Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (14,434)

Search Parameters:
Keywords = 6,6-dioxides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

35 pages, 3601 KiB  
Article
Carbon Emissions and Influencing Factors in the Areas Along the Belt and Road Initiative in Africa: A Spatial Spillover Perspective
by Suxin Yang and Miguel Ángel Benedicto Solsona
Sustainability 2025, 17(15), 7098; https://doi.org/10.3390/su17157098 - 5 Aug 2025
Abstract
The carbon dioxide spillover effects and influencing factors of the “Belt and Road Initiative” (BRI) in African countries must be assessed to evaluate the effectiveness, promote low-carbon transmissions in African countries, and provide recommendations for achieving the 2030 Sustainable Development Goals. This novel [...] Read more.
The carbon dioxide spillover effects and influencing factors of the “Belt and Road Initiative” (BRI) in African countries must be assessed to evaluate the effectiveness, promote low-carbon transmissions in African countries, and provide recommendations for achieving the 2030 Sustainable Development Goals. This novel study employs carbon dioxide emission intensity (CEI) and per capita carbon dioxide emissions (PCE) as dual indicators to evaluate the spatial spillover effects of 54 BRI African countries on their neighboring countries’ carbon emissions from 2007 to 2023. It identifies the key factors and mechanisms affecting these spillover effects using the spatial differences-in-differences (SDID) model. Results indicate that since the launch of the BRI, the CEI and PCE of BRI African countries have significantly increased, largely due to trade patterns and industrialization structures. Greater trade openness has further boosted local economic development, thereby increasing carbon dioxide’s spatial spillover. Government management and corruption control levels show some heterogeneity in the spillover effects, which may be attributed to long-standing issues of weak institutional enforcement in Africa. Overall, this study reveals the complex relationship between BRI African economic development and environmental outcomes, highlighting the importance of developing sustainable development strategies and establishing strong differentiated regulatory regimes to effectively address environmental challenges. Full article
Show Figures

Figure 1

14 pages, 4144 KiB  
Article
Analysis and Application of UV-LED Photoreactors for Phenol Removal
by Betsabé Ildefonso-Ojeda, Macaria Hernández-Chávez, Mayra A. Álvarez-Lemus, Rosendo López-González, José R. Contreras-Bárbara, Karen Roa-Tort, Josué D. Rivera-Fernández and Diego A. Fabila-Bustos
Catalysts 2025, 15(8), 748; https://doi.org/10.3390/catal15080748 (registering DOI) - 5 Aug 2025
Abstract
The development of three types of UV radiation-based photoreactors using light-emitting diodes (LEDs) is presented. In this work, three pattern irradiation arrangements, direct radiation, internal radiation, and external radiation, were tested for deactivation of a typical model contaminant in wastewater under the same [...] Read more.
The development of three types of UV radiation-based photoreactors using light-emitting diodes (LEDs) is presented. In this work, three pattern irradiation arrangements, direct radiation, internal radiation, and external radiation, were tested for deactivation of a typical model contaminant in wastewater under the same conditions. All photoreactors allow the adjustment of optical power and irradiation time and include a sensor for temperature monitoring in the solution. In this case, phenol was used as a model contaminant with TiO2 as a photocatalyst in a batch-type reactor at pH 7. The results showed that the highest degradation efficiency was achieved after 120 min, reaching 97.79% for the internal-radiation photoreactor, followed by 90.17% when the direct-radiation photoreactor was used, and 85.24% for the external-radiation photoreactor. Phenol degradation served as the basis for validating reactor performance, given its persistence and relevance as an indicator in advanced oxidation processes. It was concluded that the arrangement of LEDs in each photoreactor significantly influences phenol degradation under the same reaction conditions. Full article
(This article belongs to the Special Issue Remediation of Natural Waters by Photocatalysis)
Show Figures

Figure 1

23 pages, 787 KiB  
Systematic Review
Beyond Construction Waste Management: A Systematic Review of Strategies for the Avoidance and Minimisation of Construction and Demolition Waste in Australia
by Emma Heffernan and Leela Kempton
Sustainability 2025, 17(15), 7095; https://doi.org/10.3390/su17157095 - 5 Aug 2025
Abstract
The construction sector is responsible for over 40% of waste generated in Australia. Construction materials are responsible for around 11% of global carbon dioxide emissions, and a third of these materials can end up wasted on a construction site. Attention in research and [...] Read more.
The construction sector is responsible for over 40% of waste generated in Australia. Construction materials are responsible for around 11% of global carbon dioxide emissions, and a third of these materials can end up wasted on a construction site. Attention in research and industry has been directed towards waste management and recycling, resulting in 78% of construction and demolition waste being diverted from landfill. However, the waste hierarchy emphasises avoiding the generation of waste in the first place. In this paper, the PRISMA approach is used to conduct a systematic review with the objective of identifying waste reduction strategies employed across all stages of projects in the Australian construction industry. Scopus and Web of Science databases were used. The search returned 523 publications which were screened and reviewed; this resulted in 24 relevant publications from 1998 to 2025. Qualitative analysis identifies strategies categorised into five groupings: pre-demolition, design, culture, materials and procurement, and on-site activities. The review finds a distinct focus on strategies within the materials and procurement category. The reviewed literature includes fewer strategies for the avoidance of waste than for any of the other levels of the waste hierarchy, evidencing the need for further focus in this area. Full article
(This article belongs to the Special Issue Waste Management for Sustainability: Emerging Issues and Technologies)
Show Figures

Figure 1

22 pages, 5033 KiB  
Article
Seasonal Variation of Air Purifier Effectiveness and Natural Ventilation Behavior: Implications for Sustainable Indoor Air Quality in London Nurseries
by Shuo Zhang, Didong Chen and Xiangyu Li
Sustainability 2025, 17(15), 7093; https://doi.org/10.3390/su17157093 - 5 Aug 2025
Abstract
This study investigates the seasonal effectiveness of high-efficiency particulate air (HEPA) purifiers and window-opening behaviors in three London nurseries, using continuous indoor and outdoor PM2.5 monitoring, window state and air purifier use, and occupant questionnaire data collected from March 2021 to February [...] Read more.
This study investigates the seasonal effectiveness of high-efficiency particulate air (HEPA) purifiers and window-opening behaviors in three London nurseries, using continuous indoor and outdoor PM2.5 monitoring, window state and air purifier use, and occupant questionnaire data collected from March 2021 to February 2022. Of the approximately 40–50 nurseries contacted, only three agreed to participate. Results show that HEPA purifiers substantially reduced indoor particulate matter (PM2.5), with the greatest effect observed during the heating season when windows remained closed for longer periods. Seasonal and behavioral analysis indicated more frequent and longer window opening in the non-heating season (windows were open 41.5% of the time on average, compared to 34.2% during the heating season) driven by both ventilation needs and heightened COVID-19 concerns. Predictive modeling identified indoor temperature as the main driver of window opening, while carbon dioxide (CO2) had a limited effect. In addition, window opening often increased indoor PM2.5 under prevailing outdoor air quality conditions, with mean concentrations rising from 2.73 µg/m3 (closed) to 3.45 µg/m3 (open), thus reducing the apparent benefit of air purifiers. These findings underscore the complex interplay between mechanical purification and occupant-controlled ventilation, highlighting the need to adapt indoor air quality (IAQ) strategies to both seasonal and behavioral factors in educational settings. Full article
(This article belongs to the Special Issue Sustainability and Indoor Environmental Quality)
Show Figures

23 pages, 5217 KiB  
Article
High-Performance Pd-Pt/α-MnO2 Catalysts for the Oxidation of Toluene
by Ning Dong, Wenjin Wang, Xuelong Zheng, Huan Liu, Jingjing Zhang, Qing Ye and Hongxing Dai
Catalysts 2025, 15(8), 746; https://doi.org/10.3390/catal15080746 - 5 Aug 2025
Abstract
Herein, α-MnO2-supported Pt-Pd bimetal (xPd-yPt/α-MnO2; x and y are the weight loadings (wt%) of Pd and Pt, respectively; x = 0, 0.23, 0.47, 0.93, and 0.92 wt%; and y = 0.91, 0.21, [...] Read more.
Herein, α-MnO2-supported Pt-Pd bimetal (xPd-yPt/α-MnO2; x and y are the weight loadings (wt%) of Pd and Pt, respectively; x = 0, 0.23, 0.47, 0.93, and 0.92 wt%; and y = 0.91, 0.21, 0.46, 0.89, and 0 wt%) catalysts were prepared using the polyvinyl alcohol-protected NaBH4 reduction method. The physicochemical properties of the catalysts were determined by means of various techniques and their catalytic activities for toluene oxidation were evaluated. It was found that among the xPd-yPt/α-MnO2 samples, 0.93Pd-0.89Pt/α-MnO2 showed the best catalytic performance, with the toluene oxidation rate at 156 °C (rcat) and space velocity = 60,000 mL/(g h) being 6.34 × 10−4 mol/(g s), much higher than that of 0.91Pt/α-MnO2 (1.31 × 10−4 mol/(g s)) and that of 0.92Pd/α-MnO2 (6.13 × 10−5 mol/(g s)) at the same temperature. The supported Pd-Pt bimetallic catalysts possessed higher Mn3+/Mn4+ and Oads/Olatt molar ratios, which favored the enhancement in catalytic activity of the supported Pd-Pt bimetallic catalysts. Furthermore, the 0.47Pd-0.46Pt/α-MnO2 sample showed better resistance to sulfur dioxide poisoning. The partial deactivation of 0.47Pd-0.46Pt/α-MnO2 was attributed to the formation of sulfate species on the sample surface, which covered the active site of the sample, thus decreasing its toluene oxidation activity. In addition, the in situ DRIFTS results demonstrated that benzaldehyde and benzoate were the intermediate products of toluene oxidation. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

22 pages, 8528 KiB  
Article
Study on the Durability of Graphene Oxide–Nanosilica Hybrid-Modified Sticky Rice–Lime Paste
by Ke Li, Donghui Cheng, Yingqi Fu, Xuwen Yan, Li Wang and Haisheng Ren
Nanomaterials 2025, 15(15), 1194; https://doi.org/10.3390/nano15151194 - 5 Aug 2025
Abstract
In order to improve the durability performance of sticky rice–lime paste in ancient masonry restoration materials, the effect of graphene oxide–nanosilica hybrids (GO–NS) on its basic physical properties and durability performance was investigated. The surface morphology, physical phase characteristics and infrared spectra of [...] Read more.
In order to improve the durability performance of sticky rice–lime paste in ancient masonry restoration materials, the effect of graphene oxide–nanosilica hybrids (GO–NS) on its basic physical properties and durability performance was investigated. The surface morphology, physical phase characteristics and infrared spectra of GO–NS and its sticky rice–lime paste were analysed by SEM, FE-TEM, XRD and FTIR. It was shown that NS successfully attached to the GO surface and improved the interlayer structure of GO. GO–NS reduces the fluidity and shrinkage of sticky rice–lime paste, prolongs the initial setting, shortens the final setting and significantly improves the compressive strength, water resistance and freeze resistance. As NS improves the interlayer structure of GO, it provides nucleation sites for the hardening of the sticky rice–lime paste, improves the quantity and structural distribution of the hardening products and reduces the pores. The NS undergoes a hydration reaction with Ca(OH)2 in the lime to produce calcium silicate hydrate (C–S–H), which further refines the internal pore structure of the sticky rice–lime paste. As a result, the GO–NS-modified sticky rice–lime paste has a denser interior and better macroscopic properties. Full article
Show Figures

Figure 1

19 pages, 3220 KiB  
Review
Integrated Technology of CO2 Adsorption and Catalysis
by Mengzhao Li and Rui Wang
Catalysts 2025, 15(8), 745; https://doi.org/10.3390/catal15080745 - 5 Aug 2025
Abstract
This paper discusses the integrated technology of CO2 adsorption and catalysis, which combines adsorption and catalytic conversion, simplifies the traditional process, reduces energy consumption, and improves efficiency. The traditional carbon capture technology has the problems of high energy consumption, equipment corrosion, and [...] Read more.
This paper discusses the integrated technology of CO2 adsorption and catalysis, which combines adsorption and catalytic conversion, simplifies the traditional process, reduces energy consumption, and improves efficiency. The traditional carbon capture technology has the problems of high energy consumption, equipment corrosion, and absorbent loss, while the integrated technology realizes the adsorption, conversion, and catalyst regeneration of CO2 in a single reaction system, avoiding complex desorption steps. Through micropore confinement and surface electron transfer mechanism, the technology improves the reactant concentration and mass transfer efficiency, reduces the activation energy, and realizes the low-temperature and high-efficiency conversion of CO2. In terms of materials, MOF-based composites, alkali metal modified oxides, and carbon-based hybrid materials show excellent performance, helping to efficiently adsorb and transform CO2. However, the design and engineering of reactors still face challenges, such as the development of new moving bed reactors. This technology provides a new idea for CO2 capture and resource utilization and has important environmental significance and broad application prospects. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

13 pages, 3882 KiB  
Article
Thermal Damage Characterization of Detector Induced by Nanosecond Pulsed Laser Irradiation
by Zhilong Jian, Weijing Zhou, Hao Chang, Yingjie Ma, Xiaoyuan Quan and Zikang Wang
Photonics 2025, 12(8), 790; https://doi.org/10.3390/photonics12080790 (registering DOI) - 5 Aug 2025
Abstract
Experimental and simulation analysis was conducted on the effects of 532 nm nanosecond laser-induced thermal damage on the front-side illuminated CMOS detector. The study examined CMOS detector output images at different stages of damage, including point damage, line damage, and complete failure, and [...] Read more.
Experimental and simulation analysis was conducted on the effects of 532 nm nanosecond laser-induced thermal damage on the front-side illuminated CMOS detector. The study examined CMOS detector output images at different stages of damage, including point damage, line damage, and complete failure, and correlated these with microscopic structural changes observed through optical and scanning electron microscopy. A finite element model was used to study the thermal–mechanical coupling effect during laser irradiation. The results indicated that at a laser energy density of 78.9 mJ/cm2, localized melting occurs within photosensitive units in the epitaxial layer, manifesting as an irreversible white bright spot appearing in the detector output image (point damage). When the energy density is further increased to 241.9 mJ/cm2, metal routings across multiple pixel units melt, resulting in horizontal and vertical black lines in the output image (line damage). Upon reaching 2005.4 mJ/cm2, the entire sensor area failed to output any valid image due to thermal stress-induced delamination of the silicon dioxide insulation layer, with cracks propagating to the metal routing and epitaxial layers, ultimately causing structural deformation and device failure (complete failure). Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

16 pages, 3766 KiB  
Article
Evaluation of Energy and CO2 Reduction Through Envelope Retrofitting: A Case Study of a Public Building in South Korea Conducted Using Utility Billing Data
by Hansol Lee and Gyeong-Seok Choi
Energies 2025, 18(15), 4129; https://doi.org/10.3390/en18154129 - 4 Aug 2025
Abstract
This study empirically evaluates the energy and carbon reduction effects of an envelope retrofit applied to an aging public building in South Korea. Unlike previous studies that primarily relied on simulation-based analyses, this work fills the empirical research gap by using actual utility [...] Read more.
This study empirically evaluates the energy and carbon reduction effects of an envelope retrofit applied to an aging public building in South Korea. Unlike previous studies that primarily relied on simulation-based analyses, this work fills the empirical research gap by using actual utility billing data collected over one pre-retrofit year (2019) and two post-retrofit years (2023–2024). The retrofit included improvements to exterior walls, roofs, and windows, aiming to enhance thermal insulation and airtightness. The analysis revealed that monthly electricity consumption was reduced by 14.7% in 2023 and 8.0% in 2024 compared to that in the baseline year, with corresponding decreases in electricity costs and carbon dioxide emissions. Seasonal variations were evident: energy savings were significant in the winter due to reduced heating demand, while cooling energy use slightly increased in the summer, likely due to diminished solar heat gains resulting from improved insulation. By addressing both heating and cooling impacts, this study offers practical insights into the trade-offs of envelope retrofitting. The findings contribute to the body of knowledge by demonstrating the real-world performance of retrofit technologies and providing data-driven evidence that can inform policies and strategies for improving energy efficiency in public buildings. Full article
Show Figures

Figure 1

20 pages, 3465 KiB  
Article
Inhibitory Effects of Selected Chemical Substances on the Growth of Filamentous Fungi Occurring in Cellar Management
by Karolina Kostelnikova, Romana Heralecka, Anna Krpatova, Filip Matousek, Jiri Sochor and Mojmir Baron
Microbiol. Res. 2025, 16(8), 182; https://doi.org/10.3390/microbiolres16080182 - 4 Aug 2025
Abstract
This study evaluated the inhibitory efficacy of sulphur dioxide, hydrogen peroxide, copper sulphate pentahydrate, chlorine-based formulations, a chlorine-free formulation, ethanol, and acetic acid against Cladosporium cladosporioides, Aspergillus niger, and Penicillium expansum. An in vitro inhibition test was employed to investigate [...] Read more.
This study evaluated the inhibitory efficacy of sulphur dioxide, hydrogen peroxide, copper sulphate pentahydrate, chlorine-based formulations, a chlorine-free formulation, ethanol, and acetic acid against Cladosporium cladosporioides, Aspergillus niger, and Penicillium expansum. An in vitro inhibition test was employed to investigate the inhibitory properties. The results demonstrated different sensitivities of filamentous fungi to the inhibitors. All tested substances displayed fungicidal properties. Sulphur dioxide (40% NH4HSO3 solution) inhibited growth at a 4% v/v concentration. No minimum effective concentration was established for H2O2; only a 30% w/v solution inhibited P. expansum. CuSO4·5H2O completely inhibited fungal growth at 5% w/v solution, with 2.5% w/v also proving effective. For the chlorine-based product, 40% w/v solution (48 g∙L−1 active chlorine) had the most substantial effect, though it only slowed growth, and NaClO solution completely inhibited growth at 2.35 g NaClO per 100 g of product (50% w/v solution). FungiSAN demonstrated fungicidal effects; however, the recommended dose was insufficient for complete inhibition. Ethanol exhibited the lowest efficacy, while the inhibitory threshold for CH3COOH was found to be a 5% v/v solution. The findings of this study may serve as a basis for informed decision-making when selecting the most suitable product, depending on specific application conditions. Full article
Show Figures

Graphical abstract

14 pages, 5700 KiB  
Article
The Design of Diatomite/TiO2/MoS2/Nitrogen-Doped Carbon Nanofiber Composite Separators for Lithium–Sulfur Batteries
by Wei Zhong, Wenjie Xiao, Jianfei Liu, Chuxiao Yang, Sainan Liu and Zhenyang Cai
Materials 2025, 18(15), 3654; https://doi.org/10.3390/ma18153654 - 4 Aug 2025
Abstract
Severe polysulfide shuttling and sluggish redox kinetics critically hinder lithium–sulfur (Li-S) battery commercialization. In this study, a multifunctional diatomite (DE)/TiO2/MoS2/N-doped carbon nanofiber (NCNF) composite separator was fabricated via hydrothermal synthesis, electrospinning, and carbonization. DE provides dual polysulfide suppression, encompassing [...] Read more.
Severe polysulfide shuttling and sluggish redox kinetics critically hinder lithium–sulfur (Li-S) battery commercialization. In this study, a multifunctional diatomite (DE)/TiO2/MoS2/N-doped carbon nanofiber (NCNF) composite separator was fabricated via hydrothermal synthesis, electrospinning, and carbonization. DE provides dual polysulfide suppression, encompassing microporous confinement and electrostatic repulsion. By integrating synergistic catalytic effects from TiO2 and MoS2 nanoparticles, which accelerate polysulfide conversion, and conductive NCNF networks, which facilitate rapid charge transfer, this hierarchical design achieves exceptional electrochemical performance: a 1245.6 mAh g−1 initial capacity at 0.5 C and 65.94% retention after 200 cycles. This work presents a rational multi-component engineering strategy to suppress shuttle effects in high-energy-density Li-S batteries. Full article
Show Figures

Figure 1

16 pages, 2276 KiB  
Article
Effect of Nanoparticles on the Development of Bacterial Speck in Tomato (Solanum lycopersicum L.) and Chili Variegation (Capsicum annuum L.)
by Edgar Alejandro Ruiz-Ramirez, Daniel Leobardo Ochoa-Martínez, Gilberto Velázquez-Juárez, Reyna Isabel Rojas-Martinez and Victor Manuel Zuñiga-Mayo
Horticulturae 2025, 11(8), 907; https://doi.org/10.3390/horticulturae11080907 (registering DOI) - 4 Aug 2025
Abstract
Among the new strategies for managing diseases in agricultural crops is the application of metallic nanoparticles due to their ability to inhibit the development of phytopathogenic microorganisms and to induce plant defense responses. Therefore, this research evaluated the effects of silver (AgNPs), zinc [...] Read more.
Among the new strategies for managing diseases in agricultural crops is the application of metallic nanoparticles due to their ability to inhibit the development of phytopathogenic microorganisms and to induce plant defense responses. Therefore, this research evaluated the effects of silver (AgNPs), zinc oxide (ZnONPs), and silicon dioxide (SiO2NPs) nanoparticles on symptom progression and physiological parameters in two pathosystems: Pseudomonas syringae pv. tomato (Psto) in tomato (pathosystem one, culturable pathogen) and Candidatus Liberibacter solanacearum (CaLso) in pepper plants (pathosystem two, non-culturable pathogen). For in vitro pathosystem one assays, SiO2NPs did not inhibit Psto growth. The minimum inhibitory concentration (MIC) was 31.67 ppm for AgNPs and 194.3 ppm for ZnONPs. Furthermore, the minimum lethal concentration (MLC) for AgNPs was 100 ppm, while for ZnONPs, it was 1000 ppm. For in planta assays, ZnONPs, AgNPs, and SiO2NPs reduced the number of lesions per leaf, but only ZnONPs significantly decreased the severity. Regarding pathosystem two, AgNPs, ZnONPs, and SiO2NPs application delayed symptom progression. However, only AgNPs significantly reduced severity percentage. Moreover, treatments with AgNPs and SiO2NPs increased the plant height and dry weight compared to the results for the control. Full article
Show Figures

Figure 1

15 pages, 3571 KiB  
Article
Thermal Modulation of Photonic Spin Hall Effect in Vortex Beam Based on MIM-VO2 Metasurface
by Li Luo, Jiahui Huo, Yuanyuan Lv, Jie Li, Yu He, Xiao Liang, Sui Peng, Bo Liu, Ling Zhou, Yuxin Zou, Yuting Wang, Jingjing Bian and Yuting Yang
Surfaces 2025, 8(3), 55; https://doi.org/10.3390/surfaces8030055 - 3 Aug 2025
Viewed by 31
Abstract
The photon spin Hall effect (PSHE) arises from the spin–orbit interaction of light. Metasurfaces enable precise control over the PSHE through their influence. Using electromagnetic simulations as its foundation, this work engineers a metal–insulator–metal (MIM) metasurface for generating vortex beams in the near-infrared [...] Read more.
The photon spin Hall effect (PSHE) arises from the spin–orbit interaction of light. Metasurfaces enable precise control over the PSHE through their influence. Using electromagnetic simulations as its foundation, this work engineers a metal–insulator–metal (MIM) metasurface for generating vortex beams in the near-infrared band, targeting enhanced modulation of the PSHE. Electromagnetic simulations embed vanadium dioxide (VO2)—a thermally responsive phase-change material—within the MIM metasurface architecture. Numerical evidence confirms that harnessing VO2’s insulator–metal-transition-mediated optical switching dynamically tailors spin-dependent splitting in the illuminated MIM-VO2 hybrid, thereby achieving a significant amplification of the PSHE displacement. Electromagnetic simulations determine the reflection coefficients for both VO2 phase states in the MIM-VO2 structure. Computed spin displacements under vortex beam incidence reveal that VO2’s phase transition couples to the MIM’s top metal and dielectric layers, modifying reflection coefficients and producing phase-dependent PSHE displacements. The simulation results show that the displacement change of the PSHE before and after the phase transition of VO2 reaches 954.7 µm, achieving a significant improvement compared with the traditional layered structure. The dynamic modulation mechanism of the PSHE based on the thermal–optical effect has been successfully verified. Full article
Show Figures

Figure 1

20 pages, 10502 KiB  
Article
Strengthening Mechanism of Char in Thermal Reduction Process of Silicon Dioxide
by Xiuli Xu, Peng Yu, Jinxiao Dou and Jianglong Yu
Materials 2025, 18(15), 3651; https://doi.org/10.3390/ma18153651 - 3 Aug 2025
Viewed by 97
Abstract
This study investigates the strengthening mechanisms of char in silicon dioxide thermal reduction through systematic high-temperature experiments using three char types (YQ1, CW1, HY1) characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and scanning electron microscopy. HY1 char demonstrated superior reactivity due [...] Read more.
This study investigates the strengthening mechanisms of char in silicon dioxide thermal reduction through systematic high-temperature experiments using three char types (YQ1, CW1, HY1) characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and scanning electron microscopy. HY1 char demonstrated superior reactivity due to its highly ordered microcrystalline structure, characterized by the largest aromatic cluster size (La) and lowest defect ratio (ID/IG = 0.37), which directly correlated with enhanced reaction completeness. The carbon–silicon reaction reactivity increased progressively with temperature, achieving optimal performance at 1550 °C. Addition of Fe and Fe2O3 significantly accelerated the reduction process, with Fe2O3 exhibiting superior catalytic performance by reducing activation energy and optimizing reaction kinetics. The ferrosilicon formation mechanism proceeds through a two-stage pathway: initial char-SiO2 reaction producing SiC and CO, followed by SiC–iron interaction generating FeSi, which catalytically promotes further reduction. These findings establish critical structure–performance relationships for char selection in industrial silicon production, where microcrystalline ordering emerges as the primary performance determinant. The identification of optimal temperature and additive conditions provides practical pathways to enhance energy efficiency and product quality in silicon metallurgy, enabling informed raw material selection and process optimization to reduce energy consumption and improve operational stability. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

Back to TopTop