Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,812)

Search Parameters:
Keywords = ABI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 288 KiB  
Article
Emotional Status in Relation to Metacognitive Self-Awareness and Level of Functional Disability Following Acquired Brain Injury
by Valentina Bandiera, Dolores Villalobos, Alberto Costa, Gaia Galluzzi, Alessia Quinzi, Arianna D’Aprile and Umberto Bivona
Brain Sci. 2025, 15(8), 841; https://doi.org/10.3390/brainsci15080841 - 6 Aug 2025
Abstract
Background/Objectives: Impairment in self-awareness (ISA) is one of the common consequences of an acquired brain injury (ABI) and is associated with anosodiaphoria. Collectively, these co-occurring neuropsychological disorders pose significant obstacles in the neurorehabilitation of moderate-to-severe ABI patients. Individuals who recover from ISA [...] Read more.
Background/Objectives: Impairment in self-awareness (ISA) is one of the common consequences of an acquired brain injury (ABI) and is associated with anosodiaphoria. Collectively, these co-occurring neuropsychological disorders pose significant obstacles in the neurorehabilitation of moderate-to-severe ABI patients. Individuals who recover from ISA may present with anxiety and/or depression as adaptive reactions to the ABI, along with related functional disabilities. The present study investigated whether the level of metacognitive self-awareness (SA) is associated with the presence of anxiety and depression, apathy, or anosodiaphoria in patients with moderate-to-severe ABI. It aimed also at investigating the possible relationship between the severity of disability and both psycho-emotional diseases and the presence of PTSD symptoms in patients with high metacognitive SA. Methods: Sixty patients with moderate-to-severe ABI and different levels of metacognitive SA completed a series of questionnaires, which assessed their self-reported metacognitive SA, anosodiaphoria, anxiety and depression, apathy, and PTSD symptoms. Results: Low-metacognitive-SA patients showed lower levels of anxiety and depression and higher anosodiaphoria than high-metacognitive-SA patients. Patients with high metacognitive SA and high levels of disability showed significant higher states of anxiety and PTSD symptoms than patients with high metacognitive SA and low levels of disability. Conclusions: The neurorehabilitation of individuals with moderate to severe ABI should address, in particular, the complex interaction between ISA and anxiety and depression in patients during the rehabilitation process. Full article
(This article belongs to the Special Issue Anosognosia and the Determinants of Self-Awareness)
17 pages, 2801 KiB  
Article
The Influence of Substrate Preparation on the Performance of Two Alkyd Coatings After 7 Years of Exposure in Outdoor Conditions
by Emanuela Carmen Beldean, Maria Cristina Timar and Emilia-Adela Salca Manea
Coatings 2025, 15(8), 918; https://doi.org/10.3390/coatings15080918 - 6 Aug 2025
Abstract
Alkyd resins are among the most common coatings used for exterior wood joinery. In Romania, solvent-borne alkyd coatings are widely used to finish wood. The study aims to compare the performance after 7 years of outdoor exposure of two types of alkyd coatings, [...] Read more.
Alkyd resins are among the most common coatings used for exterior wood joinery. In Romania, solvent-borne alkyd coatings are widely used to finish wood. The study aims to compare the performance after 7 years of outdoor exposure of two types of alkyd coatings, a semi-transparent brown stain with micronized pigments (Alk1) and an opaque white enamel (Alk2), applied directly on wood or wood pre-treated with three types of resins: acryl-polyurethane (R1), epoxy (R2), and alkyd-polyurethane (R3). Fir (Abies alba) wood served as the substrate. Cracking, coating adhesion, and biological degradation were periodically assessed through visual inspection and microscopy. Additionally, a cross-cut test was performed, and the loss of coating on the directly exposed upper faces was measured using ImageJ. The results indicated that resin pretreatments somewhat reduced cracking but negatively affected coating adhesion after long-term exposure. All samples pretreated with resins and coated with Alk1 lost more than 50% (up to 78%) of the original finishing film by the end of the test. In comparison, coated control samples lost less than 50%. The Alk2 coating exhibited a film loss between 2% and 12%, compared to an average loss of 9% for the coated control. Overall, samples pretreated with alkyd-polyurethane resin (R3) and coated with alkyd enamel (Alk2) demonstrated the best performance in terms of cracking, adhesion, and discoloration. Full article
(This article belongs to the Collection Wood: Modifications, Coatings, Surfaces, and Interfaces)
Show Figures

Figure 1

18 pages, 616 KiB  
Article
Noninvasive Assessment of Arterial Wall and Soluble ST2 in Patients with Type 2 Diabetes and Coronary Artery Disease
by Edyta Radzik, Marcin Schulz, Brygida Przywara-Chowaniec and Andrzej Tomasik
Int. J. Mol. Sci. 2025, 26(15), 7561; https://doi.org/10.3390/ijms26157561 - 5 Aug 2025
Abstract
Diabetes-related pathophysiological processes contribute to endothelial dysfunction, arterial stiffening (AS), hypertension, vascular remodeling, and impaired myocardial perfusion. This study aimed to assess the relationship between arterial wall parameters and sST2 concentration as potential risk factors in type 2 diabetes (T2DM) and investigate sex-related [...] Read more.
Diabetes-related pathophysiological processes contribute to endothelial dysfunction, arterial stiffening (AS), hypertension, vascular remodeling, and impaired myocardial perfusion. This study aimed to assess the relationship between arterial wall parameters and sST2 concentration as potential risk factors in type 2 diabetes (T2DM) and investigate sex-related differences. To achieve this, we enrolled 100 patients with suspected or exacerbated coronary artery disease (CAD) and divided them into a T2DM group (n = 58) and a control group (n = 42). Endothelial reactivity (lnRHI), ABI, sST2 levels, and carotid–femoral (cfPWV) and carotid–radial pulse wave velocity (crPWV) were assessed. Coronary angiography was performed in every patient, and epicardial flow and myocardial perfusion were evaluated using QuBE and FLASH. Our results showed that the coronary angiographic findings were similar in both groups. However, T2DM patients had a significantly higher central AS (cfPWV 10.8 ± 2 vs. 9.9 ± 2.7 m/s, p < 0.05) and vascular age (70.0 ± 12.3 vs. 61.3 ± 15.4 years, p < 0.05), while peripheral AS, RHI, and ABI showed no differences. CfPWV correlated with renal function; higher HbA1c and sST2 levels were additionally associated with advanced vascular age. Notably, central AS and vascular age were higher in men with T2DM but not in women. These findings indicate that T2DM patients exhibit increased central AS and vascular aging, influenced by sST2 levels, suggesting fibrosis as a target for precision medicine in T2DM. Full article
Show Figures

Figure 1

13 pages, 322 KiB  
Article
Clinical Perspectives on Cochlear Implantation in Pediatric Patients with Cochlear Nerve Aplasia or Hypoplasia
by Ava Raynor, Sara Perez, Megan Worthington and Valeriy Shafiro
Audiol. Res. 2025, 15(4), 96; https://doi.org/10.3390/audiolres15040096 - 5 Aug 2025
Viewed by 17
Abstract
Background: Cochlear implantation (CI) in pediatric patients with cochlear nerve deficiencies (CND) remains controversial due to a highly variable clinical population, lack of evidence-based guidelines, and mixed research findings. This study assessed current clinical perspectives and practices regarding CI candidacy in children [...] Read more.
Background: Cochlear implantation (CI) in pediatric patients with cochlear nerve deficiencies (CND) remains controversial due to a highly variable clinical population, lack of evidence-based guidelines, and mixed research findings. This study assessed current clinical perspectives and practices regarding CI candidacy in children with CND among hearing healthcare professionals in the USA. Methods: An anonymous 19-question online survey was distributed to CI clinicians nationwide. The survey assessed professional background, experience with aplasia and hypoplasia, and perspectives on CI versus auditory brainstem implant (ABI) candidacy, including imaging practices and outcome expectations. Both multiple-choice and open-ended responses were analyzed to identify trends and reasoning. Results: Seventy-two responses were analyzed. Most clinicians supported CI for hypoplasia (60.2%) and, to a lesser extent, for aplasia (41.7%), with audiologists more likely than neurotologists to favor CI. Respondents cited lower risk, accessibility, and the potential for benefit as reasons to attempt CI before ABI. However, many emphasized a case-by-case approach, incorporating imaging, electrophysiological testing, and family counseling. Only 22.2% considered structural factors the best predictors of CI success. Conclusions: Overall, hearing health professionals in the USA tend to favor CI as a first-line option, while acknowledging the limitations of current diagnostic tools and the importance of individualized, multidisciplinary decision-making in CI candidacy for children with CND. Findings reveal a high variability in clinical perspectives on CI implantation for pediatric aplasia and hypoplasia and a lack of clinical consensus, highlighting the need for more standardized assessment and imaging protocols to provide greater consistency across centers and enable the development of evidence-based guidelines. Full article
(This article belongs to the Section Hearing)
Show Figures

Figure 1

25 pages, 7432 KiB  
Article
Integration of mRNA and miRNA Analysis Reveals the Regulation of Salt Stress Response in Rapeseed (Brassica napus L.)
by Yaqian Liu, Danni Li, Yutong Qiao, Niannian Fan, Ruolin Gong, Hua Zhong, Yunfei Zhang, Linfen Lei, Jihong Hu and Jungang Dong
Plants 2025, 14(15), 2418; https://doi.org/10.3390/plants14152418 - 4 Aug 2025
Viewed by 154
Abstract
Soil salinization is a major constraint to global crop productivity, highlighting the need to identify salt tolerance genes and their molecular mechanisms. Here, we integrated mRNA and miRNA profile analyses to investigate the molecular basis of salt tolerance of an elite Brassica napus [...] Read more.
Soil salinization is a major constraint to global crop productivity, highlighting the need to identify salt tolerance genes and their molecular mechanisms. Here, we integrated mRNA and miRNA profile analyses to investigate the molecular basis of salt tolerance of an elite Brassica napus cultivar S268. Time-course RNA-seq analysis revealed dynamic transcriptional reprogramming under 215 mM NaCl stress, with 212 core genes significantly enriched in organic acid degradation and glyoxylate/dicarboxylate metabolism pathways. Combined with weighted gene co-expression network analysis (WGCNA) and RT-qPCR validation, five candidate genes (WRKY6, WRKY70, NHX1, AVP1, and NAC072) were identified as the regulators of salt tolerance in rapeseed. Haplotype analysis based on association mapping showed that NAC072, ABI5, and NHX1 exhibited two major haplotypes that were significantly associated with salt tolerance variation under salt stress in rapeseed. Integrated miRNA-mRNA analysis and RT-qPCR identified three regulatory miRNA-mRNA pairs (bna-miR160a/BnaA03.BAG1, novel-miR-126/BnaA08.TPS9, and novel-miR-70/BnaA07.AHA1) that might be involved in S268 salt tolerance. These results provide novel insights into the post-transcriptional regulation of salt tolerance in B. napus, offering potential targets for genetic improvement. Full article
(This article belongs to the Special Issue Applications of Bioinformatics in Plant Science)
Show Figures

Figure 1

14 pages, 2651 KiB  
Article
Conifer Growth Patterns in Primary Succession Locations at Mount St. Helens
by Alicia Rose, Cody Blackketter, Marisa D. Fisher, Carri J. LeRoy and Dylan G. Fischer
Forests 2025, 16(8), 1245; https://doi.org/10.3390/f16081245 - 30 Jul 2025
Viewed by 276
Abstract
The 1980 eruption of Mount St. Helens (WA, USA) presented a unique opportunity to observe primary succession in a post-eruption landscape previously dominated by conifer forests. The eruption scoured soil and biological communities adjacent to the mountain, and species of conifers have generally [...] Read more.
The 1980 eruption of Mount St. Helens (WA, USA) presented a unique opportunity to observe primary succession in a post-eruption landscape previously dominated by conifer forests. The eruption scoured soil and biological communities adjacent to the mountain, and species of conifers have generally been slow to colonize the nutrient-poor substrate surrounding the volcano. Further, different species of conifer establish and grow at different rates. The recent advancement of conifers in the post-eruption landscape has highlighted a research gap related to conifer growth patterns. We measured the height, age, and incremental growth of 472 trees representing three common conifers, Pseudotsuga menziesii, Abies procera, and Pinus contorta, on debris avalanche (80 sites) and pyroclastic flow (82 sites) disturbance zones of the 1980 eruption. We paired annual incremental growth with recent climate data. We found that height, age, and growth rates differ among species and sites. All species had higher growth rates on the debris avalanche deposit compared to the pyroclastic flow due to either climate or substrate. Climate influences were mixed, where one species increased growth with temperature, another declined, and another was unrelated. Nevertheless, more than 40 years after the eruption, we find rapid height growth in species with implications for future forests. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 4148 KiB  
Article
Efficacy of Portable Fugitive Aerosol Mitigation Systems for Nebulizer Therapy During High-Flow Nasal Cannula and Non-Invasive Ventilation
by Adithya Shyamala Pandian, Bhavesh Patel, Karam Abi Karam, Amelia Lowell, Kelly McKay, Sabrina Jimena Mora, Piyush Hota, Gabriel Pyznar, Sandra Batchelor, Charles Peworski, David Rivas, Devang Sanghavi, Ngan Anh Nguyen, Aliaa Eltantawy, Xueqi Li, Xiaojun Xian, Michael Serhan and Erica Forzani
Emerg. Care Med. 2025, 2(3), 36; https://doi.org/10.3390/ecm2030036 - 29 Jul 2025
Viewed by 345
Abstract
Objectives: This study evaluates the efficacy of existing and new aerosol mitigation methods during nebulization (Neb) in combination with high-flow nasal cannula (HFNC) oxygen supplementation and non-invasive ventilation (NIV). Methods: We recorded fugitive aerosol particle concentrations over time and assessed the peak (P) [...] Read more.
Objectives: This study evaluates the efficacy of existing and new aerosol mitigation methods during nebulization (Neb) in combination with high-flow nasal cannula (HFNC) oxygen supplementation and non-invasive ventilation (NIV). Methods: We recorded fugitive aerosol particle concentrations over time and assessed the peak (P) and area (A) efficacy of active and passive mitigation methods, comparing them to a no-mitigation condition. Peak efficacy was measured by the reduction in maximum aerosol concentration, while area efficacy was quantified by the reduction of the area under the aerosol concentration–time curve. Results: For HFNC with Neb, we found that active mitigation using a mask with a biofilter and a fan (referred to as the aerosol barrier mask) significantly outperformed passive mitigation with a face mask. The peak and area efficacy for aerosol reduction were 99.0% and 96.4% for active mitigation and 35.9% and 7.6% for passive mitigation, respectively. For NIV with Neb, the active mitigation method, using a box with a biofilter and fan, also outperformed passive mitigation using only the box. The peak and area efficacy for aerosol reduction were 92.1% and 85.5% for active mitigation and 53.7.0% and 25.4% for passive mitigation, respectively. Conclusion: We concluded that active mitigation set up systems advantageous for effective reduction of airborne aerosols during aerosol generated procedures. Full article
Show Figures

Graphical abstract

18 pages, 3095 KiB  
Article
Investigating Seed Germination, Seedling Growth, and Enzymatic Activity in Onion (Allium cepa) Under the Influence of Plasma-Treated Water
by Sabnaj Khanam, Young June Hong, Eun Ha Choi and Ihn Han
Int. J. Mol. Sci. 2025, 26(15), 7256; https://doi.org/10.3390/ijms26157256 - 27 Jul 2025
Viewed by 352
Abstract
Seed germination and early seedling growth are pivotal stages that define crop establishment and yield potential. Conventional agrochemicals used to improve these processes often raise environmental concerns, highlighting the need for sustainable alternatives. In this study, we demonstrated that water treated with cylindrical [...] Read more.
Seed germination and early seedling growth are pivotal stages that define crop establishment and yield potential. Conventional agrochemicals used to improve these processes often raise environmental concerns, highlighting the need for sustainable alternatives. In this study, we demonstrated that water treated with cylindrical dielectric barrier discharge (c-DBD) plasma, enriched with nitric oxide (NO) and reactive nitrogen species (RNS), markedly enhanced onion (Allium cepa) seed germination and seedling vigor. The plasma-treated water (PTW) promoted rapid imbibition, broke dormancy, and accelerated germination rates beyond 98%. Seedlings irrigated with PTW exhibited significantly increased biomass, root and shoot length, chlorophyll content, and antioxidant enzyme activities, accompanied by reduced lipid peroxidation. Transcriptomic profiling revealed that PTW orchestrated a multifaceted regulatory network by upregulating gibberellin biosynthesis genes (GA3OX1/2), suppressing abscisic acid signaling components (ABI5), and activating phenylpropanoid metabolic pathways (PAL, 4CL) and antioxidant defense genes (RBOH1, SOD). These molecular changes coincided with elevated NO2 and NO3 levels and finely tuned hydrogen peroxide dynamics, underpinning redox signaling crucial for seed activation and stress resilience. Our findings establish plasma-generated NO-enriched water as an innovative, eco-friendly technology that leverages redox and hormone crosstalk to stimulate germination and early growth, offering promising applications in sustainable agriculture. Full article
(This article belongs to the Special Issue Plasma-Based Technologies for Food Safety and Health Enhancement)
Show Figures

Figure 1

26 pages, 673 KiB  
Article
Mathematical Modeling and Structural Equation Analysis of Acceptance Behavior Intention to AI Medical Diagnosis Systems
by Kai-Chao Yao and Sumei Chiang
Mathematics 2025, 13(15), 2390; https://doi.org/10.3390/math13152390 - 25 Jul 2025
Viewed by 322
Abstract
This study builds on Davis’ TAM by integrating environmental and psychological variables relevant to AI medical diagnostics. This study developed a mathematical theoretical model called the “AI medical diagnosis-acceptance evaluation model” (AMD-AEM) to better understand acceptance behavior intention. Using mathematical modeling, we established [...] Read more.
This study builds on Davis’ TAM by integrating environmental and psychological variables relevant to AI medical diagnostics. This study developed a mathematical theoretical model called the “AI medical diagnosis-acceptance evaluation model” (AMD-AEM) to better understand acceptance behavior intention. Using mathematical modeling, we established reflective measurement model indicators and structural equation relationships, where linear structural equations illustrate the interactions among latent variables. In 2025, we collected empirical data from 2380 patients and medical staff who have experience with AI diagnostic systems in teaching hospitals in central Taiwan. Smart PLS 3 was employed to validate the AMD-AEM model. The results reveal that perceived usefulness (PU) and information quality (IQ) are the primary predictors of acceptance behavior intention (ABI). Additionally, perceived ease of use (PE) indirectly influences ABI through PU and attitude toward use (ATU). AI emotional perception (AEP) notably shows a significant positive relationship with ATU, highlighting that warm and positive human–AI interactions are crucial for user acceptance. IQ was identified as a mediating variable, with variance accounted for (VAF) coefficient analysis confirming its complete mediation effect on the path from ATU to ABI. This indicates that information quality enhances user attitudes and directly increases acceptance behavior intention. The AMD-AEM model demonstrates an excellent fit, providing valuable insights for academia and the healthcare industry. Full article
(This article belongs to the Special Issue Statistical Analysis: Theory, Methods and Applications)
Show Figures

Figure 1

21 pages, 3207 KiB  
Article
Drivers of Forest Dieback and Growth Decline in Mountain Abies fabri Forests (Gongga Mountain, SW China)
by Obey Kudakwashe Zveushe, Elena Granda, Jesús Julio Camarero, Faqin Dong, Ying Han and Víctor Resco de Dios
Forests 2025, 16(8), 1222; https://doi.org/10.3390/f16081222 - 24 Jul 2025
Viewed by 252
Abstract
Mountains are global biodiversity hotspots but face the danger of habitat loss, especially at lower elevations due to climate-warming-induced forest dieback. In the Gongga Mountains (SW China), Abies fabri trees at 2800 m show increased mortality, yet the causes remain unclear. We assessed [...] Read more.
Mountains are global biodiversity hotspots but face the danger of habitat loss, especially at lower elevations due to climate-warming-induced forest dieback. In the Gongga Mountains (SW China), Abies fabri trees at 2800 m show increased mortality, yet the causes remain unclear. We assessed climatic influences and bark beetle infestations on tree vigor and radial growth, comparing healthy and declining trees at 2800, 3000, and 3600 m elevations. Leaf nitrogen and phosphorus concentrations were measured to evaluate nutrient status. From 1950 to 2019, mean annual temperatures rose at all elevations, while precipitation decreased at low elevations, negatively correlating with temperature. Such warmer, drier conditions impaired low-elevation trees. The decline in A. fabri growth began in the late 1990s to early 2000s, with an earlier and more pronounced onset at lower elevations. A clear lag is evident, as trees at 3000 m and 3600 m showed either delayed or minimal decline during the same period. High-elevation trees experienced more stable climate and better nutrient availability, supporting greater growth and leaf nitrogen in healthy trees. Bark beetle infestations were worst in declining trees at the highest elevation. Our results reveal that A. fabri vigor shifts along elevation gradients reflect interactions between abiotic and biotic stressors, especially aridification. Full article
(This article belongs to the Special Issue Ecological Responses of Forests to Climate Change)
Show Figures

Figure 1

17 pages, 1976 KiB  
Article
Soil Hydrological Properties and Organic Matter Content in Douglas-Fir and Spruce Stands: Implications for Forest Resilience to Climate Change
by Anna Klamerus-Iwan, Piotr Behan, Ewa Słowik-Opoka, María Isabel Delgado-Moreira and Lizardo Reyna-Bowen
Forests 2025, 16(8), 1217; https://doi.org/10.3390/f16081217 - 24 Jul 2025
Viewed by 311
Abstract
Climate change has intensified over recent decades, prompting shifts in forest management strategies, particularly in the Sudetes region of Poland, where native species like Norway spruce (Picea abies), European beech (Fagus sylvatica), and silver fir (Abies alba) [...] Read more.
Climate change has intensified over recent decades, prompting shifts in forest management strategies, particularly in the Sudetes region of Poland, where native species like Norway spruce (Picea abies), European beech (Fagus sylvatica), and silver fir (Abies alba) have historically dominated. To address these changes, non-native species such as Douglas fir (Pseudotsuga menziesii) have been introduced as potential alternatives. This study, conducted in the Jugów and Świerki forest districts, compared the soil properties and water retention capacities of Douglas fir (Dg) and Norway spruce (Sw) stands (age classes from 8–127 years) in the Fresh Mountain Mixed Forest Site habitat. Field measurements included temperature, humidity, organic matter content, water capacity, and granulometric composition. Results indicate that, in comparison to Sw stands, Dg stands were consistently linked to soils that were naturally finer textured. The observed hydrological changes were mostly supported by these textural differences: In all investigated circumstances, Dg soils demonstrated greater water retention, displaying a water capacity that was around 5% higher. In addition to texture, Dg stands showed reduced soil water repellency and a substantially greater organic matter content (59.74% compared to 27.91% in Sw), which further enhanced soil structure and moisture retention. Conversely, with increasing climatic stress, Sw soils, with coarser textures and less organic matter, showed decreased water retention. The study highlights the importance of species selection in sustainable forest management, especially under climate change. Future research should explore long-term ecological impacts, including effects on microbial communities, nutrient cycling, and biodiversity, to optimize forest resilience and sustainability. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

18 pages, 21045 KiB  
Article
Genome-Wide Characterization of the ABI3 Gene Family in Cotton
by Guoyong Fu, Yanlong Yang, Tahir Mahmood, Xinxin Liu, Zongming Xie, Zengqiang Zhao, Yongmei Dong, Yousheng Tian, Jehanzeb Farooq, Iram Sharif and Youzhong Li
Genes 2025, 16(8), 854; https://doi.org/10.3390/genes16080854 - 23 Jul 2025
Viewed by 253
Abstract
Background: The B3-domain transcription factor ABI3 (ABSCISIC ACID INSENSITIVE 3) is a critical regulator of seed maturation, stress adaptation, and hormonal signaling in plants. However, its evolutionary dynamics and functional roles in cotton (Gossypium spp.) remain poorly characterized. Methods: We conducted [...] Read more.
Background: The B3-domain transcription factor ABI3 (ABSCISIC ACID INSENSITIVE 3) is a critical regulator of seed maturation, stress adaptation, and hormonal signaling in plants. However, its evolutionary dynamics and functional roles in cotton (Gossypium spp.) remain poorly characterized. Methods: We conducted a comprehensive genome-wide investigation of the ABI3 gene family across 26 plant species, with a focus on 8 Gossypium species. Analyses included phylogenetics, chromosomal localization, synteny assessment, gene duplication patterns, protein domain characterization, promoter cis-regulatory element identification, and tissue-specific/spatiotemporal expression profiling under different organizations of Gossypium hirsutum. Results: Phylogenetic and chromosomal analyses revealed conserved ABI3 evolutionary patterns between monocots and dicots, alongside lineage-specific expansion events within Gossypium spp. Syntenic relationships and duplication analysis in G. hirsutum (upland cotton) indicated retention of ancestral synteny blocks and functional diversification driven predominantly by segmental duplication. Structural characterization confirmed the presence of conserved B3 domains in all G. hirsutum ABI3 homologs. Promoter analysis identified key stress-responsive cis-elements, including ABA-responsive (ABRE), drought-responsive (MYB), and low-temperature-responsive (LTRE) motifs, suggesting a role in abiotic stress regulation. Expression profiling demonstrated significant tissue-specific transcriptional activity across roots, stems, leaves, and fiber developmental stages. Conclusions: This study addresses a significant knowledge gap by elucidating the evolution, structure, and stress-responsive expression profiles of the ABI3 gene family in cotton. It establishes a foundational framework for future functional validation and targeted genetic engineering strategies aimed at developing stress-resilient cotton cultivars with enhanced fiber quality. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

32 pages, 6622 KiB  
Article
Health Monitoring of Abies nebrodensis Combining UAV Remote Sensing Data, Climatological and Weather Observations, and Phytosanitary Inspections
by Lorenzo Arcidiaco, Manuela Corongiu, Gianni Della Rocca, Sara Barberini, Giovanni Emiliani, Rosario Schicchi, Peppuccio Bonomo, David Pellegrini and Roberto Danti
Forests 2025, 16(7), 1200; https://doi.org/10.3390/f16071200 - 21 Jul 2025
Viewed by 312
Abstract
Abies nebrodensis L. is a critically endangered conifer endemic to Sicily (Italy). Its residual population is confined to the Madonie mountain range under challenging climatological conditions. Despite the good adaptation shown by the relict population to the environmental conditions occurring in its habitat, [...] Read more.
Abies nebrodensis L. is a critically endangered conifer endemic to Sicily (Italy). Its residual population is confined to the Madonie mountain range under challenging climatological conditions. Despite the good adaptation shown by the relict population to the environmental conditions occurring in its habitat, Abies nebrodensis is subject to a series of threats, including climate change. Effective conservation strategies require reliable and versatile methods for monitoring its health status. Combining high-resolution remote sensing data with reanalysis of climatological datasets, this study aimed to identify correlations between vegetation indices (NDVI, GreenDVI, and EVI) and key climatological variables (temperature and precipitation) using advanced machine learning techniques. High-resolution RGB (Red, Green, Blue) and IrRG (infrared, Red, Green) maps were used to delineate tree crowns and extract statistics related to the selected vegetation indices. The results of phytosanitary inspections and multispectral analyses showed that the microclimatic conditions at the site level influence both the impact of crown disorders and tree physiology in terms of water content and photosynthetic activity. Hence, the correlation between the phytosanitary inspection results and vegetation indices suggests that multispectral techniques with drones can provide reliable indications of the health status of Abies nebrodensis trees. The findings of this study provide significant insights into the influence of environmental stress on Abies nebrodensis and offer a basis for developing new monitoring procedures that could assist in managing conservation measures. Full article
Show Figures

Figure 1

22 pages, 4848 KiB  
Article
Characterization and Mapping of Conservation Hotspots for the Climate-Vulnerable Conifers Abies nephrolepis and Picea jezoensis in Northeast Asia
by Seung-Jae Lee, Dong-Bin Shin, Jun-Gi Byeon, Sang-Hyun Lee, Dong-Hyoung Lee, Sang Hoon Che, Kwan Ho Bae and Seung-Hwan Oh
Forests 2025, 16(7), 1183; https://doi.org/10.3390/f16071183 - 18 Jul 2025
Viewed by 351
Abstract
Abies nephrolepis and Picea jezoensis are native Pinaceae trees distributed in high mountainous regions of Northeast Asia (typically above ~1000 m a.s.l. on the Korean peninsula, northeastern China, Sakhalin, and the Russian Far East) and southern boreal forests, vulnerable to climate change and [...] Read more.
Abies nephrolepis and Picea jezoensis are native Pinaceae trees distributed in high mountainous regions of Northeast Asia (typically above ~1000 m a.s.l. on the Korean peninsula, northeastern China, Sakhalin, and the Russian Far East) and southern boreal forests, vulnerable to climate change and human disturbances, necessitating accurate habitat identification for effective conservation. While protected areas (PAs) are essential, merely expanding existing ones often fail to protect populations under human pressure and climate change. Using species distribution models with current and projected climate data, we mapped potential habitats across Northeast Asia. Spatial clustering analyses integrated with PA and land cover data helped identify optimal sites and priorities for new conservation areas. Ensemble species distribution models indicated extensive suitable habitats, especially in southern Sikhote-Alin, influenced by maritime-continental climates. Specific climate variables strongly affected habitat suitability for both species. The Kamchatka peninsula consistently emerged as an optimal habitat under future climate scenarios. Our study highlights essential environmental characteristics shaping the habitats of these species, reinforcing the importance of strategically enhancing existing PAs, and establishing new ones. These insights inform proactive conservation strategies for current and future challenges, by focusing on climate refugia and future habitat stability. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

12 pages, 932 KiB  
Article
Determining Large Trees and Population Structures of Typical Tree Species in Northeast China
by Yutong Yang, Zhiyuan Jia, Shusen Ge, Yutang Li, Dongwei Kang and Junqing Li
Diversity 2025, 17(7), 491; https://doi.org/10.3390/d17070491 - 18 Jul 2025
Viewed by 218
Abstract
Specialized research on large trees in Northeast China is rare. To strengthen the understanding of local large trees, a survey of 4055 tree individuals from 75 plots in southeastern Jilin Province was conducted. The individual number and species composition of large trees in [...] Read more.
Specialized research on large trees in Northeast China is rare. To strengthen the understanding of local large trees, a survey of 4055 tree individuals from 75 plots in southeastern Jilin Province was conducted. The individual number and species composition of large trees in the community, as well as large individual standards in diameter at breast height (DBH) and population structures of typical tree species, were analyzed. By setting a DBH ≥ 50 cm as the threshold, 155 individuals across all the recorded trees were determined as large trees in the community, and 32.9% (51/155) of them were national second-class protected plant species in China. By setting the top 5% in DBH of a certain tree species as the threshold of large individuals of that tree species, the large individual criteria of six typical tree species were determined. The proportion of basal area of large trees to all trees was 30.4%, and the mean proportion of basal area of large individuals across the six typical tree species was 23.9% (±4.0%). As for the population characteristics, Abies nephrolepis and Picea jezoensis had large population sizes but relatively thin individuals, Tilia amurensis and Pinus koraiensis had small population sizes but relatively thick individuals, while Betula costata and Larix olgensis had medium population sizes and medium-sized individuals. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

Back to TopTop