Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (284)

Search Parameters:
Keywords = 904L austenitic stainless steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4156 KiB  
Article
Experimental and Numerical Analyses of Diameter Reduction via Laser Turning with Respect to Laser Parameters
by Emin O. Bastekeli, Haci A. Tasdemir, Adil Yucel and Buse Ortac Bastekeli
J. Manuf. Mater. Process. 2025, 9(8), 258; https://doi.org/10.3390/jmmp9080258 - 1 Aug 2025
Viewed by 124
Abstract
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber [...] Read more.
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber laser (λ = 1064 nm, spot size = 0.05 mm) was used, and Ø1.6 mm × 20 mm cylindrical rods were processed under ambient conditions without auxiliary cooling. The experimental framework systematically evaluated the influence of scanning speed, pulse frequency, and the number of laser passes on dimensional accuracy and material removal efficiency. The results indicate that a maximum diameter reduction of 0.271 mm was achieved at a scanning speed of 3200 mm/s and 50 kHz, whereas 0.195 mm was attained at 6400 mm/s and 200 kHz. A robust second-order polynomial correlation (R2 = 0.99) was established between diameter reduction and the number of passes, revealing the high predictability of the process. Crucially, when the scanning speed was doubled, the effective fluence was halved, considerably influencing the ablation characteristics. Despite the low fluence, evidence of material evaporation at elevated frequencies due to the incubation effect underscores the complex photothermal dynamics governing the process. This work constitutes the first comprehensive quantification of pass-dependent diameter modulation in DLBT and introduces a transformative, noncontact micromachining strategy for hard-to-machine alloys. The demonstrated precision, repeatability, and thermal control position DLBT as a promising candidate for next-generation manufacturing of high-performance miniaturized components. Full article
Show Figures

Figure 1

7 pages, 10330 KiB  
Proceeding Paper
Evaluation of the Corrosion Behavior of Low-Temperature Nitrided AISI 316L Austenitic Stainless Steel
by Francesca Borgioli
Eng. Proc. 2025, 105(1), 1; https://doi.org/10.3390/engproc2025105001 - 1 Aug 2025
Viewed by 75
Abstract
Nitriding of austenitic stainless steels at low temperatures hinders the precipitation of chromium nitrides and causes the formation of a supersaturated solid solution of nitrogen atoms in the austenite lattice, known as expanded austenite. In this study, the corrosion behavior of low-temperature nitrided [...] Read more.
Nitriding of austenitic stainless steels at low temperatures hinders the precipitation of chromium nitrides and causes the formation of a supersaturated solid solution of nitrogen atoms in the austenite lattice, known as expanded austenite. In this study, the corrosion behavior of low-temperature nitrided AISI 316L is investigated in a NaCl solution using different electrochemical techniques, electrochemical impedance spectroscopy, cyclic potentiodynamic polarization and galvanostatic tests, in order to assess the effect of test conditions. The nitrided layer has an enhanced resistance to localized corrosion, but its ability to repassivate depends on the damage extent caused by the different tests. Full article
Show Figures

Figure 1

36 pages, 17913 KiB  
Article
Manufacturing, Microstructure, and Mechanics of 316L SS Biomaterials by Laser Powder Bed Fusion
by Zhizhou Zhang, Paul Mativenga and Shi-Qing Huang
J. Funct. Biomater. 2025, 16(8), 280; https://doi.org/10.3390/jfb16080280 - 31 Jul 2025
Viewed by 223
Abstract
Laser powder bed fusion (LPBF) is an advanced additive manufacturing technology that is gaining increasing interest for biomedical implants because it can produce dense, patient-specific metallic components with controlled microstructures. This study investigated the LPBF fabrication of 316L stainless steel, which is widely [...] Read more.
Laser powder bed fusion (LPBF) is an advanced additive manufacturing technology that is gaining increasing interest for biomedical implants because it can produce dense, patient-specific metallic components with controlled microstructures. This study investigated the LPBF fabrication of 316L stainless steel, which is widely used in orthopedic and dental implants, and examined the effects of laser power and scanning speed on the microstructure and mechanical properties relevant to biomedical applications. The study achieved 99.97% density and refined columnar and cellular austenitic grains, with optimized molten pool morphology. The optimal LPBF parameters, 190 W laser power and 700 mm/s, produced a tensile strength of 762.83 MPa and hardness of 253.07 HV0.2, which exceeded the values of conventional cast 316L stainless steel. These results demonstrated the potential of optimized LPBF 316L stainless steel for functional biomedical applications that require high mechanical integrity and biocompatibility. Full article
(This article belongs to the Special Issue Bio-Additive Manufacturing in Materials Science)
Show Figures

Figure 1

17 pages, 7068 KiB  
Article
Effect of Ni-Based Buttering on the Microstructure and Mechanical Properties of a Bimetallic API 5L X-52/AISI 316L-Si Welded Joint
by Luis Ángel Lázaro-Lobato, Gildardo Gutiérrez-Vargas, Francisco Fernando Curiel-López, Víctor Hugo López-Morelos, María del Carmen Ramírez-López, Julio Cesar Verduzco-Juárez and José Jaime Taha-Tijerina
Metals 2025, 15(8), 824; https://doi.org/10.3390/met15080824 - 23 Jul 2025
Viewed by 307
Abstract
The microstructure and mechanical properties of welded joints of API 5L X-52 steel plates cladded with AISI 316L-Si austenitic stainless steel were evaluated. The gas metal arc welding process with pulsed arc (GMAW-P) and controlled arc oscillation were used to join the bimetallic [...] Read more.
The microstructure and mechanical properties of welded joints of API 5L X-52 steel plates cladded with AISI 316L-Si austenitic stainless steel were evaluated. The gas metal arc welding process with pulsed arc (GMAW-P) and controlled arc oscillation were used to join the bimetallic plates. After the root welding pass, buttering with an ERNiCrMo-3 filler wire was performed and multi-pass welding followed using an ER70S-6 electrode. The results obtained by optical and scanning electron microscopy indicated that the shielding atmosphere, welding parameters, and electric arc oscillation enabled good arc stability and proper molten metal transfer from the filler wire to the sidewalls of the joint during welding. Vickers microhardness (HV) and tensile tests were performed for correlating microstructural and mechanical properties. The mixture of ERNiCrMo-3 and ER70S-6 filler materials presented fine interlocked grains with a honeycomb network shape of the Ni–Fe mixture with Ni-rich grain boundaries and a cellular-dendritic and equiaxed solidification. Variation of microhardness at the weld metal (WM) in the middle zone of the bimetallic welded joints (BWJ) is associated with the manipulation of the welding parameters, promoting precipitation of carbides in the austenitic matrix and formation of martensite during solidification of the weld pool and cooling of the WM. The BWJ exhibited a mechanical strength of 380 and 520 MPa for the yield stress and ultimate tensile strength, respectively. These values are close to those of the as-received API 5L X-52 steel. Full article
Show Figures

Figure 1

22 pages, 11295 KiB  
Article
Process-Driven Structural and Property Evolution in Laser Powder Bed Fusion of a Newly Developed AISI 316L Stainless Steel
by Amir Behjat, Morteza Shamanian, Fazlollah Sadeghi, Mohammad Hossein Mosallanejad and Abdollah Saboori
Materials 2025, 18(14), 3343; https://doi.org/10.3390/ma18143343 - 16 Jul 2025
Viewed by 340
Abstract
The lack of new materials with desired processability and functional characteristics remains a challenge for metal additive manufacturing (AM). Therefore, in this work, a new promising AISI 316L-based alloy with better performance compared to the commercially available one is developed via the laser [...] Read more.
The lack of new materials with desired processability and functional characteristics remains a challenge for metal additive manufacturing (AM). Therefore, in this work, a new promising AISI 316L-based alloy with better performance compared to the commercially available one is developed via the laser powder bed fusion (L-PBF) process. Moreover, establishing process–structure–properties linkages is a critical point that should be evaluated carefully before adding newly developed alloys into the AM market. Hence, the current study investigates the influences of various process parameters on the as-built quality and microstructure of the newly developed alloy. The results revealed that increasing laser energy density led to reduced porosity and surface roughness, likely due to enhanced melting and solidification. Microstructural analysis revealed a uniform distribution of copper within the austenite phase without forming any agglomeration or secondary phases. Electron backscatter diffraction analysis indicated a strong texture along the build direction with a gradual increase in Goss texture at higher energy densities. Grain boundary regions exhibited higher local misorientation and dislocation density. These findings suggest that changing the process parameters of the L-PBF process is a promising method for developing tailored microstructures and chemical compositions of commercially available AISI 316L stainless steel. Full article
Show Figures

Figure 1

25 pages, 14812 KiB  
Article
The Effect of Yttrium Addition on the Solidification Microstructure and Sigma Phase Precipitation Behavior of S32654 Super Austenitic Stainless Steel
by Jun Xiao, Geng Tian, Di Wang, Shaoguang Yang, Kuo Cao, Jianhua Wei and Aimin Zhao
Metals 2025, 15(7), 798; https://doi.org/10.3390/met15070798 - 15 Jul 2025
Viewed by 262
Abstract
This study focuses on S32654 super austenitic stainless steel (SASS) and systematically characterizes the morphology of the sigma (σ) phase and the segregation behavior of alloying elements in its as-cast microstructure. High-temperature confocal scanning laser microscopy (HT-CSLM) was employed to investigate the effect [...] Read more.
This study focuses on S32654 super austenitic stainless steel (SASS) and systematically characterizes the morphology of the sigma (σ) phase and the segregation behavior of alloying elements in its as-cast microstructure. High-temperature confocal scanning laser microscopy (HT-CSLM) was employed to investigate the effect of the rare earth element yttrium (Y) on the solidification microstructure and σ phase precipitation behavior of SASS. The results show that the microstructure of SASS consists of austenite dendrites and interdendritic eutectoid structures. The eutectoid structures mainly comprise the σ phase and the γ2 phase, exhibiting lamellar or honeycomb-like morphologies. Regarding elemental distribution, molybdenum displays a “concave” distribution pattern within the dendrites, with lower concentrations at the center and higher concentrations at the sides; when Mo locally exceeds beyond a certain threshold, it easily induces the formation of eutectoid structures. Mo is the most significant segregating element, with a segregation ratio as high as 1.69. The formation mechanism of the σ phase is attributed to the solid-state phase transformation of austenite (γ → γ2 + σ). In the late stages of solidification, the concentration of chromium and Mo in the residual liquid phase increases, and due to insufficient diffusion, there are significant compositional differences between the interdendritic regions and the matrix. The enriched Cr and Mo cause the interdendritic austenite to become supersaturated, leading to solid-state phase transformation during subsequent cooling, thereby promoting σ phase precipitation. The overall phase transformation process can be summarized as L → L + γ → γ → γ + γ2 + σ. Y microalloying has a significant influence on the solidification process. The addition of Y increases the nucleation temperature of austenite, raises nucleation density, and refines the solidification microstructure. However, Y addition also leads to an increased amount of eutectoid structures. This is primarily because Y broadens the solidification temperature range of the alloy and prolongs grain growth perio, which aggravates the microsegregation of elements such as Cr and Mo. Moreover, Y raises the initial precipitation temperature of the σ phase and enhances atomic diffusion during solidification, further promoting σ phase precipitation during the subsequent eutectoid transformation. Full article
(This article belongs to the Special Issue Synthesis, Processing and Applications of New Forms of Metals)
Show Figures

Figure 1

38 pages, 8354 KiB  
Article
A Comparative Study of the Tensile Behavior of Wrought 44W Steel, Monel 400, 304L Stainless Steel, and Arc-Directed Energy Deposited 308L Stainless Steel in Simulated Hydrogen Environments
by Emmanuel Sey, Zoheir N. Farhat and Ali Nasiri
Corros. Mater. Degrad. 2025, 6(3), 28; https://doi.org/10.3390/cmd6030028 - 2 Jul 2025
Viewed by 522
Abstract
This study investigates the tensile behaviors of wrought 44W steel, Monel 400, 304L austenitic stainless steel, and arc-directed energy deposited (arc-DED) 308L austenitic stainless steel under simulated hydrogen environments to evaluate their endurance to hydrogen embrittlement (HE). The specimens were subjected to cathodic [...] Read more.
This study investigates the tensile behaviors of wrought 44W steel, Monel 400, 304L austenitic stainless steel, and arc-directed energy deposited (arc-DED) 308L austenitic stainless steel under simulated hydrogen environments to evaluate their endurance to hydrogen embrittlement (HE). The specimens were subjected to cathodic hydrogen charging in an alkaline solution, followed by uniaxial tensile testing at a strain rate of 0.2 min−1. Based on measurements of elongation and toughness, the resistance to HE was ranked as follows: 304L stainless steel > Monel 400 > arc-DED 308L stainless steel > 44W steel. Notably, no significant changes were observed in the yield strengths, ultimate tensile strengths, or elastic modulus of 304L austenitic stainless steel, Monel 400, and 44W steel across all the levels of hydrogenation. However, the arc-DED 308L stainless steel exhibited a slight increase in these properties, attributed to its unique microstructural characteristics and strengthening mechanisms inherent to additive manufacturing processes. These outcomes contribute to a better understanding of the mechanical performance and suitability of these structural alloys in hydrogen-rich environments, highlighting the superior HE resistance of 304L stainless steel and Monel 400 for such applications. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Modern Alloys in Advanced Applications)
Show Figures

Graphical abstract

15 pages, 5614 KiB  
Article
Influence of Post-Heat Treatment on the Tensile Strength and Microstructure of Metal Inert Gas Dissimilar Welded Joints
by Van-Thuc Nguyen, Thanh Tan Nguyen, Van Huong Hoang, Tran Ngoc Thien, Duong Thi Kim Yen, Tri Ho Minh, Le Minh Tuan, Anh Tu Nguyen, Hoang Trong Nghia, Pham Quan Anh, Phan Quoc Bao and Van Thanh Tien Nguyen
Crystals 2025, 15(7), 586; https://doi.org/10.3390/cryst15070586 - 20 Jun 2025
Viewed by 340
Abstract
Taguchi and post-heat treatment methods have been used in this study to optimize the metal inert gas (MIG) welding joints between SUS304 austenite stainless steel and plain carbon SS400 steel using AWS ER 308L filler wire. The dissimilar welding joints’ microstructure and tensile [...] Read more.
Taguchi and post-heat treatment methods have been used in this study to optimize the metal inert gas (MIG) welding joints between SUS304 austenite stainless steel and plain carbon SS400 steel using AWS ER 308L filler wire. The dissimilar welding joints’ microstructure and tensile strength have been examined. The findings show that the fast cooling of the weld joint and the ferrite-forming element of the filler wire cause the dendrites’ δ-ferrite phase to emerge on both the weld bead and the heat-affected zone (HAZ) of the SUS304 side. The stickout parameter has the largest impact on the ultimate tensile strength (UTS), next to the welding speed, welding voltage, and welding current, due to the strong impact of the heat distribution. The optimal welding parameters are a welding current of 105 A, a welding voltage of 14.5 V, a stickout of 12 mm, and a welding speed of 420 mm/min, producing the UTS value of 445.3 MPa, which is close to the predicted value of 469.2 ± 53.6 MPa. Post-heat treatment with an annealing temperature that is lower than 700 °C could improve the optimized weld joints’ strength by up to 5%. The findings may provide a more realistic understanding of the dissimilar welding technology. Full article
Show Figures

Figure 1

28 pages, 11508 KiB  
Article
Non-Destructive Integrity Assessment of Austenitic Stainless-Steel Membranes via Magnetic Property Measurements
by Haeng Sung Heo, Jinheung Park, Jehyun You, Shin Hyung Rhee and Myoung-Gyu Lee
Materials 2025, 18(12), 2898; https://doi.org/10.3390/ma18122898 - 19 Jun 2025
Viewed by 430
Abstract
This study proposes a novel non-destructive methodology for assessing structural integrity in liquefied natural gas (LNG) carrier cargo containment systems (CCSs), addressing limitations of conventional inspection techniques like visual inspection and vacuum box testing. The method leverages strain-induced martensitic transformation (SIMT) in austenitic [...] Read more.
This study proposes a novel non-destructive methodology for assessing structural integrity in liquefied natural gas (LNG) carrier cargo containment systems (CCSs), addressing limitations of conventional inspection techniques like visual inspection and vacuum box testing. The method leverages strain-induced martensitic transformation (SIMT) in austenitic stainless steel (SUS304L), widely used in CCS membranes, quantifying magnetic permeability increase via a Feritscope to evaluate deformation history and damage. To analyze SUS304L SIMT behavior, uniaxial tensile (UT) and equi-biaxial tensile (EBT) tests were conducted, as these stress states predominate in CCS membranes. Microstructural evolution was examined using X-ray diffraction (XRD) and electron backscatter diffraction (EBSD), allowing a quantitative assessment of the transformed martensite volume fraction versus plastic strain. Subsequently, Feritscope measurements under the same conditions were calibrated against the XRD-measured martensite volume fraction for accuracy. Based on testing, this study introduces three complementary Feritscope approaches for evaluating CCS health: outlier detection, quantitative damaged area analysis, and time-series analysis. The methodology integrates data-driven quantitative assessment with conventional qualitative inspection, enhancing safety and maintenance efficiency. Full article
Show Figures

Figure 1

18 pages, 7993 KiB  
Article
The Influence of Cr2N Addition and Ni/Mn Ratio Variation on Mechanical and Corrosion Properties of HIP-Sintered 316L Stainless Steel
by Minsu Lee, Hohyeong Kim, Seok-Won Son and Jinho Ahn
Materials 2025, 18(12), 2722; https://doi.org/10.3390/ma18122722 - 10 Jun 2025
Viewed by 477
Abstract
316L stainless steel is widely employed in various industrial sectors, including shipbuilding, offshore plants, high-temperature/high-pressure (HTHP) piping systems, and hydrogen infrastructure, due to its excellent mechanical stability, superior corrosion resistance, and robust resistance to hydrogen embrittlement. This study presents 316L stainless steel alloys [...] Read more.
316L stainless steel is widely employed in various industrial sectors, including shipbuilding, offshore plants, high-temperature/high-pressure (HTHP) piping systems, and hydrogen infrastructure, due to its excellent mechanical stability, superior corrosion resistance, and robust resistance to hydrogen embrittlement. This study presents 316L stainless steel alloys fabricated via hot isostatic pressing (HIP), conducted at 1300 °C and 100 MPa for 2 h, incorporating Cr2N powder and an optimized Ni/Mn ratio based on the nickel equivalent (Ni_eq). During HIP, Cr2N decomposition yielded a uniformly refined, dense austenitic microstructure, with enhanced corrosion resistance and mechanical performance. Corrosion resistance was evaluated by potentiodynamic polarization in 3.5 wt.% NaCl after 1 h of OCP stabilization, using a scan range of −0.25 V to +1.5 V (Ag/AgCl) at 1 mV/s. Optimization of the Ni/Mn ratio effectively improved the pitting corrosion resistance and mechanical strength. It is cost-effective to partially substitute Ni with Mn. Of the various alloys, C13Ni-N exhibited significantly enhanced hardness (~30% increase from 158.3 to 206.2 HV) attributable to nitrogen-induced solid solution strengthening. E11Ni-HM exhibited the highest pitting corrosion resistance given the superior PREN value (31.36). In summary, the incorporation of Cr2N and adjustment of the Ni/Mn ratio effectively improved the performance of 316L stainless steel alloys. Notably, alloy E11Ni-HM demonstrated a low corrosion current density of 0.131 μA/cm2, indicating superior corrosion resistance. These findings offer valuable insights for developing cost-efficient, mechanically robust corrosion-resistant materials for hydrogen-related applications. Further research will evaluate alloy resistance to hydrogen embrittlement and investigate long-term material stability. Full article
Show Figures

Figure 1

23 pages, 6167 KiB  
Article
Microstructural Characterization of Martensitic Stainless Steel Blades Manufactured by Directed Energy Deposition (DED)
by Caroline Cristine de Andrade Ferreira, Rafael Humberto Mota de Siqueira, Johan Grass Nuñez, Fábio Edson Mariani, Reginaldo Teixeira Coelho, Daolun Chen and Milton Sérgio Fernandes de Lima
Metals 2025, 15(6), 612; https://doi.org/10.3390/met15060612 - 29 May 2025
Viewed by 623
Abstract
This study explores the feasibility of manufacturing martensitic stainless steel turbine blades via a directed energy deposition (DED) process using a powder precursor. Five different blade geometries were fabricated using AISI 431 L martensitic stainless steel deposited onto an AISI 304 L austenitic [...] Read more.
This study explores the feasibility of manufacturing martensitic stainless steel turbine blades via a directed energy deposition (DED) process using a powder precursor. Five different blade geometries were fabricated using AISI 431 L martensitic stainless steel deposited onto an AISI 304 L austenitic stainless steel substrate. The produced components were characterized in terms of microstructure, surface roughness, porosity, hardness, and residual stresses in both the as-processed condition and after heat treatment at 260 and 593 °C. Optical and scanning electron microscopy (SEM) analyses revealed a predominantly martensitic microstructure with well-defined grain boundaries. Heat treatment influenced the phase distribution and grain size, but did not have a significant impact on the surface roughness or modulus of elasticity. Tomographic assessments confirmed the absence of aligned or coalesced pores, which are critical sites for crack initiation. Residual stress analysis indicated the presence of compressive stresses in all blade geometries, which were effectively relieved by heat treatment. In addition, salt spray corrosion tests demonstrated that the corrosion resistance of the manufactured blades was similar to that of the base material. These findings suggest that DED is a viable technique for producing and repairing turbine blades, providing structural integrity and mechanical properties suitable for high-performance applications. Full article
Show Figures

Figure 1

25 pages, 9856 KiB  
Article
Design Guidelines for Material Extrusion of Metals (MEX/M)
by Karim Asami, Mehar Prakash Reddy Medapati, Titus Rakow, Tim Röver and Claus Emmelmann
J. Exp. Theor. Anal. 2025, 3(2), 15; https://doi.org/10.3390/jeta3020015 - 28 May 2025
Viewed by 600
Abstract
This study introduced a systematic framework to develop practical design guidelines specifically for filament-based material extrusion of metals (MEX/M), an additive manufacturing (AM) process defined by ISO/ASTM 52900. MEX/M provides a cost-efficient alternative to conventional manufacturing methods, which is particularly valuable for rapid [...] Read more.
This study introduced a systematic framework to develop practical design guidelines specifically for filament-based material extrusion of metals (MEX/M), an additive manufacturing (AM) process defined by ISO/ASTM 52900. MEX/M provides a cost-efficient alternative to conventional manufacturing methods, which is particularly valuable for rapid prototyping. Although AM offers significant design flexibility, the MEX/M process imposes distinct geometric and process constraints requiring targeted optimization. The research formulates and validates design guidelines tailored for the MEX/M using an austenitic steel 316L (1.4404) alloy filament. The feedstock consists of a uniform blend of 316L stainless steel powder and polymeric binder embedded within a thermoplastic matrix, extruded and deposited layer by layer. Benchmark parts were fabricated to examine geometric feasibility, such as minimum printable wall thickness, feature inclination angles, borehole precision, overhang stability, and achievable resolution of horizontal and vertical gaps. After fabrication, the as-built (green-state) components undergo a two-step thermal post-processing treatment involving binder removal (debinding), followed by sintering at elevated temperatures to reach densification. Geometric accuracy was quantitatively assessed through a 3D scan by comparing the manufactured parts to their original CAD models, allowing the identification of deformation patterns and shrinkage rates. Finally, the practical utility of the developed guidelines was demonstrated by successfully manufacturing an impeller designed according to the established geometric constraints. These design guidelines apply specifically to the machine and filament type utilized in this study. Full article
Show Figures

Figure 1

13 pages, 2998 KiB  
Article
Study of Surface Treatment by Ionic Plasma and Self-Protective Pastes of AISI 304 and 316L Stainless Steels: Chemical, Microstructural, and Nanohardness Evaluation
by Francisco Martínez-Baltodano, Juan C. Díaz-Guillén, Lizsandra López-Ojeda, Gregorio Vargas-Gutiérrez and Wilian Pech-Rodríguez
Lubricants 2025, 13(5), 195; https://doi.org/10.3390/lubricants13050195 - 24 Apr 2025
Viewed by 566
Abstract
This work studied the effect of self-protective paste nitriding (SPN) and ion plasma nitriding (IPN) on the surface chemistry, microstructure, and nanohardness of AISI 304 and 316L stainless steels, with both treated at 440 °C for 5 h. Surface modifications analyzed using SEM [...] Read more.
This work studied the effect of self-protective paste nitriding (SPN) and ion plasma nitriding (IPN) on the surface chemistry, microstructure, and nanohardness of AISI 304 and 316L stainless steels, with both treated at 440 °C for 5 h. Surface modifications analyzed using SEM and nanoindentation revealed distinct outcomes. SPN induced an oxynitriding effect due to the oxidation properties of the pastes, forming Fe3O4 and FexC phases, while IPN produced an expanded austenite layer. Both methods enhanced surface nanohardness, but SPN showed superior results. For 316L SS, SPN increased nanohardness by 367.81% (6.83 GPa) compared to a 133.5% increase (3.41 GPa) with IPN. For 304 SS, SPN improved nanohardness by 26% (2.23 GPa), whereas IPN reduced it by 48% (0.92 GPa). These findings highlight SPN’s potential as an effective anti-wear treatment, particularly for 316L SS. The SPN process utilized a eutectic mixture of sodium cyanate and sodium carbonate, while IPN employed a N2:H2 (1:1) gas mixture. SEM analyses confirmed the formation of γ-Fe(N) phases, indicating dispersed iron nitrides (FeN, Fe3N, Fe4N). SPN’s simultaneous oxidation and nitrocarburization led to an oxide layer above the nitride diffusion layer, enhancing mechanical properties through iron oxides (Fe3O4) and carbides (FexC). Comparative analysis showed that AISI 316L exhibited better performance than AISI 304, underscoring SPN’s effectiveness for surface modification. Full article
(This article belongs to the Special Issue Structural Evolution and Wear of Steels)
Show Figures

Figure 1

14 pages, 1696 KiB  
Article
Influence of a Novel Thermomechanical Processing Route on the Structural, Mechanical, and Corrosion Properties of a Biodegradable Fe-35Mn Alloy
by Kerolene Barboza da Silva, João Pedro Aquiles Carobolante, Roberto Zenhei Nakazato, Angelo Caporalli Filho and Ana Paula Rosifini Alves
Metals 2025, 15(4), 462; https://doi.org/10.3390/met15040462 - 20 Apr 2025
Cited by 1 | Viewed by 503
Abstract
Recent studies have focused on developing temporary metallic implants made from biodegradable biomaterials, such as iron and its alloys, along with the associated manufacturing methods. These biomaterials allow the implant to gradually degrade after fulfilling its function, which reduces the risks of complications [...] Read more.
Recent studies have focused on developing temporary metallic implants made from biodegradable biomaterials, such as iron and its alloys, along with the associated manufacturing methods. These biomaterials allow the implant to gradually degrade after fulfilling its function, which reduces the risks of complications associated with permanent implants. Iron is particularly appealing from a structural standpoint, and adding manganese enhances its potential for use. The Fe-35Mn alloy demonstrates excellent mechanical properties and degradation characteristics, making it an ideal choice within the Fe-Mn system. As a result, new processing techniques can be applied to this alloy to further improve its performance. The objective of this research is to propose a new processing route and evaluate its impact on the properties of the Fe-35Mn alloy. The experimental alloy was produced using an arc melting furnace, followed by homogenization, hot swaging, and solution treatment. Alloy characterization was conducted using various techniques, including X-ray fluorescence (XRF), optical microscopy (OM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), microhardness testing, tensile strength measurements, Young’s modulus determination, and potentiodynamic polarization analysis. The microstructural evolution throughout the applied processing route was analyzed in relation to the alloy’s mechanical performance and corrosion resistance. The typical microstructure of the Fe-35Mn alloy is primarily composed of austenitic grains stabilized at room temperature. Its mechanical properties—yield strength (297 MPa), ultimate tensile strength (533 MPa), and elongation to failure (39%)—are comparable to, or even surpass, those of conventional biomedical materials such as 316 L stainless steel and pure iron. The reduced Young’s modulus (171 GPa), compared to other alloys, further underscores its potential for biomedical applications. Electrochemical testing revealed lower corrosion resistance than that of similar alloys reported in the literature, with a corrosion potential of −0.76 V and a current density of 3.88 µA·cm−2, suggesting an enhanced corrosion rate. Full article
(This article belongs to the Special Issue Feature Papers in Biobased and Biodegradable Metals)
Show Figures

Graphical abstract

16 pages, 7371 KiB  
Article
Anisotropic Wear Resistance of Heat-Treated Selective Laser-Melted 316L Stainless Steel
by Menghui Sun, Qianqian Zhang, Jinxiu Wu, Hao Wang, Xu Wang, Hao Zhang, Yinong An, Yujie Liu and Long Ma
Lubricants 2025, 13(4), 189; https://doi.org/10.3390/lubricants13040189 - 19 Apr 2025
Viewed by 544
Abstract
Anisotropic microstructures and wear resistance are caused by large thermal gradients during selective laser melting (SLM). Investigating the wear resistance in different planes of SLM specimens is crucial. Hence, the effect of heat treatment on the anisotropy of the microstructure, density, microhardness, and [...] Read more.
Anisotropic microstructures and wear resistance are caused by large thermal gradients during selective laser melting (SLM). Investigating the wear resistance in different planes of SLM specimens is crucial. Hence, the effect of heat treatment on the anisotropy of the microstructure, density, microhardness, and wear resistance of SLM 316L stainless steel was studied. Specimens subjected to solution + aging treatment exhibited γ austenite and α ferrite phases with lower microstrain, as determined via X-ray diffraction (XRD) analysis. Microstructure observations demonstrated that SLM 316L appears as intersecting melt pools on the XOY plane and fish scale-like melt pools on the XOZ plane. After heat treatment, the melt boundaries disappeared, carbides (M23C6) precipitated at grain boundaries and within the grains, and the microstructures coarsened and became more uniform. The microhardness and wear resistance of the XOY plane were shown to be superior to those of the XOZ plane, and the microhardness decreased following heat treatment. Compared with SLM 316L, the microhardness of the XOY and XOZ planes of the specimen subjected to solution + aging treatment decreased by 5.96% and 4.98%. The friction and wear test results revealed that the specimen after solution + aging treatment had the lowest friction coefficient and the smallest wear rate. The wear rates of specimens from the XOY and XOZ planes after solution + aging treatment were 21.1% and 27.1% lower than that of SLM 316L, exhibiting the best wear resistance. Full article
(This article belongs to the Special Issue Friction and Wear of Alloys)
Show Figures

Figure 1

Back to TopTop