Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,050)

Search Parameters:
Keywords = 4F integration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2997 KiB  
Article
TriagE-NLU: A Natural Language Understanding System for Clinical Triage and Intervention in Multilingual Emergency Dialogues
by Béatrix-May Balaban, Ioan Sacală and Alina-Claudia Petrescu-Niţă
Future Internet 2025, 17(7), 314; https://doi.org/10.3390/fi17070314 - 18 Jul 2025
Abstract
Telemedicine in emergency contexts presents unique challenges, particularly in multilingual and low-resource settings where accurate, clinical understanding and triage decision support are critical. This paper introduces TriagE-NLU, a novel multilingual natural language understanding system designed to perform both semantic parsing and clinical intervention [...] Read more.
Telemedicine in emergency contexts presents unique challenges, particularly in multilingual and low-resource settings where accurate, clinical understanding and triage decision support are critical. This paper introduces TriagE-NLU, a novel multilingual natural language understanding system designed to perform both semantic parsing and clinical intervention classification from emergency dialogues. The system is built on a federated learning architecture to ensure data privacy and adaptability across regions and is trained using TriageX, a synthetic, clinically grounded dataset covering five languages (English, Spanish, Romanian, Arabic, and Mandarin). TriagE-NLU integrates fine-tuned multilingual transformers with a hybrid rules-and-policy decision engine, enabling it to parse structured medical information (symptoms, risk factors, temporal markers) and recommend appropriate interventions based on recognized patterns. Evaluation against strong multilingual baselines, including mT5, mBART, and XLM-RoBERTa, demonstrates superior performance by TriagE-NLU, achieving F1 scores of 0.91 for semantic parsing and 0.89 for intervention classification, along with 0.92 accuracy and a BLEU score of 0.87. These results validate the system’s robustness in multilingual emergency telehealth and its ability to generalize across diverse input scenarios. This paper establishes a new direction for privacy-preserving, AI-assisted triage systems. Full article
(This article belongs to the Section Big Data and Augmented Intelligence)
20 pages, 2083 KiB  
Article
Flying Steel Detection in Wire Rod Production Based on Improved You Only Look Once v8
by Yifan Lu, Fei Zhang, Xiaozhan Li, Jian Zhang, Xiong Xiao, Lijun Wang and Xiaofei Xiang
Processes 2025, 13(7), 2297; https://doi.org/10.3390/pr13072297 - 18 Jul 2025
Abstract
In the process of high-speed wire rod production, flying steel accidents may occur due to various reasons. Current detection methods relying on sensors like hardware make debugging complex as well as limit real-time and accuracy. These methods are complicated to debug, and the [...] Read more.
In the process of high-speed wire rod production, flying steel accidents may occur due to various reasons. Current detection methods relying on sensors like hardware make debugging complex as well as limit real-time and accuracy. These methods are complicated to debug, and the real-time and accuracy of detection are poor. Therefore, this paper proposes a flying steel detection method based on improved You Only Look Once v8 (YOLOv8), which can realize high-precision flying steel detection based on machine vision through the monitoring video of the production site. Firstly, the Omni-dimensional Dynamic Convolution (ODConv) is added to the backbone network to improve the feature extraction ability of the input image. Then, a lightweight C2f-PCCA_RVB module is proposed to be integrated into the neck network, so as to carry out the lightweight design of the neck network. Finally, the Efficient Multi-Scale Attention (EMA) module is added to the neck network to fuse the context information of different scales and improve the feature extraction ability. The experimental results show that the average accuracy (mAP@0.5) of the flying steel detection method based on the improved YOLOv8 is 99.1%, and the latency is reduced to 2.5 ms, which can realize the real-time accurate detection of the flying steel. Full article
20 pages, 5236 KiB  
Article
Leakage Detection in Subway Tunnels Using 3D Point Cloud Data: Integrating Intensity and Geometric Features with XGBoost Classifier
by Anyin Zhang, Junjun Huang, Zexin Sun, Juju Duan, Yuanai Zhang and Yueqian Shen
Sensors 2025, 25(14), 4475; https://doi.org/10.3390/s25144475 - 18 Jul 2025
Abstract
Detecting leakage using a point cloud acquired by mobile laser scanning (MLS) presents significant challenges, particularly from within three-dimensional space. These challenges primarily arise from the prevalence of noise in tunnel point clouds and the difficulty in accurately capturing the three-dimensional morphological characteristics [...] Read more.
Detecting leakage using a point cloud acquired by mobile laser scanning (MLS) presents significant challenges, particularly from within three-dimensional space. These challenges primarily arise from the prevalence of noise in tunnel point clouds and the difficulty in accurately capturing the three-dimensional morphological characteristics of leakage patterns. To address these limitations, this study proposes a classification method based on XGBoost classifier, integrating both intensity and geometric features. The proposed methodology comprises the following steps: First, a RANSAC algorithm is employed to filter out noise from tunnel objects, such as facilities, tracks, and bolt holes, which exhibit intensity values similar to leakage. Next, intensity features are extracted to facilitate the initial separation of leakage regions from the tunnel lining. Subsequently, geometric features derived from the k neighborhood are incorporated to complement the intensity features, enabling more effective segmentation of leakage from the lining structures. The optimal neighborhood scale is determined by selecting the scale that yields the highest F1-score for leakage across various multiple evaluated scales. Finally, the XGBoost classifier is applied to the binary classification to distinguish leakage from tunnel lining. Experimental results demonstrate that the integration of geometric features significantly enhances leakage detection accuracy, achieving an F1-score of 91.18% and 97.84% on two evaluated datasets, respectively. The consistent performance across four heterogeneous datasets indicates the robust generalization capability of the proposed methodology. Comparative analysis further shows that XGBoost outperforms other classifiers, such as Random Forest, AdaBoost, LightGBM, and CatBoost, in terms of balance of accuracy and computational efficiency. Moreover, compared to deep learning models, including PointNet, PointNet++, and DGCNN, the proposed method demonstrates superior performance in both detection accuracy and computational efficiency. Full article
(This article belongs to the Special Issue Application of LiDAR Remote Sensing and Mapping)
Show Figures

Figure 1

25 pages, 6248 KiB  
Article
Low-Cost Strain-Gauge Force-Sensing Sidestick for 6-DoF Flight Simulation: Design and Human-in-the-Loop Evaluation
by Patrik Rožić, Milan Vrdoljak, Karolina Krajček Nikolić and Jurica Ivošević
Sensors 2025, 25(14), 4476; https://doi.org/10.3390/s25144476 - 18 Jul 2025
Abstract
Modern fly-by-wire (FBW) aircraft demand high-fidelity simulation systems for research and training, yet existing force-sensing solutions are often prohibitively expensive. This study presents the design, development, and validation of a low-cost, reconfigurable force-sensing sidestick. The system utilizes four strain-gauge load cells to capture [...] Read more.
Modern fly-by-wire (FBW) aircraft demand high-fidelity simulation systems for research and training, yet existing force-sensing solutions are often prohibitively expensive. This study presents the design, development, and validation of a low-cost, reconfigurable force-sensing sidestick. The system utilizes four strain-gauge load cells to capture pure pilot force inputs, integrated with a 6-DoF non-linear flight model. To evaluate its performance, a pitch-angle tracking task was conducted with 16 participants (pilots and non-pilots). Objective metrics revealed that the control strategy was a primary determinant of performance. Participants employing a proactive feedforward control strategy exhibited roughly an order of magnitude lower tracking-error variance than those relying on reactive corrections. Subjective assessments using the Cooper-Harper scale and NASA-TLX corroborated the objective data, confirming the sidestick’s ability to differentiate control techniques. This work demonstrates an open-source platform that makes high-fidelity FBW simulation accessible for academic research, pilot training, and human factors analysis at a fraction of the cost of commercial systems. Full article
Show Figures

Figure 1

17 pages, 4334 KiB  
Article
Wafer-Level Fabrication of Radiofrequency Devices Featuring 2D Materials Integration
by Vitor Silva, Ivo Colmiais, Hugo Dinis, Jérôme Borme, Pedro Alpuim and Paulo M. Mendes
Nanomaterials 2025, 15(14), 1119; https://doi.org/10.3390/nano15141119 - 18 Jul 2025
Abstract
Two-dimensional (2D) materials have been proposed for use in a multitude of applications, with graphene being one of the most well-known 2D materials. Despite their potential to contribute to innovative solutions, the fabrication of such devices still faces significant challenges. One of the [...] Read more.
Two-dimensional (2D) materials have been proposed for use in a multitude of applications, with graphene being one of the most well-known 2D materials. Despite their potential to contribute to innovative solutions, the fabrication of such devices still faces significant challenges. One of the key challenges is the fabrication at a wafer-level scale, a fundamental step for allowing reliable and reproducible fabrication of a large volume of devices with predictable properties. Overcoming this barrier will allow further integration with sensors and actuators, as well as enabling the fabrication of complex circuits based on 2D materials. This work presents the fabrication steps for a process that allows the on-wafer fabrication of active and passive radiofrequency (RF) devices enabled by graphene. Two fabrication processes are presented. In the first one, graphene is transferred to a back gate surface using critical point drying to prevent cracks in the graphene. In the second process, graphene is transferred to a flat surface planarized by ion milling, with the gate being buried beneath the graphene. The fabrication employs a damascene-like process, ensuring a flat surface that preserves the graphene lattice. RF transistors, passive RF components, and antennas designed for backscatter applications are fabricated and measured, illustrating the versatility and potential of the proposed method for 2D material-based RF devices. The integration of graphene on devices is also demonstrated in an antenna. This aimed to demonstrate that graphene can also be used as a passive device. Through this device, it is possible to measure different backscatter responses according to the applied graphene gating voltage, demonstrating the possibility of wireless sensor development. With the proposed fabrication processes, a flat graphene with good quality is achieved, leading to the fabrication of RF active devices (graphene transistors) with intrinsic fT and fmax of 14 GHz and 80 GHz, respectively. Excellent yield and reproducibility are achieved through these methods. Furthermore, since the graphene membranes are grown by Chemical Vapor Deposition (CVD), it is expected that this process can also be applied to other 2D materials. Full article
(This article belongs to the Special Issue Advanced 2D Materials for Emerging Application)
Show Figures

Figure 1

15 pages, 4874 KiB  
Article
A Novel 3D Convolutional Neural Network-Based Deep Learning Model for Spatiotemporal Feature Mapping for Video Analysis: Feasibility Study for Gastrointestinal Endoscopic Video Classification
by Mrinal Kanti Dhar, Mou Deb, Poonguzhali Elangovan, Keerthy Gopalakrishnan, Divyanshi Sood, Avneet Kaur, Charmy Parikh, Swetha Rapolu, Gianeshwaree Alias Rachna Panjwani, Rabiah Aslam Ansari, Naghmeh Asadimanesh, Shiva Sankari Karuppiah, Scott A. Helgeson, Venkata S. Akshintala and Shivaram P. Arunachalam
J. Imaging 2025, 11(7), 243; https://doi.org/10.3390/jimaging11070243 - 18 Jul 2025
Abstract
Accurate analysis of medical videos remains a major challenge in deep learning (DL) due to the need for effective spatiotemporal feature mapping that captures both spatial detail and temporal dynamics. Despite advances in DL, most existing models in medical AI focus on static [...] Read more.
Accurate analysis of medical videos remains a major challenge in deep learning (DL) due to the need for effective spatiotemporal feature mapping that captures both spatial detail and temporal dynamics. Despite advances in DL, most existing models in medical AI focus on static images, overlooking critical temporal cues present in video data. To bridge this gap, a novel DL-based framework is proposed for spatiotemporal feature extraction from medical video sequences. As a feasibility use case, this study focuses on gastrointestinal (GI) endoscopic video classification. A 3D convolutional neural network (CNN) is developed to classify upper and lower GI endoscopic videos using the hyperKvasir dataset, which contains 314 lower and 60 upper GI videos. To address data imbalance, 60 matched pairs of videos are randomly selected across 20 experimental runs. Videos are resized to 224 × 224, and the 3D CNN captures spatiotemporal information. A 3D version of the parallel spatial and channel squeeze-and-excitation (P-scSE) is implemented, and a new block called the residual with parallel attention (RPA) block is proposed by combining P-scSE3D with a residual block. To reduce computational complexity, a (2 + 1)D convolution is used in place of full 3D convolution. The model achieves an average accuracy of 0.933, precision of 0.932, recall of 0.944, F1-score of 0.935, and AUC of 0.933. It is also observed that the integration of P-scSE3D increased the F1-score by 7%. This preliminary work opens avenues for exploring various GI endoscopic video-based prospective studies. Full article
Show Figures

Figure 1

21 pages, 5616 KiB  
Article
Symmetry-Guided Dual-Branch Network with Adaptive Feature Fusion and Edge-Aware Attention for Image Tampering Localization
by Zhenxiang He, Le Li and Hanbin Wang
Symmetry 2025, 17(7), 1150; https://doi.org/10.3390/sym17071150 - 18 Jul 2025
Abstract
When faced with diverse types of image tampering and image quality degradation in real-world scenarios, traditional image tampering localization methods often struggle to balance boundary accuracy and robustness. To address these issues, this paper proposes a symmetric guided dual-branch image tampering localization network—FENet [...] Read more.
When faced with diverse types of image tampering and image quality degradation in real-world scenarios, traditional image tampering localization methods often struggle to balance boundary accuracy and robustness. To address these issues, this paper proposes a symmetric guided dual-branch image tampering localization network—FENet (Fusion-Enhanced Network)—that integrates adaptive feature fusion and edge attention mechanisms. This method is based on a structurally symmetric dual-branch architecture, which extracts RGB semantic features and SRM noise residual information to comprehensively capture the fine-grained differences in tampered regions at the visual and statistical levels. To effectively fuse different features, this paper designs a self-calibrating fusion module (SCF), which introduces a content-aware dynamic weighting mechanism to adaptively adjust the importance of different feature branches, thereby enhancing the discriminative power and expressiveness of the fused features. Furthermore, considering that image tampering often involves abnormal changes in edge structures, we further propose an edge-aware coordinate attention mechanism (ECAM). By jointly modeling spatial position information and edge-guided information, the model is guided to focus more precisely on potential tampering boundaries, thereby enhancing its boundary detection and localization capabilities. Experiments on public datasets such as Columbia, CASIA, and NIST16 demonstrate that FENet achieves significantly better results than existing methods. We also analyze the model’s performance under various image quality conditions, such as JPEG compression and Gaussian blur, demonstrating its robustness in real-world scenarios. Experiments in Facebook, Weibo, and WeChat scenarios show that our method achieves average F1 scores that are 2.8%, 3%, and 5.6% higher than those of existing state-of-the-art methods, respectively. Full article
Show Figures

Figure 1

24 pages, 2021 KiB  
Article
A Framework for Constructing Large-Scale Dynamic Datasets for Water Conservancy Image Recognition Using Multi-Role Collaboration and Intelligent Annotation
by Xueying Song, Xiaofeng Wang, Ganggang Zuo and Jiancang Xie
Appl. Sci. 2025, 15(14), 8002; https://doi.org/10.3390/app15148002 - 18 Jul 2025
Abstract
The construction of large-scale, dynamic datasets for specialized domain models often suffers with problems of low efficiency and poor consistency. This paper proposes a method that integrates multi-role collaboration with automated annotation to address these issues. The framework introduces two new roles, data [...] Read more.
The construction of large-scale, dynamic datasets for specialized domain models often suffers with problems of low efficiency and poor consistency. This paper proposes a method that integrates multi-role collaboration with automated annotation to address these issues. The framework introduces two new roles, data augmentation specialists and automatic annotation operators, to establish a closed-loop process that includes dynamic classification adjustment, data augmentation, and intelligent annotation. Two supporting tools were developed: an image classification modification tool that automatically adapts to changes in categories and an automatic annotation tool with rotation-angle perception based on the rotation matrix algorithm. Experimental results show that this method increases annotation efficiency by 40% compared to traditional approaches, while achieving 100% annotation consistency after classification modifications. The method’s effectiveness was validated using the WATER-DET dataset, a collection of 1500 annotated images from the water conservancy engineering field. A model trained on this dataset achieved an F1-score of 0.9 for identifying water environment problems in rivers and lakes. This research offers an efficient framework for dynamic dataset construction, and the developed methods and tools are expected to promote the application of artificial intelligence in specialized domains. Full article
Show Figures

Figure 1

16 pages, 1435 KiB  
Case Report
Multidimensional Effects of Manual Therapy Combined with Pain Neuroscience-Based Sensorimotor Retraining in a Patient with Chronic Neck Pain: A Case Study Using fNIRS
by Song-ui Bae, Ju-hyeon Jung and Dong-chul Moon
Healthcare 2025, 13(14), 1734; https://doi.org/10.3390/healthcare13141734 - 18 Jul 2025
Abstract
Chronic neck pain is a multifactorial condition involving physical, psychological, and neurological dimensions. This case report describes the clinical course of a 25-year-old female with chronic neck pain and recurrent headaches who underwent a 6-week integrative intervention consisting of manual therapy and pain [...] Read more.
Chronic neck pain is a multifactorial condition involving physical, psychological, and neurological dimensions. This case report describes the clinical course of a 25-year-old female with chronic neck pain and recurrent headaches who underwent a 6-week integrative intervention consisting of manual therapy and pain neuroscience-based sensorimotor retraining, administered three times per week. Outcome measures included the Headache Impact Test-6 (HIT-6), Neck Pain and Disability Scale (NPDS), Pain Catastrophizing Scale (PCS), Fear-Avoidance Beliefs Questionnaire (FABQ), pressure pain threshold (PPT), cervical range of motion (CROM), and functional near-infrared spectroscopy (fNIRS) to assess brain activity. Following the intervention, the patient demonstrated marked reductions in pain and psychological distress: HIT-6 decreased from 63 to 24 (61.9%), NPDS from 31 to 4 (87.1%), FABQ from 24 to 0 (100%), and PCS from 19 to 2 (89.5%). Improvements in PPT and CROM were also observed. fNIRS revealed decreased dorsolateral prefrontal cortex (DLPFC) activation during pain stimulation and movement tasks, suggesting a possible reduction in central sensitization burden. These findings illustrate that an integrative approach targeting biopsychosocial pain mechanisms may be beneficial in managing chronic neck pain, improving function, and modulating cortical responses. This report provides preliminary evidence in support of the clinical relevance of combining manual therapy with neurocognitive retraining in similar patients. Full article
Show Figures

Figure 1

22 pages, 12507 KiB  
Article
Research on the Friction Prediction Method of Micro-Textured Cemented Carbide–Titanium Alloy Based on the Noise Signal
by Hao Zhang, Xin Tong and Baiyi Wang
Coatings 2025, 15(7), 843; https://doi.org/10.3390/coatings15070843 - 18 Jul 2025
Abstract
The vibration and noise of friction pairs are severe when cutting titanium alloy with cemented carbide tools, and the surface micro-texture can significantly reduce noise and friction. Therefore, it is very important to clarify the correlation mechanism between friction noise and friction force [...] Read more.
The vibration and noise of friction pairs are severe when cutting titanium alloy with cemented carbide tools, and the surface micro-texture can significantly reduce noise and friction. Therefore, it is very important to clarify the correlation mechanism between friction noise and friction force for processing quality control. Consequently, investigating the underlying mechanisms that link friction noise and friction is of considerable importance. This study focuses on the friction and wear acoustic signals generated by micro-textured cemented carbide–titanium alloy. A friction testing platform specifically designed for the micro-textured cemented carbide grinding of titanium alloy has been established. Acoustic sensors are employed to capture the acoustic signals, while ultra-depth-of-field microscopy and scanning electron microscopy are utilized for surface analysis. A novel approach utilizing the dung beetle algorithm (DBO) is proposed to optimize the parameters of variational mode decomposition (VMD), which is subsequently combined with wavelet packet threshold denoising (WPT) to enhance the quality of the original signal. Continuous wavelet transform (CWT) is applied for time–frequency analysis, facilitating a discussion on the underlying mechanisms of micro-texture. Additionally, features are extracted from the time domain, frequency domain, wavelet packet, and entropy. The Relief-F algorithm is employed to identify 19 significant features, leading to the development of a hybrid model that integrates Bayesian optimization (BO) and Transformer-LSTM for predicting friction. Experimental results indicate that the model achieves an R2 value of 0.9835, a root mean square error (RMSE) of 0.2271, a mean absolute error (MAE) of 0.1880, and a mean bias error (MBE) of 0.1410 on the test dataset. The predictive performance and stability of this model are markedly superior to those of the BO-LSTM, LSTM–Attention, and CNN–LSTM–Attention models. This research presents a robust methodology for predicting friction in the context of friction and wear of cemented carbide–titanium alloys. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

24 pages, 2173 KiB  
Article
A Novel Ensemble of Deep Learning Approach for Cybersecurity Intrusion Detection with Explainable Artificial Intelligence
by Abdullah Alabdulatif
Appl. Sci. 2025, 15(14), 7984; https://doi.org/10.3390/app15147984 - 17 Jul 2025
Abstract
In today’s increasingly interconnected digital world, cyber threats have grown in frequency and sophistication, making intrusion detection systems a critical component of modern cybersecurity frameworks. Traditional IDS methods, often based on static signatures and rule-based systems, are no longer sufficient to detect and [...] Read more.
In today’s increasingly interconnected digital world, cyber threats have grown in frequency and sophistication, making intrusion detection systems a critical component of modern cybersecurity frameworks. Traditional IDS methods, often based on static signatures and rule-based systems, are no longer sufficient to detect and respond to complex and evolving attacks. To address these challenges, Artificial Intelligence and machine learning have emerged as powerful tools for enhancing the accuracy, adaptability, and automation of IDS solutions. This study presents a novel, hybrid ensemble learning-based intrusion detection framework that integrates deep learning and traditional ML algorithms with explainable artificial intelligence for real-time cybersecurity applications. The proposed model combines an Artificial Neural Network and Support Vector Machine as base classifiers and employs a Random Forest as a meta-classifier to fuse predictions, improving detection performance. Recursive Feature Elimination is utilized for optimal feature selection, while SHapley Additive exPlanations (SHAP) provide both global and local interpretability of the model’s decisions. The framework is deployed using a Flask-based web interface in the Amazon Elastic Compute Cloud environment, capturing live network traffic and offering sub-second inference with visual alerts. Experimental evaluations using the NSL-KDD dataset demonstrate that the ensemble model outperforms individual classifiers, achieving a high accuracy of 99.40%, along with excellent precision, recall, and F1-score metrics. This research not only enhances detection capabilities but also bridges the trust gap in AI-powered security systems through transparency. The solution shows strong potential for application in critical domains such as finance, healthcare, industrial IoT, and government networks, where real-time and interpretable threat detection is vital. Full article
Show Figures

Figure 1

32 pages, 18526 KiB  
Article
Phylogenomic, Morphological, and Phylogenetic Evidence Reveals Five New Species and Two New Host Records of Nectriaceae (Hypocreales) from China
by Qi Fan, Pingping Su, Jiachen Xiao, Fangwei Lou, Xiaoyuan Huang, Zhuliang Yang, Baozheng Chen, Peihong Shen and Yuanbing Wang
Biology 2025, 14(7), 871; https://doi.org/10.3390/biology14070871 - 17 Jul 2025
Abstract
Fusarioid fungi, members of the Nectriaceae within the Hypocreales (Ascomycota), exhibit diverse ecological roles and possess complex phylogenetic relationships, including endophytic, saprophytic, and pathogenic lifestyles. Among them, the genera Fusarium and Neocosmospora are particularly significant in agriculture and medicine. However, the [...] Read more.
Fusarioid fungi, members of the Nectriaceae within the Hypocreales (Ascomycota), exhibit diverse ecological roles and possess complex phylogenetic relationships, including endophytic, saprophytic, and pathogenic lifestyles. Among them, the genera Fusarium and Neocosmospora are particularly significant in agriculture and medicine. However, the boundaries between their species remain taxonomically contentious. In this study, 22 representative isolates from plant, fungal, and insect hosts were subjected to a polyphasic taxonomic approach that integrated morphological characterization, multilocus phylogenetic analyses, and phylogenomic analysis based on 4,941 single-copy orthologous genes. Consequently, five new species (F. dracaenophilum, F. puerense, F. wenshanense, N. alboflava, and N. fungicola) were described, and F. qiannanense and N. solani were recorded from new host species. The resulting phylogenomic tree topology was highly congruent with the multilocus phylogeny, providing robust support for the taxonomic distinction between Fusarium and Neocosmospora. This study provides new insights into the taxonomy of fusarioid fungi and has important implications for plant disease management, biodiversity conservation, and the study of fungal evolution. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

22 pages, 15594 KiB  
Article
Seasonally Robust Offshore Wind Turbine Detection in Sentinel-2 Imagery Using Imaging Geometry-Aware Deep Learning
by Xike Song and Ziyang Li
Remote Sens. 2025, 17(14), 2482; https://doi.org/10.3390/rs17142482 - 17 Jul 2025
Abstract
Remote sensing has emerged as a promising technology for large-scale detection and updating of global wind turbine databases. High-resolution imagery (e.g., Google Earth) facilitates the identification of offshore wind turbines (OWTs) but offers limited offshore coverage due to the high cost of capturing [...] Read more.
Remote sensing has emerged as a promising technology for large-scale detection and updating of global wind turbine databases. High-resolution imagery (e.g., Google Earth) facilitates the identification of offshore wind turbines (OWTs) but offers limited offshore coverage due to the high cost of capturing vast ocean areas. In contrast, medium-resolution imagery, such as 10-m Sentinel-2, provides broad ocean coverage but depicts turbines only as small bright spots and shadows, making accurate detection challenging. To address these limitations, We propose a novel deep learning approach to capture the variability in OWT appearance and shadows caused by changes in solar illumination and satellite viewing geometry. Our method learns intrinsic, imaging geometry-invariant features of OWTs, enabling robust detection across multi-seasonal Sentinel-2 imagery. This approach is implemented using Faster R-CNN as the baseline, with three enhanced extensions: (1) direct integration of imaging parameters, where Geowise-Net incorporates solar and view angular information of satellite metadata to improve geometric awareness; (2) implicit geometry learning, where Contrast-Net employs contrastive learning on seasonal image pairs to capture variability in turbine appearance and shadows caused by changes in solar and viewing geometry; and (3) a Composite model that integrates the above two geometry-aware models to utilize their complementary strengths. All four models were evaluated using Sentinel-2 imagery from offshore regions in China. The ablation experiments showed a progressive improvement in detection performance in the following order: Faster R-CNN < Geowise-Net < Contrast-Net < Composite. Seasonal tests demonstrated that the proposed models maintained high performance on summer images against the baseline, where turbine shadows are significantly shorter than in winter scenes. The Composite model, in particular, showed only a 0.8% difference in the F1 score between the two seasons, compared to up to 3.7% for the baseline, indicating strong robustness to seasonal variation. By applying our approach to 887 Sentinel-2 scenes from China’s offshore regions (2023.1–2025.3), we built the China OWT Dataset, mapping 7369 turbines as of March 2025. Full article
Show Figures

Graphical abstract

19 pages, 5755 KiB  
Article
A Context-Aware Doorway Alignment and Depth Estimation Algorithm for Assistive Wheelchairs
by Shanelle Tennekoon, Nushara Wedasingha, Anuradhi Welhenge, Nimsiri Abhayasinghe and Iain Murray
Computers 2025, 14(7), 284; https://doi.org/10.3390/computers14070284 - 17 Jul 2025
Abstract
Navigating through doorways remains a daily challenge for wheelchair users, often leading to frustration, collisions, or dependence on assistance. These challenges highlight a pressing need for intelligent doorway detection algorithm for assistive wheelchairs that go beyond traditional object detection. This study presents the [...] Read more.
Navigating through doorways remains a daily challenge for wheelchair users, often leading to frustration, collisions, or dependence on assistance. These challenges highlight a pressing need for intelligent doorway detection algorithm for assistive wheelchairs that go beyond traditional object detection. This study presents the algorithmic development of a lightweight, vision-based doorway detection and alignment module with contextual awareness. It integrates channel and spatial attention, semantic feature fusion, unsupervised depth estimation, and doorway alignment that offers real-time navigational guidance to the wheelchairs control system. The model achieved a mean average precision of 95.8% and a F1 score of 93%, while maintaining low computational demands suitable for future deployment on embedded systems. By eliminating the need for depth sensors and enabling contextual awareness, this study offers a robust solution to improve indoor mobility and deliver actionable feedback to support safe and independent doorway traversal for wheelchair users. Full article
(This article belongs to the Special Issue AI for Humans and Humans for AI (AI4HnH4AI))
Show Figures

Figure 1

21 pages, 4936 KiB  
Article
A Lightweight Pavement Defect Detection Algorithm Integrating Perception Enhancement and Feature Optimization
by Xiang Zhang, Xiaopeng Wang and Zhuorang Yang
Sensors 2025, 25(14), 4443; https://doi.org/10.3390/s25144443 - 17 Jul 2025
Abstract
To address the current issue of large computations and the difficulty in balancing model complexity and detection accuracy in pavement defect detection models, a lightweight pavement defect detection algorithm, PGS-YOLO, is proposed based on YOLOv8, which integrates perception enhancement and feature optimization. The [...] Read more.
To address the current issue of large computations and the difficulty in balancing model complexity and detection accuracy in pavement defect detection models, a lightweight pavement defect detection algorithm, PGS-YOLO, is proposed based on YOLOv8, which integrates perception enhancement and feature optimization. The algorithm first designs the Receptive-Field Convolutional Block Attention Module Convolution (RFCBAMConv) and the Receptive-Field Convolutional Block Attention Module C2f-RFCBAM, based on which we construct an efficient Perception Enhanced Feature Extraction Network (PEFNet) that enhances multi-scale feature extraction capability by dynamically adjusting the receptive field. Secondly, the dynamic upsampling module DySample is introduced into the efficient feature pyramid, constructing a new feature fusion pyramid (Generalized Dynamic Sampling Feature Pyramid Network, GDSFPN) to optimize the multi-scale feature fusion effect. In addition, a shared detail-enhanced convolution lightweight detection head (SDCLD) was designed, which significantly reduces the model’s parameters and computation while improving localization and classification performance. Finally, Wise-IoU was introduced to optimize the training performance and detection accuracy of the model. Experimental results show that PGS-YOLO increases mAP50 by 2.8% and 2.9% on the complete GRDDC2022 dataset and the Chinese subset, respectively, outperforming the other detection models. The number of parameters and computations are reduced by 10.3% and 9.9%, respectively, compared to the YOLOv8n model, with an average frame rate of 69 frames per second, offering good real-time performance. In addition, on the CRACK500 dataset, PGS-YOLO improved mAP50 by 2.3%, achieving a better balance between model complexity and detection accuracy. Full article
(This article belongs to the Topic Applied Computing and Machine Intelligence (ACMI))
Show Figures

Figure 1

Back to TopTop