Design Guidelines for Material Extrusion of Metals (MEX/M)
Abstract
:1. Introduction
- Assist designers in optimizing part geometries for enhanced manufacturability in the MEX/M process.
- Evaluate the impact of process parameters on shrinkage behaviour, dimensional accuracy, and geometric fidelity.
- Validate the potential of MEX/M for producing high-density metal components.
- Increase technology acceptance and reduce experimental effort and material costs [16]
2. Materials and Methods
2.1. Density and Porosity Measurement
2.2. Dimensional Analysis and Shrinkage Qualification
2.3. Geometric Accuracy Assessment Using 3D Scanning
3. Results and Discussion
3.1. Shrinkage Behaviour (WmS, BH, ZHs, and TD)
3.2. Dimensional Deviations of Design Features
3.2.1. Unsupported and Supported Wall Features (WoS and WmS):
3.2.2. Cylinders and Hollow Cylinders with Different Thicknesses (ZV And ZH-2, ZH-4):
3.2.3. Horizontal Overhangs (HOs):
3.2.4. Boreholes and Teardrop Shapes (BH and TD)
3.2.5. Inclined Walls (DWs):
3.3. Guidelines for Design and Production
3.4. Demonstrator:
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Unsupported walls (WoSs) Thickness (mm): 0.2/0.4/0.6/0.8/1/1.5/2 Length (mm): 38.5 Width (mm): 20 Height (mm): 23 | Supported horizontal overhangs (ÜZs) Overhang gap (mm):1/2/3/4/5 Height (mm): 23 Width (mm):3 |
Supported walls (WmSs) Thickness (mm): 2/1.5/1/0.8/0.6/0.4/0.2 Length (mm): 38.5 Width (mm): 20 Height (mm): 23 | Horizontal and vertical boreholes (BH-V, BH-H) Bore diameter (mm): 0.4/0.6/0.8/1/2/3/4/6/8 |
Vertical cylinder (ZV) Bar Ø (mm): 8/6/4/3/2/1/0.8/0.4/0.2 Height (mm): 20 | Hollow cylinders (ZH-4) Thickness (mm): 0.4/0.8/1.6/2.4/3.2/4 Height (mm): 23 |
Hollow cylinders (ZH-2, ZH-4) Thickness (mm): 0.4/0.8/1.6/2.4/3.2/4 Height (mm): 23 | Teardrops features (TDs) Angle (degree): 60/80/100/120 Diameter (mm): 6 |
Horizontal overhangs (HOs) Overhang distance (mm): 0.5/1/1.5/2/3/4 | Inclined walls (DWs) Incline angle (degree): 10/20/30/40/50/60/70/80 |
References
- Lopez, E.; Brueckner, F.; Gruber, S. 21—Industrial applications. In Fundamentals of Laser Powder Bed Fusion of Metals Additive Manufacturing Materials and Technologies; Yadroitsev, I., Yadroitsava, I., Plessis, A.D., MacDonald, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 583–595. [Google Scholar]
- Sadaf, M.; Bragaglia, M.; Nanni, F. A simple route for additive manufacturing of 316L stainless steel via Fused Filament Fabrication. J. Manuf. Process. 2021, 67, 141–150. [Google Scholar] [CrossRef]
- Suwanpreecha, C.; Manonukul, A. A Review on Material Extrusion Additive Manufacturing of Metal and How It Compares with Metal Injection Moulding. Metals 2022, 12, 429. [Google Scholar] [CrossRef]
- Schatt, W.; Wieters, K.-P.; Kieback, B. Pulvermetallurgie: Technologien und Werkstoffe, 2nd ed.; bearbeitete und erweiterte Auflage; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Zhong, Y.; Rännar, L.-E.; Liu, L.; Koptyug, A.; Wikman, S.; Olsen, J.; Cui, D.; Shen, Z. Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications. J. Nucl. Mater. 2017, 486, 234–245. [Google Scholar] [CrossRef]
- García-Rodríguez, S.; Torres, B.; Pulido-González, N.; Otero, E.; Rams, J. Corrosion behavior of 316L stainless steel coatings on ZE41 magnesium alloy in chloride environments. Surf. Coat. Technol. 2019, 378, 124994. [Google Scholar] [CrossRef]
- Gong, H.; Crater, C.; Ordonez, A.; Ward, C.; Waller, M.; Ginn, C. Material Properties and Shrinkage of 3D Printing Parts using Ultrafuse Stainless Steel 316LX Filament. MATEC Web Conf. 2018, 249, 1001. [Google Scholar] [CrossRef]
- Röttger, A.; Boes, J.; Theisen, W.; Thiele, M.; Esen, C.; Edelmann, A.; Hellmann, R. Microstructure and mechanical properties of 316L austenitic stainless steel processed by different SLM devices. Int. J. Adv. Manuf. Technol. 2020, 108, 769–783. [Google Scholar] [CrossRef]
- Martignoni, L.; Vegro, A.; Candidori, S.; Shaikh, M.Q.; Atre, S.V.; Graziosi, S.; Casati, R. Prototyping and characterisation of 316L stainless steel parts and lattice structures printed via metal fused filament fabrication. Rapid Prototyp. J. 2024, 30, 123–141. [Google Scholar] [CrossRef]
- You, S.; Jiang, D.; Wang, F.; Ning, F. Anisotropic sintering shrinkage behavior of stainless steel fabricated by extrusion-based metal additive manufacturing. J. Manuf. Process. 2023, 101, 1508–1520. [Google Scholar] [CrossRef]
- Obadimu, S.O.; Kourousis, K.I. Shrinkage behaviour of material extrusion steel 316L: Influence of primary 3D printing parameters. Rapid Prototyp. J. 2022, 28, 92–101. [Google Scholar] [CrossRef]
- Cerlincă, D.-A.; Tamașag, I.; Beșliu-Băncescu, I.; Severin, T.-L.; Dulucheanu, C. Experimental investigation of FDM manufacturing of 316 l stainless steel. Int. J. Adv. Manuf. Technol. 2024, 135, 1449–1463. [Google Scholar] [CrossRef]
- Alzyod, H.; Ficzere, P. Optimizing fused filament fabrication process parameters for quality enhancement of PA12 parts using numerical modeling and taguchi method. Heliyon 2023, 9, e14445. [Google Scholar] [CrossRef] [PubMed]
- Rebaioli, L.; Fassi, I. A review on benchmark artifacts for evaluating the geometrical performance of additive manufacturing processes. Int. J. Adv. Manuf. Technol. 2017, 93, 2571–2598. [Google Scholar] [CrossRef]
- Desktop Metal. BMD-Design-Guide: Considerations and Best Practices; Desktop Metal: Burlington, MA, USA, 2023. [Google Scholar]
- Blunk, H.; Seibel, A. Design guidelines for metal binder jetting. Prog. Addit. Manuf. 2024, 9, 725–732. [Google Scholar] [CrossRef]
- Asami, K.; Lozares, J.M.C.; Ullah, A.; Bossen, B.; Clague, L.; Emmelmann, C. Material extrusion of metals: Enabling multi-material alloys in additive manufacturing. Mater. Today Commun. 2024, 38, 107889. [Google Scholar] [CrossRef]
- Asami, M.K.; Herzog, D.; Bossen, B.; Geyer, L.; Klemp, C.; Emmelmann, C. (Eds.) Design Guidelines for Green Parts Manufactured with Stainless Steel. In The Filament Based Material Extrusion Process for Metals (MEX/M); European Powder Metallurgy Association (EPMA): Chantilly, France, 2022. [Google Scholar] [CrossRef]
- PT&A, DS-Fil-316L-F-200222-11. Available online: http://www.pt-a.de/filament%20de.htm (accessed on 10 April 2025).
- Keyence, 3D Scanner—Modellreihe VL|KEYENCE Deutschland. 2025. Available online: https://www.keyence.de/landing/lpc/3d-scanner-modellreihe-vl.jsp?aw=KD_gaBRvlph1437971635824&gad_source=1&gclid=CjwKCAiA74G9BhAEEiwA8kNfpYLN2XsFjCROJXLdUsFD4vQa4FZXNOhQXbI7FvEsnTdpS2k2LvUMvxoChZgQAvD_BwE (accessed on 9 April 2025).
- Jiang, D.; Ning, F. Additive Manufacturing of 316L Stainless Steel by a Printing-Debinding-Sintering Method: Effects of Microstructure on Fatigue Property. J. Manuf. Sci. Eng. 2021, 143, 091007. [Google Scholar] [CrossRef]
- Asami, M.K.; Medapati, M.P.R.; Rakow, T.; Röver, T.; Emmelmann, C. Supplementary Data: Design Guidelines for Material Extrusion of Metals (MEX/M); TUHH Universitätsbibliothek: Hamburg, Germany, 2025. [Google Scholar]
- Asami, K.; Bartsch, K.; Emmelmann, C. Design-Richtlinie für die ressourceneffiziente Gestaltung von Stützstrukturanbindungen im pulverbettbasierten Laserstrahlschmelzen von Ti6Al4V. In Proceedings of the 17th Rapid. Tech 3D Conference, Erfurt, Germany, 22–23 June 2021; Carl Hanser Verlag GmbH & Co. KG: Munich, Germany, 2021. [Google Scholar]
- Thingiverse.com, Impeller by Team3187FRC. 2025. Available online: https://www.thingiverse.com/thing:2426666 (accessed on 9 April 2025).
- Ait-Mansour, I.; Kretzschmar, N.; Chekurov, S.; Salmi, M.; Rech, J. Design-dependent shrinkage compensation modeling and mechanical property targeting of metal FFF. Prog. Addit. Manuf. 2020, 5, 51–57. [Google Scholar] [CrossRef]
Material | 316L |
---|---|
Cr | 16.8 |
Ni | 10.1 |
Mo | 2.2 |
Mn | 1.38 |
Si | 0.74 |
P | 0.02 |
S | 0.018 |
C | 0.004 |
Fe | bal. |
Cu | - |
N | - |
O | - |
Extrusion temperature (°C) | 135 |
Heat bed temperature (°C) | 40 |
Printing speed (mm/s) | 2100 |
Extrusion multiplier | 1.35 |
Skirt layer | 2 |
Retraction distance (mm) | 4.5 |
Layer height (mm) | 0.2 |
Unsupported walls (WoS) Thickness (mm): 0.2/0.4/0.6/0.8/1/1.5/2 Length (mm): 38.5 Width (mm): 20 Height (mm): 23 | Supported horizontal overhangs (ÜZ) Overhang gap (mm): 1/2/3/4/5 Height (mm): 23 Width (mm):3 |
Supported walls (WmS) Thickness (mm): 2/1.5/1/0.8/0.6/0.4/0.2 Length (mm): 38.5 Width (mm): 20 Height (mm): 23 | Horizontal and vertical boreholes (BH-V and BH-H) Bore diameter (mm): 0.4/0.6/0.8/1/2/3/4/6/8 |
Vertical cylinder (ZV) Bar Ø (mm): 8/6/4/3/2/1/0.8/0.4/0.2 Height (mm): 20 | Hollow cylinders (ZH-4) Thickness (mm): 0.4/0.8/1.6/2.4/3.2/4 Height (mm): 23 |
Hollow cylinders (ZH-2) Thickness (mm): 0.4/0.8/1.6/2.4/3.2/4 Height (mm):23 | Teardrops features (TD) Angle (degree): 60/80/100/120 Diameter (mm): 6 |
Horizontal overhangs (HO) Overhang distance (mm): 0.5/1/1.5/2/3/4 | Inclined walls (DW) Incline angle (degree): 10/20/30/40/50/60/70/80 |
Size | Abbreviation [Entity] |
---|---|
Change magnification | High |
Measurement method | Stitch |
Full auto | Manual |
Resolution | Fine |
Measurement area | Standard |
Rotation degree | 360° |
Rotation segment | 60° |
Design Feature | Green State (mm) | Debinded State (mm) | Sintered State (mm) | Shrinkage (%) | |
---|---|---|---|---|---|
X | WmS | 23.93 | 23.62 | 20.40 | 14.8 |
LK-a (BH-V) | 55.79 | 54.63 | 46.94 | 15.9 | |
LF-f (BH-H) | 55.79 | 54.82 | 47.01 | 15.8 | |
Y | WmS | 38.40 | 37.57 | 32.22 | 16.1 |
TD-6 | 34.17 | 33.56 | 28.90 | 15.4 | |
TD-10 | 68.05 | 66.93 | 57.68 | 15.2 | |
TD-14 | 71.08 | 69.86 | 60.33 | 15.1 | |
Z | WmS | 19.93 | 19.92 | 17.07 | 14.3 |
ZH-2 | 19.93 | 19.80 | 19.97 | 14.9 | |
ZH-4 | 19.93 | 19.78 | 16.97 | 14.9 | |
TD-6 | 13.16 | 12.96 | 11.15 | 15.3 | |
TD-10 | 20.10 | 19.92 | 17.13 | 14.8 | |
TD-14 | 25.97 | 25.76 | 22.13 | 14.8 |
CAD (mm) | Green State (mm) | Debinded State (mm) | Sintered State (mm) | |
---|---|---|---|---|
ZH-2 samples | 2 | 1.55 | 1.4 | 1.26 |
2 | 1.76 | 1.61 | 1.44 | |
2 | 1.71 | 1.59 | 1.45 | |
2 | 1.81 | 1.68 | 1.49 | |
2 | 1.73 | 1.63 | 1.46 | |
2 | 1.72 | 1.65 | 1.48 | |
ZH-4 samples | 4 | 3.66 | 3.48 | 2.63 |
4 | 3.8 | 3.61 | 3.14 | |
4 | 3.81 | 3.61 | 3.12 | |
4 | 3.86 | 3.67 | 3.19 | |
4 | 3.76 | 3.53 | 3.05 | |
4 | 3.79 | 3.58 | 3.09 |
CAD Data Angle (°) | Green Samples (°) | Sintered Samples (°) |
---|---|---|
10 | - | - |
20 | 24.1 | 25.7 |
30 | 32.6 | 34.2 |
40 | 42.0 | 45.2 |
50 | 47.5 | 53.1 |
60 | 60.3 | 63.8 |
70 | 69.6 | 73.6 |
80 | 80.1 | 83.1 |
Geometry Feature | Recommendation | ||
---|---|---|---|
Name | Illustration | Value | Comment |
Unsupported walls (WoSs) | Wall thickness ≥ 1.5 mm | Maximum deviation of 0.4 mm | |
Supported walls (WmSs) | Wall thickness ≥ 0.2 mm | Dimensional deviation of 0.09 ± 0.1 mm | |
Vertical cylinder (ZV) | Minimum diameter ≥ 0.8 mm | Dimensional deviation of 0.24 ± 0.1 mm | |
Hollow cylinders (ZH-2) Hollow cylinders (ZH-4) | Cylinder thickness ≥ 0.34 mm | 1. Dimensional deviation of the outer diameter ±0.006 mm 2. Dimensional deviation 0.11 ± 0.02 mm | |
Horizontal overhangs (HOs) | Overhang < 0.5 mm | Without supports, the maximum overhang length is less than 0.5 mm | |
Supported horizontal overhangs (ÜZs) | b < 0.5 mm | A maximum of 0.5 mm is supported without any print issues | |
Vertical boreholes (BH-V) | 0.84 mm ≤ diameter ≤ 2.53 mm | 1. Dimensional dev −0.28 ± 0.04 mm 2. Diameter > 3 mm supports are needed; otherwise, use a teardrop shape | |
Horizontal boreholes (BH-H) | Diameter ≥ 0.68 mm | Dimensional dev −0.44 ± 0.09 mm | |
Teardrops features (TDs) | 60° < Teardrops angle < 120° For diameter 6 mm and 14 mm | Maximum deviation of the overhang area 0.3 mm occurs due to staircase effect | |
Inclined walls (DWs) | Minimum downskin angle of 30°; otherwise, support is needed | Downskin angle ≥ 30° maximum deviation of 0.45 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asami, K.; Medapati, M.P.R.; Rakow, T.; Röver, T.; Emmelmann, C. Design Guidelines for Material Extrusion of Metals (MEX/M). J. Exp. Theor. Anal. 2025, 3, 15. https://doi.org/10.3390/jeta3020015
Asami K, Medapati MPR, Rakow T, Röver T, Emmelmann C. Design Guidelines for Material Extrusion of Metals (MEX/M). Journal of Experimental and Theoretical Analyses. 2025; 3(2):15. https://doi.org/10.3390/jeta3020015
Chicago/Turabian StyleAsami, Karim, Mehar Prakash Reddy Medapati, Titus Rakow, Tim Röver, and Claus Emmelmann. 2025. "Design Guidelines for Material Extrusion of Metals (MEX/M)" Journal of Experimental and Theoretical Analyses 3, no. 2: 15. https://doi.org/10.3390/jeta3020015
APA StyleAsami, K., Medapati, M. P. R., Rakow, T., Röver, T., & Emmelmann, C. (2025). Design Guidelines for Material Extrusion of Metals (MEX/M). Journal of Experimental and Theoretical Analyses, 3(2), 15. https://doi.org/10.3390/jeta3020015