuring positions on aerodynamics of a transonic axial flow compressor. In Proceedings of the Global Power and Propulsion Society, Beijing, China, 16–18 September 2019; pp. 16–18. [Google Scholar]
- Herrick, G.; Hathaway, M.; Chen, J.-P. Unsteady Full Annulus Simulations of a Transonic Axial Compressor Stage. In Proceedings of the 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009. [Google Scholar]
- Ma, H.; Li, S.; Wei, W. Effects of probe support on the flow field of a low-speed axial compressor. J. Therm. Sci. 2014, 23, 120–126. [Google Scholar] [CrossRef]
- Ma, H.; Li, S.; Wei, W. Effects of probe support on the stall characteristics of a low-speed axial compressor. J. Therm. Sci. 2016, 25, 43–49. [Google Scholar] [CrossRef]
- Ozkara, M.; Ercetin, U.; Doner, N.; Sen, F. Numerical Investigations of Stall Development in a Transonic Axial Compressor Stage. BioNanoScience 2019, 9, 461–473. [Google Scholar] [CrossRef]
- Ye, S.; Zhao, Q.; Cui, W.; Xi, G.; Xu, J. An improved model for tip clearance loss in transonic axial compressors. Proc. Inst. Mech. Eng. Part A J. Power Energy 2017, 232, 295–314. [Google Scholar] [CrossRef]
- Xiang, H.; Hongwei, M.; Minglin, R.; Xiang, H. Investigation of the Effects of Airfoil-probes on the Aerodynamic Performance of an Axial Compressor. Chin. J. Aeronaut. 2012, 25, 517–523. [Google Scholar] [CrossRef]
- Kim, J.-H.; Choi, K.-J.; Kim, K.-Y. Performance evaluation of a transonic axial compressor with circumferential casing grooves. Proc. Inst. Mech. Eng. Part A J. Power Energy 2011, 226, 218–230. [Google Scholar] [CrossRef]
- Aschenbruck, J.; Hauptmann, T.; Seume, J. Influence of a multi-hole pressure probe on the flow field in axial-turbines. In Proceedings of the 11th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics, 2015: EUROPEAN TURBOMACHINERY SOCIETY, Madrid, Spain, 23–27 March 2015. [Google Scholar]
- Islam, A.; Ma, H. Numerical Investigation of Probe-Support Intrusion Effects on Transonic Axial Compressor Performance. In Proceedings of the 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 14–18 January 2020; pp. 459–466. [Google Scholar]
- Kumar, S.S.; Alone, D.B.; Thimmaiah, S.M.; Mudipalli, J.R.R.; Ganguli, R.; Kandagal, S.B.; Jana, S. Experimental Investigation of Unsteady Flow in a Transonic Uni-Stage Axial Compressor. In Proceedings of the ASME 2014 Gas Turbine India Conference, New Delhi, India, 15–17 December 2014. [Google Scholar]
- Naseri, A.; Boroomand, M.; Sammak, S. Numerical investigation of effect of inlet swirl and total-pressure distortion on performance and stability of an axial transonic compressor. J. Therm. Sci. 2016, 25, 501–510. [Google Scholar] [CrossRef]
- Grant, T.M. Mass Flow Measurement in the Inlet of a Transonic Axial Compressor. Master’s Thesis, Naval Postgraduate School, Monterey, CA, USA, 2021. [Google Scholar]
- Witkowski, A.; Majkut, M. Experimental investigation of inlet guide vane-rotor interaction in a low speed axial flow compressor stage. Arch. Mech. Eng. 2006, 53, 23–48. [Google Scholar]
- Niehuis, R.; Lesser, A.; Probst, A.; Radespiel, R.; Schulze, S.; Kähler, C.J.; Spiering, F.; Kroll, N. Simulation of Nacelle Stall and Engine Response. In Proceedings of the XXI International Symposium on Air Breathing Engines (ISABE 2013), Busan, Republic of Korea, 9–13 September 2013; pp. 1–12. [Google Scholar]
- Lee, S.; Lee, D.-H.; Kim, K.-H.; Park, T.C.; Lim, B.J.; Kang, Y.-S. Multi-disciplinary design optimization and performance evaluation of a single stage transonic axial compressor. J. Mech. Sci. Technol. 2013, 27, 3309–3318. [Google Scholar] [CrossRef]
- Cui, B.; Wang, X.; Wang, R.; Xiao, Z. Numerical investigation of transonic axial compressor rotor flows using an improved transition-sensitized turbulence model. Phys. Fluids 2021, 33, 035149. [Google Scholar] [CrossRef]
- Kelly, R.; Hickman, A.R.; Shi, K.; Morris, S.C.; Jemcov, A. Very Large Eddy Simulation of a Transonic Axial Compressor Stage. In Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, USA, 25–27 July 2016. [Google Scholar]
- Li, Q.; Pan, T.; Li, Z.; Sun, T.; Gong, Y. Experimental Study of Compressor Instability Inception in a Transonic Axial Flow Compressor. In Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf, Germany, 16–20 June 2014. [Google Scholar]
- Li, Q.; Pan, T.; Sun, T.; Li, Z.; Gong, Y. Experimental investigations on instability evolution in a transonic compressor at different rotor speeds. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2015, 229, 3378–3391. [Google Scholar] [CrossRef]
- Ahmad, N.; Bin, J.; Qun, Z.; Ahmad, S.A.; Fawzy, H. Performance Enhancement of a Transonic Axial Flow Compressor with Circumferential Casing Grooves to Improve the Stall Margin. J. Appl. Fluid Mech. 2020, 13, 221–232. [Google Scholar] [CrossRef]
- Ahmad, N.; Zheng, Q.; Fawzy, H.; Jiang, B.; Ahmed, S.A. Performance improvement of axial compressor by introduction of circumferential grooves. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 46, 7500–7520. [Google Scholar] [CrossRef]
- Ahmad, N.; Zheng, Q.; Fawzy, H.; Lin, A.; Jiang, B. CFD Investigation of an Axial Compressor with Casing Treatment for the Enhancement of the Stall Margin. Sci. Iran. 2021, 28, 3156–3167. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
Sr. No. | Mesh Size | Lift Coefficient | Drag Coefficient |
---|---|---|---|
1 | 0.2 million | 1.79 × 103 | 0.10948 |
2 | 0.5 million | 0.02179 | 0.13686 |
3 | 1 million | 0.035902 | 0.15098 |
4 | 1.5 million | 0.041789 | 0.161001 |
5 | 2 million | 0.0424 | 0.16225 |
Sr No. | Design Parameters | Value |
---|---|---|
1 | Design mass flowrate (kg/s) | 20.19 |
2 | Rotational speed (r/min) | 17,188.9 |
3 | Total pressure ratio | 2.016 |
4 | Inlet hub–tip ratio | 0.7 |
5 | Blade aspect ratio | 1.19 |
6 | Tip relative inlet Mach number | 1.48 |
7 | Hub relative inlet Mach number | 1.13 |
8 | Tip solidity | 1.29 |
9 | Number of rotor blades | 36 |
Sr No. | Probe Characteristics | Lift Coefficient Cl | Drag Coefficient Cd |
---|---|---|---|
1 | Simple Probe | 0.0169 | 0.154036 |
2 | Probe with Groove Depth of 0.1 mm | 0.00424065 | 0.13278 |
3 | Probe with Groove Depth of 0.17 mm | 0.0207507 | 0.17431 |
4 | Probe with Groove Depth of 0.25 mm | 0.0388891 | 0.18603 |
5 | Probe with Groove Depth of 0.375 mm | 0.0320908 | 0.20410 |
6 | Probe with Groove Depth of 0.5 mm | 0.14581 | 0.293690 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munir, U.; Islam, A. Computational Analysis of Flow Field Variation with Grooved Probes in Transonic Axial Compressor. Eng. Proc. 2025, 111, 10. https://doi.org/10.3390/engproc2025111010
Munir U, Islam A. Computational Analysis of Flow Field Variation with Grooved Probes in Transonic Axial Compressor. Engineering Proceedings. 2025; 111(1):10. https://doi.org/10.3390/engproc2025111010
Chicago/Turabian StyleMunir, Umair, and Asad Islam. 2025. "Computational Analysis of Flow Field Variation with Grooved Probes in Transonic Axial Compressor" Engineering Proceedings 111, no. 1: 10. https://doi.org/10.3390/engproc2025111010
APA StyleMunir, U., & Islam, A. (2025). Computational Analysis of Flow Field Variation with Grooved Probes in Transonic Axial Compressor. Engineering Proceedings, 111(1), 10. https://doi.org/10.3390/engproc2025111010