Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (145,011)

Search Parameters:
Keywords = 700L

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 498 KiB  
Article
Virulence of Metarhizium robertsii Strains Isolated from Forest Ecosystems Against Wax Moths (Galleria mellonella, Achroia grisella) and Pine Processionary (Thaumetopoea pityocampa) Larvae
by Spiridon Mantzoukas, Vasileios Papantzikos, Chrysanthi Zarmakoupi, Panagiotis A. Eliopoulos, Ioannis Lagogiannis and George Patakioutas
Biology 2025, 14(8), 1009; https://doi.org/10.3390/biology14081009 (registering DOI) - 6 Aug 2025
Abstract
Entomopathogenic fungi (EPF) are one of the most environmentally friendly ways to control a plethora of chewing insects such as T. pityocampa, G. mellonella, and A. grisella. Bioassay of EPF on these highly damaging pests is considered important in the [...] Read more.
Entomopathogenic fungi (EPF) are one of the most environmentally friendly ways to control a plethora of chewing insects such as T. pityocampa, G. mellonella, and A. grisella. Bioassay of EPF on these highly damaging pests is considered important in the face of climate change in order to research alternative solutions that are capable of limiting chemical control, the overuse of which increases insects’ resistance to chemical compounds. In this study, the insecticidal virulence of Metarhizium robertsii isolates, retrieved from forest ecosystems, was tested on second-instar larvae of T. pityocampa, G. mellonella, and A. grisella. Bioassays were carried out in the laboratory, where experimental larvae were sprayed with 2 mL of a six-conidial suspension from each isolate. Mortality was recorded for 144 h after exposure. Mean mortality, lethal concentrations, sporulation percentage, and sporulation time were estimated for each isolate. Metarhizium isolates resulted in the highest mortality (89.2% for G. mellonella and 90.2% for A. grisella). Based on the LC50 estimates determined by the concentration–mortality relationships for the tested fungal isolates, we demonstrated significant virulence on larvae of G. mellonella, A. grisella, and T. pityocampa. Our results indicate that entomopathogenic fungi have the potential to become a very useful tool in reducing chemical applications. Full article
Show Figures

Figure 1

20 pages, 2960 KiB  
Article
Effectiveness of Kaolinite with and Without Polyaluminum Chloride (PAC) in Removing Toxic Alexandrium minutum
by Cherono Sheilah Kwambai, Houda Ennaceri, Alan J. Lymbery, Damian W. Laird, Jeff Cosgrove and Navid Reza Moheimani
Toxins 2025, 17(8), 395; https://doi.org/10.3390/toxins17080395 (registering DOI) - 6 Aug 2025
Abstract
Alexandrium spp. blooms and paralytic shellfish poisoning pose serious economic threats to coastal communities and aquaculture. This study evaluated the removal efficiency of two Alexandrium minutum strains using natural kaolinite clay (KNAC) and kaolinite with polyaluminum chloride (KPAC) at three concentrations (0.1, 0.25, [...] Read more.
Alexandrium spp. blooms and paralytic shellfish poisoning pose serious economic threats to coastal communities and aquaculture. This study evaluated the removal efficiency of two Alexandrium minutum strains using natural kaolinite clay (KNAC) and kaolinite with polyaluminum chloride (KPAC) at three concentrations (0.1, 0.25, and 0.3 g L−1), two pH levels (7 and 8), and two cell densities (1.0 and 2.0 × 107 cells L−1) in seawater. PAC significantly enhanced removal, achieving up to 100% efficiency within two hours. Zeta potential analysis showed that PAC imparted positive surface charges to the clay, promoting electrostatic interactions with negatively charged algal cells and enhancing flocculation through Van der Waals attractions. In addition, the study conducted a cost estimate analysis and found that treating one hectare at 0.1 g L−1 would cost approximately USD 31.75. The low KPAC application rate also suggests minimal environmental impact on benthic habitats. Full article
Show Figures

Figure 1

12 pages, 949 KiB  
Article
Context-Dependent Anti-Predator Behavior in Nymphs of the Invasive Spotted Lanternfly (Lycorma delicatula): Effects of Development, Microhabitat, and Social Environment
by Ellen van Wilgenburg, Crystal Aung and Julia N. Caputo
Insects 2025, 16(8), 815; https://doi.org/10.3390/insects16080815 (registering DOI) - 6 Aug 2025
Abstract
Antipredator behaviors in animals often vary with developmental stage, microhabitat, and social context, yet few studies examine how these factors interact in species that undergo ontogenetic shifts in chemical defense. The spotted lanternfly (Lycorma delicatula) is an invasive planthopper whose nymphs [...] Read more.
Antipredator behaviors in animals often vary with developmental stage, microhabitat, and social context, yet few studies examine how these factors interact in species that undergo ontogenetic shifts in chemical defense. The spotted lanternfly (Lycorma delicatula) is an invasive planthopper whose nymphs transition from cryptically colored early instars to aposematically colored fourth instars that feed primarily on chemically defended host plants. We conducted 1460 simulated predator attacks on nymphs across four developmental stages to examine how antipredator behavior varies with instar, plant location (leaf vs. stem), host plant species, and local conspecific density. Nymphs exhibited three primary responses: hiding, sidestepping, or jumping. We found that location on the plant had the strongest effect, with nymphs on stems more likely to hide than those on leaves. Older instars were significantly less likely to hide and more likely to sidestep, particularly on stems, suggesting reduced reliance on energetically costly escape behaviors as chemical defenses accumulate. First instars were less likely to jump from their preferred host plant (tree of heaven) compared to other plant species. Higher local conspecific density reduced hiding probability, likely due to the dilution effect. These results demonstrate that antipredator strategies in L. delicatula are flexibly deployed based on developmental stage, microhabitat structure, and social context, with implications for understanding evolution of antipredator behavior in chemically protected species. Full article
(This article belongs to the Section Insect Behavior and Pathology)
14 pages, 1897 KiB  
Article
Type I Interferon-Enhancing Effect of Cardamom Seed Extract via Intracellular Nucleic Acid Sensor Regulation
by Abdullah Al Sufian Shuvo, Masahiro Kassai and Takeshi Kawahara
Foods 2025, 14(15), 2744; https://doi.org/10.3390/foods14152744 (registering DOI) - 6 Aug 2025
Abstract
The induction of type I interferon (IFN) via intracellular nucleic acid sensors may be useful in preventing viral infections. However, little is known about the effect of natural plant materials on sensor responses. We previously found that cardamom (Elettaria cardamomum (L.) Maton) [...] Read more.
The induction of type I interferon (IFN) via intracellular nucleic acid sensors may be useful in preventing viral infections. However, little is known about the effect of natural plant materials on sensor responses. We previously found that cardamom (Elettaria cardamomum (L.) Maton) seed extract (CSWE) enhanced type I IFN expression and prevented influenza virus infection. In this study, we investigated the effect of CSWE on type I IFN responses using intracellular nucleic acid sensor molecules. Human lung epithelial A549 cells were treated with CSWE and transfected with poly(dA:dT) or poly(I:C) using lipofection. CSWE and 1,8-cineole, the major CSWE components, dose-dependently induced type I IFNs and IFN-stimulated genes in both poly(dA:dT)- and poly(I:C)-transfected A549 cells. The type I IFN-enhancing effect of CSWE was dependent on the stimulator of interferon genes (STING), whereas the effect of 1,8-cineole was independent of STING and mediated by the down-regulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-ADP-ribose polymerase expression. Our study suggests that CSWE has the potential to act as a beneficial antiviral agent by enhancing homeostatic type I IFN production. Full article
Show Figures

Figure 1

10 pages, 2260 KiB  
Article
Multi-Elemental Analysis for the Determination of the Geographic Origin of Tropical Timber from the Brazilian Legal Amazon
by Marcos David Gusmao Gomes, Fábio José Viana Costa, Clesia Cristina Nascentes, Luiz Antonio Martinelli and Gabriela Bielefeld Nardoto
Forests 2025, 16(8), 1284; https://doi.org/10.3390/f16081284 (registering DOI) - 6 Aug 2025
Abstract
Illegal logging is a major threat to tropical forests; however, control mechanisms and efforts to combat illegal logging have not effectively curbed fraud in the production chain, highlighting the need for effective methods to verify the geographic origin of timber. This study investigates [...] Read more.
Illegal logging is a major threat to tropical forests; however, control mechanisms and efforts to combat illegal logging have not effectively curbed fraud in the production chain, highlighting the need for effective methods to verify the geographic origin of timber. This study investigates the application of multi-elemental analysis combined with Principal Component Analysis (PCA) to discriminate the provenance of tropical timber in the Brazilian Legal Amazon. Wood samples of Hymenaea courbaril L. (Jatobá), Handroanthus sp. (Ipê), and Manilkara huberi (Ducke) A. Chevalier. (Maçaranduba) were taken from multiple sites. Elemental concentrations were determined via Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and CA was applied to evaluate geographic differentiation. Significant differences in elemental profiles were found among locations, particularly when using the intermediate disk portions (25% to 75%), and especially the average of all five sampled portions, which proved most effective in geographic discrimination of the trunk. Elements such as Ca, Sr, Cr, Cu, Zn, and B were especially important for spatial discrimination. These findings underscore the forensic potential of multi-elemental wood profiling as a tool to support law enforcement and environmental monitoring by providing scientifically grounded evidence of timber origin. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

18 pages, 2476 KiB  
Article
Fucoidan Modulates Osteoarthritis Progression Through miR-22/HO-1 Pathway
by Tsung-Hsun Hsieh, Jar-Yi Ho, Chih-Chien Wang, Feng-Cheng Liu, Chian-Her Lee, Herng-Sheng Lee and Yi-Jen Peng
Cells 2025, 14(15), 1208; https://doi.org/10.3390/cells14151208 (registering DOI) - 6 Aug 2025
Abstract
Introduction: Osteoarthritis (OA), a leading cause of disability among the elderly, is characterized by progressive joint tissue destruction. Fucoidan, a sulfated polysaccharide with known anti-inflammatory and antioxidant properties, has been investigated for its potential to protect against interleukin-1 beta (IL-1β)-induced articular tissue damage. [...] Read more.
Introduction: Osteoarthritis (OA), a leading cause of disability among the elderly, is characterized by progressive joint tissue destruction. Fucoidan, a sulfated polysaccharide with known anti-inflammatory and antioxidant properties, has been investigated for its potential to protect against interleukin-1 beta (IL-1β)-induced articular tissue damage. Methods: Human primary chondrocytes and synovial fibroblasts were pre-treated with 100 μg/mL fucoidan before stimulation with 1 ng/mL of IL-1β. The protective effects of fucoidan were assessed by measuring oxidative stress markers and catabolic enzyme levels. These in vitro findings were corroborated using a rat anterior cruciate ligament transection-induced OA model. To explore the underlying mechanisms, particularly the interaction between microRNAs (miRs) and heme oxygenase-1 (HO-1), five candidate miRs were identified in silico and experimentally validated. Luciferase reporter assays were used to confirm direct interactions. Results: Fucoidan exhibited protective effects against IL-1β-induced oxidative stress and catabolic processes in both chondrocytes and synovial fibroblasts, consistent with in vivo observations. Fucoidan treatment restored HO-1 expression while reducing inducible nitric oxide synthase and matrix metalloproteinase levels in IL-1β-stimulated cells. Notably, this study revealed that fucoidan modulates the miR-22/HO-1 pathway, a previously uncharacterized mechanism in OA. Specifically, miR-22 was upregulated by IL-1β and subsequently attenuated by fucoidan. Luciferase reporter assays confirmed a direct interaction between miR-22 and HO-1. Conclusion: The results demonstrate that fucoidan mitigates OA-related oxidative stress in chondrocytes and synovial fibroblasts through the novel modulation of the miR-22/HO-1 axis. The miR-22/HO-1 pathway represents a crucial therapeutic target for OA, and fucoidan may offer a promising therapeutic intervention. Full article
Show Figures

Figure 1

18 pages, 4635 KiB  
Article
Nylon Affinity Networks Capture and Sequester Two Model Bacteria Spiked in Human Plasma
by Fatema Hashemi, Silvia Cachaco, Rocio Prisby, Weidong Zhou, Gregory Petruncio, Elsa Ronzier, Remi Veneziano, Barbara Birkaya, Alessandra Luchini and Luisa Gregori
Pathogens 2025, 14(8), 778; https://doi.org/10.3390/pathogens14080778 (registering DOI) - 6 Aug 2025
Abstract
Ensuring bacterial safety of blood transfusions remains a critical focus in medicine. We investigated a novel pathogen reduction technology utilizing nylon functionalized with synthetic dyes (nylon affinity networks) to capture and remove bacteria from plasma. In the initial screening process, we spiked phosphate [...] Read more.
Ensuring bacterial safety of blood transfusions remains a critical focus in medicine. We investigated a novel pathogen reduction technology utilizing nylon functionalized with synthetic dyes (nylon affinity networks) to capture and remove bacteria from plasma. In the initial screening process, we spiked phosphate buffer solution (PBS) and human plasma (1 mL each) with 10 or 100 colony forming units (cfu) of either Escherichia coli or Staphylococcus epidermidis, exposed the suspensions to affinity networks and assessed the extent of bacterial reduction using agar plate cultures as the assay output. Nineteen synthetic dyes were tested. Among these, Alcian Blue exhibited the best performance with both bacterial strains in both PBS and plasma. Next, bacterial suspensions of approximately 1 and 2 cfu/mL in 10 and 50 mL, respectively, were treated with Alcian Blue affinity networks in three sequential capture steps. This procedure resulted in complete bacterial depletion, as demonstrated by the lack of bacterial growth in the remaining fraction. The viability of the captured bacteria was confirmed by plating the post-treatment affinity networks on agar. Alcian Blue affinity networks captured and sequestered a few plasma proteins identified by liquid chromatography tandem mass spectrometry. These findings support the potential applicability of nylon affinity networks to enhance transfusion safety, although additional investigations are needed. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

17 pages, 3330 KiB  
Article
Valorization of Coffee Silverskin via Integrated Biorefinery for the Production of Bioactive Peptides and Xylooligosaccharides: Functional and Prebiotic Properties
by Thanongsak Chaiyaso, Kamon Yakul, Wilasinee Jirarat, Wanaporn Tapingkae, Noppol Leksawasdi and Pornchai Rachtanapun
Foods 2025, 14(15), 2745; https://doi.org/10.3390/foods14152745 (registering DOI) - 6 Aug 2025
Abstract
Coffee silverskin (CS), a by-product generated during coffee roasting, contains high levels of xylan hemicellulose and protein, making it a promising substrate for functional ingredient production. This study developed an integrated bioprocess to simultaneously produce bioactive peptides and xylooligosaccharides (CS-XOS) from CS. Conventional [...] Read more.
Coffee silverskin (CS), a by-product generated during coffee roasting, contains high levels of xylan hemicellulose and protein, making it a promising substrate for functional ingredient production. This study developed an integrated bioprocess to simultaneously produce bioactive peptides and xylooligosaccharides (CS-XOS) from CS. Conventional alkaline extraction (CAE) under optimized conditions (1.0 M NaOH, 90 °C, 30 min) yielded 80.64 mg of protein per gram of CS and rendered the solid residue suitable for XOS production. Enzymatic hydrolysis of the extracted protein using protease_SE5 generated low-molecular-weight peptides (0.302 ± 0.01 mg/mL), including FLGY, FYDTYY, and FDYGKY. These peptides were non-toxic, exhibited in vitro antioxidant activity (0–50%), and showed ACE-inhibitory activities of 60%, 26%, and 79%, and DPP-IV-inhibitory activities of 19%, 18%, and 0%, respectively. Concurrently, the alkaline-treated CS solid residue (ACSS) was hydrolyzed using recombinant endo-xylanase, yielding 52.5 ± 0.08 mg of CS-XOS per gram of ACSS. The CS-XOS exhibited prebiotic effects by enhancing the growth of probiotic lactic acid bacteria (μmax 0.100–0.122 h−1), comparable to commercial XOS. This integrated bioprocess eliminates the need for separate processing lines, enhances resource efficiency, and provides a sustainable strategy for valorizing agro-industrial waste. The co-produced peptides and CS-XOS offer significant potential as functional food ingredients and nutraceuticals. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

23 pages, 3314 KiB  
Article
Functional Express Proteomics for Search and Identification of Differentially Regulated Proteins Involved in the Reaction of Wheat (Triticum aestivum L.) to Nanopriming by Gold Nanoparticles
by Natalia Naraikina, Tomiris Kussainova, Andrey Shelepchikov, Alexey Tretyakov, Alexander Deryabin, Kseniya Zhukova, Valery Popov, Irina Tarasova, Lev Dykman and Yuliya Venzhik
Int. J. Mol. Sci. 2025, 26(15), 7608; https://doi.org/10.3390/ijms26157608 (registering DOI) - 6 Aug 2025
Abstract
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, [...] Read more.
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, the molecular mechanisms underlying nanoparticle-induced effects remain poorly understood. In this study, we investigated the impact of gold nanoparticle (Au-NP) seed priming on the proteome of wheat (Triticum aestivum L.) seedlings. Differentially regulated proteins (DRPs) were identified, revealing a pronounced reorganization of the photosynthetic apparatus (PSA). Both the light-dependent reactions and the Calvin cycle were affected, with significant upregulation of chloroplast-associated protein complexes, including PsbC (CP43), chlorophyll a/b-binding proteins, Photosystem I subunits (PsaA and PsaB), and the γ-subunit of ATP synthase. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) exhibited over a threefold increase in expression in Au-NP-treated seedlings. The proteomic changes in the large subunit RuBisCo L were corroborated by transcriptomic data. Importantly, the proteomic changes were supported by physiological and biochemical analyses, ultrastructural modifications in chloroplasts, and increased photosynthetic activity. Our findings suggest that Au-NP nanopriming triggers coordinated molecular responses, enhancing the functional activity of the PSA. Identified DRPs may serve as potential biomarkers for further elucidation of nanopriming mechanisms and for the development of precision strategies to improve crop productivity. Full article
(This article belongs to the Special Issue Molecular Research and Applications of Nanomaterials)
Show Figures

Figure 1

24 pages, 2024 KiB  
Article
New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms
by Hubert Sytykiewicz, Sylwia Goławska and Iwona Łukasik
Molecules 2025, 30(15), 3294; https://doi.org/10.3390/molecules30153294 (registering DOI) - 6 Aug 2025
Abstract
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in [...] Read more.
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in skin-related applications, particularly through the modulation of melanin biosynthesis and protection of skin-relevant cells from oxidative damage—a primary contributor to hyperpigmentation disorders. Zingiber officinale Rosc. (ginger) and Humulus lupulus L. (hop) are medicinal plants widely recognized for their diverse pharmacological properties. To the best of our knowledge, this study provides the first report on the synergistic interactions between essential oils derived from these species (referred to as EOZ and EOH) offering novel insights into their combined bioactivity. The purpose of this study was to evaluate essential oils extracted from ginger rhizomes and hop strobiles with respect to the following: (1) chemical composition, determined by gas chromatography–mass spectrometry (GC-MS); (2) tyrosinase inhibitory activity; (3) capacity to inhibit linoleic acid peroxidation; (4) ABTS•+ radical scavenging potential. Furthermore, the study utilizes both the combination index (CI) and dose reduction index (DRI) as quantitative parameters to evaluate the nature of interactions and the dose-sparing efficacy of essential oil (EO) combinations. GC–MS analysis identified EOZ as a zingiberene-rich chemotype, containing abundant sesquiterpene hydrocarbons such as α-zingiberene, β-bisabolene, and α-curcumene, while EOH exhibited a caryophyllene diol/cubenol-type profile, dominated by oxygenated sesquiterpenes including β-caryophyllene-9,10-diol and 1-epi-cubenol. In vitro tests demonstrated that both oils, individually and in combination, showed notable anti-tyrosinase, radical scavenging, and lipid peroxidation inhibitory effects. These results support their multifunctional bioactivity profiles with possible relevance to skin care formulations, warranting further investigation. Full article
(This article belongs to the Special Issue Essential Oils—Third Edition)
Show Figures

Figure 1

12 pages, 693 KiB  
Article
Efficacy and Safety of the Combination of Durvalumab Plus Gemcitabine and Cisplatin in Patients with Advanced Biliary Tract Cancer: A Real-World Retrospective Cohort Study
by Eishin Kurihara, Satoru Kakizaki, Masashi Ijima, Takeshi Hatanaka, Norio Kubo, Yuhei Suzuki, Hidetoshi Yasuoka, Takashi Hoshino, Atsushi Naganuma, Noriyuki Tani, Yuichi Yamazaki and Toshio Uraoka
Biomedicines 2025, 13(8), 1915; https://doi.org/10.3390/biomedicines13081915 (registering DOI) - 6 Aug 2025
Abstract
Background/Objectives: The TOPAZ-1 phase III trial reported a survival benefit of using durvalumab, an anti-programmed death ligand 1 (anti-PD-L1) antibody, in combination with gemcitabine and cisplatin (GCD) treatment in patients with advanced biliary tract cancer. This retrospective study investigated the efficacy and [...] Read more.
Background/Objectives: The TOPAZ-1 phase III trial reported a survival benefit of using durvalumab, an anti-programmed death ligand 1 (anti-PD-L1) antibody, in combination with gemcitabine and cisplatin (GCD) treatment in patients with advanced biliary tract cancer. This retrospective study investigated the efficacy and safety of GCD treatment for advanced biliary tract cancer in real-world conditions. Methods: The study subjects were 52 patients with biliary tract cancer who received GCD therapy between January 2023 and May 2024. The observation parameters included the modified Glasgow Prognostic Score (mGPS), neutrophil–lymphocyte ratio (NLR), platelet–lymphocyte ratio (PLR), tumor markers (CEA, CA19-9), overall response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and adverse events. Results: The cohort included 36 men and 16 women, with a median age of 73.0 years. There were 36 cases of cholangiocarcinoma (distal: 10, perihilar: 19, intrahepatic: 7), 13 cases of gallbladder cancer, and 3 cases of ampullary carcinoma. The stages were locally advanced in 30 cases and metastatic in 22 cases. Biliary drainage was performed in 30 cases. There were 38 cases receiving first-line therapy and 14 cases receiving second-line or later treatments. The median values at the start of GCD therapy were ALB 3.7 g/dL, CRP 0.39 mg/dL, NLR 2.4, PLR 162.5, CEA 4.8 ng/mL, and CA19-9 255.9 U/mL. The mGPS distribution was 0:23 cases, 1:18 cases, and 2:11 cases. The treatment outcomes were ORR 25.0% (CR 2 cases, PR 11 cases), DCR 78.8% (SD 28 cases, PD 10 cases, NE 1 case), median PFS 8.6 months, and median OS 13.9 months. The PLR was suggested to be useful for predicting PFS. A decrease in CEA at six weeks after the start of treatment was a significant predictor of PFS and OS. Gallbladder cancer had a significantly poorer prognosis compared to other cancers. The immune-related adverse events included hypothyroidism in two cases, cholangitis in one case, and colitis in one case. Conclusions: The ORR, DCR, and PFS were comparable to those in the TOPAZ-1 trial. Although limited by its retrospective design and small sample size, this study suggests that GCD therapy is an effective treatment regimen for unresectable biliary tract cancer in real-world clinical practice. Full article
(This article belongs to the Special Issue Advanced Research in Anticancer Inhibitors and Targeted Therapy)
Show Figures

Figure 1

12 pages, 2135 KiB  
Article
Development of Yellow Rust-Resistant and High-Yielding Bread Wheat (Triticum aestivum L.) Lines Using Marker-Assisted Backcrossing Strategies
by Bekhruz O. Ochilov, Khurshid S. Turakulov, Sodir K. Meliev, Fazliddin A. Melikuziev, Ilkham S. Aytenov, Sojida M. Murodova, Gavkhar O. Khalillaeva, Bakhodir Kh. Chinikulov, Laylo A. Azimova, Alisher M. Urinov, Ozod S. Turaev, Fakhriddin N. Kushanov, Ilkhom B. Salakhutdinov, Jinbiao Ma, Muhammad Awais and Tohir A. Bozorov
Int. J. Mol. Sci. 2025, 26(15), 7603; https://doi.org/10.3390/ijms26157603 (registering DOI) - 6 Aug 2025
Abstract
The fungal pathogen Puccinia striiformis f. sp. tritici, which causes yellow rust disease, poses a significant economic threat to wheat production not only in Uzbekistan but also globally, leading to substantial reductions in grain yield. This study aimed to develop yellow rust-resistance [...] Read more.
The fungal pathogen Puccinia striiformis f. sp. tritici, which causes yellow rust disease, poses a significant economic threat to wheat production not only in Uzbekistan but also globally, leading to substantial reductions in grain yield. This study aimed to develop yellow rust-resistance wheat lines by introgressing Yr10 and Yr15 genes into high-yielding cultivar Grom using the marker-assisted backcrossing (MABC) method. Grom was crossed with donor genotypes Yr10/6*Avocet S and Yr15/6*Avocet S, resulting in the development of F1 generations. In the following years, the F1 hybrids were advanced to the BC2F1 and BC2F2 generations using the MABC approach. Foreground and background selection using microsatellite markers (Xpsp3000 and Barc008) were employed to identify homozygous Yr10- and Yr15-containing genotypes. The resulting BC2F2 lines, designated as Grom-Yr10 and Grom-Yr15, retained key agronomic traits of the recurrent parent cv. Grom, such as spike length (13.0–11.9 cm) and spike weight (3.23–2.92 g). Under artificial infection conditions, the selected lines showed complete resistance to yellow rust (infection type 0). The most promising BC2F2 plants were subsequently advanced to homozygous BC2F3 lines harboring the introgressed resistance genes through marker-assisted selection. This study demonstrates the effectiveness of integrating molecular marker-assisted selection with conventional breeding methods to enhance disease resistance while preserving high-yielding traits. The newly developed lines offer valuable material for future wheat improvement and contribute to sustainable agriculture and food security. Full article
(This article belongs to the Special Issue Molecular Advances in Understanding Plant-Microbe Interactions)
Show Figures

Figure 1

20 pages, 1831 KiB  
Article
Saccharomyces boulardii CNCM I-745 Supernatant Improves Markers of Gut Barrier Function and Inflammatory Response in Small Intestinal Organoids
by Louisa Filipe Rosa, Steffen Gonda, Nadine Roese and Stephan C. Bischoff
Pharmaceuticals 2025, 18(8), 1167; https://doi.org/10.3390/ph18081167 (registering DOI) - 6 Aug 2025
Abstract
Objectives: Saccharomyces boulardii CNCM I-745, a probiotic yeast, is effectively used for the treatment of acute diarrhea as well as for the prevention and treatment of traveller‘s diarrhea and diarrhea under tube feeding. The underlying mechanisms are not fully elucidated. Both antitoxic [...] Read more.
Objectives: Saccharomyces boulardii CNCM I-745, a probiotic yeast, is effectively used for the treatment of acute diarrhea as well as for the prevention and treatment of traveller‘s diarrhea and diarrhea under tube feeding. The underlying mechanisms are not fully elucidated. Both antitoxic and regulatory effects on the intestinal barrier, mediated either by the yeast or yeast-derived substrates, have been discussed. Methods: To examine the effects of Saccharomyces boulardii released substrates (S.b.S) on gastrointestinal (GI) barrier function, a murine small intestinal organoid cell model under stress was used. Stress was induced by lipopolysaccharide (LPS) exposure or withdrawal of growth factors from cell culture medium (GFRed). Stressed organoids were treated with S.b.S (200 µg/mL), and markers of GI barrier and inflammatory response were assessed. Results: GFRed-induced stress was characterized by disturbances in selected tight junction (TJ) (p < 0.05), adherent junction (AJ) (p < 0.001), and mucin (Muc) formation (p < 0.01), measured by gene expressions, whereby additional S.b.S treatment was found to reverse these effects by increasing Muc2 (from 0.22 to 0.97-fold change, p < 0.05), Occludin (Ocln) (from 0.37 to 3.5-fold change, p < 0.0001), and Claudin (Cldn)7 expression (from 0.13 ± 0.066-fold change, p < 0.05) and by decreasing Muc1, Cldn2, Cldn5, and junctional adhesion molecule A (JAM-A) expression (all p < 0.01). Further, S.b.S normalized expression of nucleotide binding oligomerization domain (Nod)2- (from 44.5 to 0.51, p < 0.0001) and matrix metalloproteinase (Mmp)7-dependent activation (from 28.3 to 0.02875 ± 0.0044 ** p < 0.01) of antimicrobial peptide defense and reduced the expression of several inflammatory markers, such as myeloid differentiation primary response 88 (Myd88) (p < 0.01), tumor necrosis factor α (Tnfα) (p < 0.01), interleukin (IL)-6 (p < 0.01), and IL-1β (p < 0.001). Conclusions: Our data provide new insights into the molecular mechanisms by which Saccharomyces boulardii CNCM I-745-derived secretome attenuates inflammatory responses and restores GI barrier function in small intestinal organoids. Full article
(This article belongs to the Topic Probiotics: New Avenues)
Show Figures

Graphical abstract

19 pages, 3503 KiB  
Article
Discovery of Hub Genes Involved in Seed Development and Lipid Biosynthesis in Sea Buckthorn (Hippophae rhamnoides L.) Using UID Transcriptome Sequencing
by Siyang Zhao, Chengjiang Ruan, Alexey A. Dmitriev and Hyun Uk Kim
Plants 2025, 14(15), 2436; https://doi.org/10.3390/plants14152436 (registering DOI) - 6 Aug 2025
Abstract
Sea buckthorn is a vital woody oil species valued for its role in soil conservation and its bioactive seed oil, which is rich in unsaturated fatty acids and other compounds. However, low seed oil content and small seed size are the main bottlenecks [...] Read more.
Sea buckthorn is a vital woody oil species valued for its role in soil conservation and its bioactive seed oil, which is rich in unsaturated fatty acids and other compounds. However, low seed oil content and small seed size are the main bottlenecks restricting the development and utilization of sea buckthorn. In this study, we tested the seed oil content and seed size of 12 sea buckthorn cultivars and identified the key genes and transcription factors involved in seed development and lipid biosynthesis via the integration of UID RNA-seq (Unique Identifiers, UID), WGCNA (weighted gene co-expression network analysis) and qRT-PCR (quantitative real-time PCR) analysis. The results revealed five cultivars (CY02, CY11, CY201309, CY18, CY21) with significantly higher oil contents and five cultivars (CY10, CY201309, CY18, CY21, CY27) with significantly heavier seeds. A total of 10,873 genes were significantly differentially expressed between the S1 and S2 seed developmental stages of the 12 cultivars. WGCNA was used to identify five modules related to seed oil content and seed weight/size, and 417 candidate genes were screened from these modules. Among them, multiple hub genes and transcription factors were identified; for instance, ATP synthase, ATP synthase subunit D and Acyl carrier protein 1 were related to seed development; plastid–lipid-associated protein, acyltransferase-like protein, and glycerol-3-phosphate 2-O-acyltransferase 6 were involved in lipid biosynthesis; and transcription factors DOF1.2, BHLH137 and ERF4 were associated with seed enlargement and development. These findings provide crucial insights into the genetic regulation of seed traits in sea buckthorn, offering targets for future breeding efforts aimed at improving oil yield and quality. Full article
(This article belongs to the Special Issue Molecular Regulation of Seed Development and Germination)
Show Figures

Figure 1

23 pages, 4317 KiB  
Article
Agronomical Responses of Elite Winter Wheat (Triticum aestivum L.) Varieties in Phenotyping Experiments Under Continuous Water Withdrawal and Optimal Water Management in Greenhouses
by Dániel Nagy, Tamás Meszlényi, Krisztina Boda, Csaba Lantos and János Pauk
Plants 2025, 14(15), 2435; https://doi.org/10.3390/plants14152435 (registering DOI) - 6 Aug 2025
Abstract
Drought stress is a major environmental constraint that significantly reduces wheat productivity worldwide. In this study, seventeen wheat genotypes were evaluated under well-watered and drought-stressed conditions across two consecutive years (2023–2024) in a controlled greenhouse experiment. Twenty morphological and agronomic traits were recorded, [...] Read more.
Drought stress is a major environmental constraint that significantly reduces wheat productivity worldwide. In this study, seventeen wheat genotypes were evaluated under well-watered and drought-stressed conditions across two consecutive years (2023–2024) in a controlled greenhouse experiment. Twenty morphological and agronomic traits were recorded, and their responses to prolonged water limitation were assessed using multivariate statistical methods, including three-way ANOVA, principal component analysis (PCA), and cluster analysis. Drought stress significantly decreased all traits except the harvest index (HI), with the most severe reductions observed in traits related to secondary spikes (e.g., grain weight reduced by 95%). The ANOVA results confirmed significant genotype × treatment (G × T) interactions for key agronomic traits, with the strongest effect observed for total grain weight (F = 7064.30, p < 0.001). A PCA reduced the 20 original variables to five principal components, explaining 87.2% of the total variance. These components reflected distinct trait groups associated with productivity, spike architecture, and development in phenology. Cluster analysis based on PCA scores grouped genotypes into three clusters with contrasting drought response profiles. A yield-based evaluation confirmed the cluster structure, distinguishing genotypes with a stable performance (average yield loss ~58%) from highly sensitive ones (~70% loss). Overall, the findings demonstrate that drought tolerance in wheat is governed by complex trait interactions. Integrating a trait-based multivariate analysis with a yield stability assessment enables the identification of genotypes with superior adaptation to water-limited environments, providing an excellent genotype background for future breeding efforts. Full article
Show Figures

Figure 1

Back to TopTop