Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,238)

Search Parameters:
Keywords = 4-DoF

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 8223 KiB  
Article
Optimal Time–Jerk Trajectory Planning for Manipulators Based on a Constrained Multi-Objective Dream Optimization Algorithm
by Zhijun Wu, Fang Wang and Tingting Bao
Machines 2025, 13(8), 682; https://doi.org/10.3390/machines13080682 (registering DOI) - 2 Aug 2025
Abstract
A multi-objective optimal trajectory planning method is proposed for manipulators in this paper to enhance motion efficiency and to reduce component wear while ensuring motion smoothness. The trajectory is initially interpolated in the joint space by using quintic non-uniform B-splines with virtual points, [...] Read more.
A multi-objective optimal trajectory planning method is proposed for manipulators in this paper to enhance motion efficiency and to reduce component wear while ensuring motion smoothness. The trajectory is initially interpolated in the joint space by using quintic non-uniform B-splines with virtual points, achieving the C4 continuity of joint motion and satisfying dynamic, kinematic, geometric, synchronization, and boundary constraints. The interpolation reformulates the trajectory planning problem into an optimization problem, where the time intervals between desired adjacent waypoints serve as variables. Travelling time and the integral of the squared jerk along the entire trajectories comprise the multi-objective functions. A constrained multi-objective dream optimization algorithm is designed to solve the time–jerk optimal trajectory planning problem and generate Pareto solutions for optimized trajectories. Simulations conducted on 6-DOF manipulators validate the effectiveness and superiority of the proposed method in comparison with existing typical trajectory planning methods. Full article
(This article belongs to the Special Issue Cutting-Edge Automation in Robotic Machining)
Show Figures

Figure 1

20 pages, 15898 KiB  
Article
Design of a Humanoid Upper-Body Robot and Trajectory Tracking Control via ZNN with a Matrix Derivative Observer
by Hong Yin, Hongzhe Jin, Yuchen Peng, Zijian Wang, Jiaxiu Liu, Fengjia Ju and Jie Zhao
Biomimetics 2025, 10(8), 505; https://doi.org/10.3390/biomimetics10080505 (registering DOI) - 2 Aug 2025
Abstract
Humanoid robots have attracted considerable attention for their anthropomorphic structure, extended workspace, and versatile capabilities. This paper presents a novel humanoid upper-body robotic system comprising a pair of 8-degree-of-freedom (DOF) arms, a 3-DOF head, and a 3-DOF torso—yielding a 22-DOF architecture inspired by [...] Read more.
Humanoid robots have attracted considerable attention for their anthropomorphic structure, extended workspace, and versatile capabilities. This paper presents a novel humanoid upper-body robotic system comprising a pair of 8-degree-of-freedom (DOF) arms, a 3-DOF head, and a 3-DOF torso—yielding a 22-DOF architecture inspired by human biomechanics and implemented via standardized hollow joint modules. To overcome the critical reliance of zeroing neural network (ZNN)-based trajectory tracking on the Jacobian matrix derivative, we propose an integration-enhanced matrix derivative observer (IEMDO) that incorporates nonlinear feedback and integral correction. The observer is theoretically proven to ensure asymptotic convergence and enables accurate, real-time estimation of matrix derivatives, addressing a fundamental limitation in conventional ZNN solvers. Workspace analysis reveals that the proposed design achieves an 87.7% larger total workspace and a remarkable 3.683-fold expansion in common workspace compared to conventional dual-arm baselines. Furthermore, the observer demonstrates high estimation accuracy for high-dimensional matrices and strong robustness to noise. When integrated into the ZNN controller, the IEMDO achieves high-precision trajectory tracking in both simulation and real-world experiments. The proposed framework provides a practical and theoretically grounded approach for redundant humanoid arm control. Full article
(This article belongs to the Special Issue Bio-Inspired and Biomimetic Intelligence in Robotics: 2nd Edition)
Show Figures

Figure 1

27 pages, 21019 KiB  
Article
A UWB-AOA/IMU Integrated Navigation System for 6-DoF Indoor UAV Localization
by Pengyu Zhao, Hengchuan Zhang, Gang Liu, Xiaowei Cui and Mingquan Lu
Drones 2025, 9(8), 546; https://doi.org/10.3390/drones9080546 (registering DOI) - 1 Aug 2025
Abstract
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and [...] Read more.
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and high-accuracy ranging capabilities. However, conventional UWB-based systems primarily rely on range measurements, operate at low measurement frequencies, and are incapable of providing attitude information. This paper proposes a tightly coupled error-state extended Kalman filter (TC–ESKF)-based UWB/inertial measurement unit (IMU) fusion framework. To address the challenge of initial state acquisition, a weighted nonlinear least squares (WNLS)-based initialization algorithm is proposed to rapidly estimate the UAV’s initial position and attitude under static conditions. During dynamic navigation, the system integrates time-difference-of-arrival (TDOA) and angle-of-arrival (AOA) measurements obtained from the UWB module to refine the state estimates, thereby enhancing both positioning accuracy and attitude stability. The proposed system is evaluated through simulations and real-world indoor flight experiments. Experimental results show that the proposed algorithm outperforms representative fusion algorithms in 3D positioning and yaw estimation accuracy. Full article
Show Figures

Figure 1

23 pages, 10936 KiB  
Article
Towards Autonomous Coordination of Two I-AUVs in Submarine Pipeline Assembly
by Salvador López-Barajas, Alejandro Solis, Raúl Marín-Prades and Pedro J. Sanz
J. Mar. Sci. Eng. 2025, 13(8), 1490; https://doi.org/10.3390/jmse13081490 (registering DOI) - 1 Aug 2025
Abstract
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to [...] Read more.
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to the risk involved. This work presents and experimentally validates an autonomous, dual-I-AUV (Intervention–Autonomous Underwater Vehicle) system capable of assembling rigid pipeline segments through coordinated actions in a confined underwater workspace. The first I-AUV is a Girona 500 (4-DoF vehicle motion, pitch and roll stable) fitted with multiple payload cameras and a 6-DoF Reach Bravo 7 arm, giving the vehicle 10 total DoF. The second I-AUV is a BlueROV2 Heavy equipped with a Reach Alpha 5 arm, likewise yielding 10 DoF. The workflow comprises (i) detection and grasping of a coupler pipe section, (ii) synchronized teleoperation to an assembly start pose, and (iii) assembly using a kinematic controller that exploits the Girona 500’s full 10 DoF, while the BlueROV2 holds position and orientation to stabilize the workspace. Validation took place in a 12 m × 8 m × 5 m water tank. Results show that the paired I-AUVs can autonomously perform precision pipeline assembly in real water conditions, representing a significant step toward fully automated subsea construction and maintenance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 754 KiB  
Article
Achievable Rate Optimization for Reconfigurable Intelligent Surface-Aided Multi-User Movable Antenna Systems
by Liji Yu and Yuhui Ren
Sensors 2025, 25(15), 4694; https://doi.org/10.3390/s25154694 - 29 Jul 2025
Viewed by 244
Abstract
This paper proposes a novel optimization framework for reconfigurable intelligent surface (RIS)-aided movable antenna (MA) systems, tackling the joint optimization problem of beamforming and antenna positions. Unlike traditional approaches, we reformulate the antenna positioning task as a sequential quadratic programming (SQP) problem, enabling [...] Read more.
This paper proposes a novel optimization framework for reconfigurable intelligent surface (RIS)-aided movable antenna (MA) systems, tackling the joint optimization problem of beamforming and antenna positions. Unlike traditional approaches, we reformulate the antenna positioning task as a sequential quadratic programming (SQP) problem, enabling efficient handling of nonlinear spatial constraints through iteratively solved quadratic subproblems. An alternating optimization scheme is adopted to decouple the overall problem into two subproblems: (1) optimal beamforming using maximum ratio transmission (MRT) and fixed-point iteration, and (2) precise antenna location optimization via SQP. Simulation results demonstrate that the proposed method significantly enhances spectral efficiency by fully exploiting the synergistic benefits of RIS and MA technologies. The proposed method could achieve about a 25% performance improvement compared to the fixed-position scheme. Current approaches predominantly rely on gradient search methods, which fail to fully exploit the potential of positional DoFs. In contrast, our proposed method is more effective. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

23 pages, 2253 KiB  
Article
Robust Underwater Vehicle Pose Estimation via Convex Optimization Using Range-Only Remote Sensing Data
by Sai Krishna Kanth Hari, Kaarthik Sundar, José Braga, João Teixeira, Swaroop Darbha and João Sousa
Remote Sens. 2025, 17(15), 2637; https://doi.org/10.3390/rs17152637 - 29 Jul 2025
Viewed by 166
Abstract
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board [...] Read more.
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board receivers. The proposed framework integrates three key components, each formulated as a convex optimization problem. First, we introduce a robust calibration function that unifies multiple sources of measurement error—such as range-dependent degradation, variable sound speed, and latency—by modeling them through a monotonic function. This function bounds the true distance and defines a convex feasible set for each receiver location. Next, we estimate the receiver positions as the center of this feasible region, using two notions of centrality: the Chebyshev center and the maximum volume inscribed ellipsoid (MVE), both formulated as convex programs. Finally, we recover the vehicle’s full 6-DOF pose by enforcing rigid-body constraints on the estimated receiver positions. To do this, we leverage the known geometric configuration of the receivers in the vehicle and solve the Orthogonal Procrustes Problem to compute the rotation matrix that best aligns the estimated and known configurations, thereby correcting the position estimates and determining the vehicle orientation. We evaluate the proposed method through both numerical simulations and field experiments. To further enhance robustness under real-world conditions, we model beacon-location uncertainty—due to mooring slack and water currents—as bounded spherical regions around nominal beacon positions. We then mitigate the uncertainty by integrating the modified range constraints into the MVE position estimation formulation, ensuring reliable localization even under infrastructure drift. Full article
Show Figures

Figure 1

22 pages, 1725 KiB  
Article
Whole-Body Vision/Force Control for an Underwater Vehicle–Manipulator System with Smooth Task Transitions
by Jie Liu, Guofang Chen, Fubin Zhang and Jian Gao
J. Mar. Sci. Eng. 2025, 13(8), 1447; https://doi.org/10.3390/jmse13081447 - 29 Jul 2025
Viewed by 78
Abstract
Robots with multiple degrees of freedom (DOFs), such as underwater vehicle–manipulator systems (UVMSs), are expected to optimize system performance by exploiting redundancy with various basic tasks while still fulfilling the primary objective. Multiple tasks for robots, which are expected to be carried out [...] Read more.
Robots with multiple degrees of freedom (DOFs), such as underwater vehicle–manipulator systems (UVMSs), are expected to optimize system performance by exploiting redundancy with various basic tasks while still fulfilling the primary objective. Multiple tasks for robots, which are expected to be carried out simultaneously with prescribed priorities, can be referred to as sets of tasks (SOTs). In this work, a hybrid vision/force control method with continuous task transitions is proposed for a UVMS to simultaneously track the reference vision and force trajectory during manipulation. Several tasks with expected objectives and specific priorities are established and combined as SOTs in hybrid vision/force tracking. At different stages, various SOTs are carried out with different emphases. A hierarchical optimization-based whole-body control framework is constructed to obtain the solution in a strictly hierarchical fashion. A continuous transition method is employed to mitigate oscillations during the task switching phase. Finally, comparative simulation experiments are conducted and the results verify the improved convergence of the proposed tracking controller for UVMSs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 3402 KiB  
Article
Model-Based Design of the 5-DoF Light Industrial Robot
by Yongping Shi, Tianbing Ma, Hao Wang, Tao Zhang, Xin Zhang, Huapeng Wu and Ming Li
Robotics 2025, 14(8), 103; https://doi.org/10.3390/robotics14080103 - 29 Jul 2025
Viewed by 84
Abstract
With the application and rapid development of light industrial robots, it is vital to accelerate the prototype design to fulfill the demands of shortening the robot’s production cycle, owing to rapid update iterations. Since the traditional design method cannot intuitively and efficiently check [...] Read more.
With the application and rapid development of light industrial robots, it is vital to accelerate the prototype design to fulfill the demands of shortening the robot’s production cycle, owing to rapid update iterations. Since the traditional design method cannot intuitively and efficiently check the deficiencies in the design preparation, the secondary design iterations will result in higher equipment costs, longer design cycles, and lower development efficiency. The MBD (model-based design), a full 3D (three-dimensional) design and manufacturing method, is proposed to swiftly finish the prototype design for solving the above problems. Firstly, the robot design preparation is completed with the design requirements to generate a robot 3D model. Secondly, several design methods are used: (i) the rapid prototyping, which includes the joint component verification and selection to further optimize the 3D model; (ii) the robot kinematics algorithm, which provides a theoretical foundation for the 3D model design; (iii) the robot kinematics simulation, which verifies the correctness of the kinematics algorithm. Finally, the feasibility of the MBD is verified by the robot prototype and the motion control system test. Taking the MBD to design a 5-DoF (five-degrees-of-freedom) robot as an example, the joint verification and selection are finished quickly and accurately to build the robot prototype without the need for secondary design processing, and the kinematic algorithm verified by the co-simulation platform can be used directly in the actual motion control of the robot prototype, which accelerates the development of the robot motion control system. Full article
(This article belongs to the Section Industrial Robots and Automation)
17 pages, 4667 KiB  
Article
Workspace Analysis and Dynamic Modeling of 6-DoF Multi-Pattern Cable-Driven Hybrid Mobile Robot
by Jiahao Song, Meiqi Wang, Jiabao Wu, Qing Liu and Shuofei Yang
Machines 2025, 13(8), 659; https://doi.org/10.3390/machines13080659 - 28 Jul 2025
Viewed by 218
Abstract
A cable-driven hybrid mobile robot is a kind of robot consisting of two modules connected in series, which uses multiple parallel cables to drive the moving platforms. Cable-driven robots benefit from a large workspace, low inertia, excellent dynamic performance due to the lightweight [...] Read more.
A cable-driven hybrid mobile robot is a kind of robot consisting of two modules connected in series, which uses multiple parallel cables to drive the moving platforms. Cable-driven robots benefit from a large workspace, low inertia, excellent dynamic performance due to the lightweight and high extensibility of cables, making them ideal for a wide range of applications, such as sports cameras, large radio telescopes, and planetary exploration. Considering the fundamental dynamic constraint imposed by the unilateral constraint of cables, the workspace and dynamic modeling for cable-driven robots require specialized study. In this paper, a novel cable-driven hybrid robot, which has two motion patterns, is designed, and an arc intersection method for analyzing workspace is applied to solve the robot workspace of two motion patterns. Based on the workspace analysis, a dynamic model for the cable-driven hybrid robot is established, laying the foundation for subsequent trajectory planning. Simulation results in MATLAB R2021a demonstrate that the cable-driven hybrid robot has a large workspace in both motion patterns and is capable of meeting various motion requirements, indicating promising application potential. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

15 pages, 3131 KiB  
Article
Real-Time Experiments for Decentralized Adaptive Synchronized Motion Control of a Closed-Kinematic Chain Mechanism Robot Manipulator
by Charles C. Nguyen, Tri T. Nguyen, Tu T. C. Duong, Tuan M. Nguyen, Ha T. T. Ngo and Lu Sun
Machines 2025, 13(8), 652; https://doi.org/10.3390/machines13080652 - 25 Jul 2025
Viewed by 215
Abstract
This paper presents the results of real-time experiments conducted to evaluate the performance of a developed adaptive control scheme applied to control the motion of a real closed-kinematic chain mechanism (CKCM) robot manipulator with two degrees of freedom (DOFs). The developed control scheme, [...] Read more.
This paper presents the results of real-time experiments conducted to evaluate the performance of a developed adaptive control scheme applied to control the motion of a real closed-kinematic chain mechanism (CKCM) robot manipulator with two degrees of freedom (DOFs). The developed control scheme, referred to as the decentralized adaptive synchronized control scheme (DASCS), was the result of the combination of model reference adaptive control (MRAC) based on the Lyapunov direct method and the synchronization technique. CKCM manipulators were considered in the experimental study due to their advantages over their open-kinematic chain mechanism (OKCM) manipulator counterparts, such as higher stiffness, better stability, and greater payload. The conducted computer simulation study showed that the DASCS was able to asymptotically converge tracking errors to zero, with all the active joints moving synchronously in a prescribed way. One of the important properties of the DASCS is the independence of robot manipulator dynamics, making it computationally efficient and therefore suitable for real-time applications. The present paper reports findings from experiments in which the DASCS was applied to control the above manipulator and carry out various paths. The DASCS’s performance was compared with that of a traditional adaptive control scheme, namely the SMRACS, when both schemes were applied to track the same paths. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

33 pages, 41854 KiB  
Article
Application of Signal Processing Techniques to the Vibration Analysis of a 3-DoF Structure Under Multiple Excitation Scenarios
by Leidy Esperanza Pamplona Berón, Marco Claudio De Simone and Domenico Guida
Appl. Sci. 2025, 15(15), 8241; https://doi.org/10.3390/app15158241 - 24 Jul 2025
Viewed by 168
Abstract
Structural Health Monitoring (SHM) techniques are crucial for evaluating the condition of structures, enabling early maintenance interventions, and monitoring factors that could compromise structural integrity. Modal analysis studies the dynamic response of structures when subjected to vibrations, evaluating natural frequencies and vibration modes. [...] Read more.
Structural Health Monitoring (SHM) techniques are crucial for evaluating the condition of structures, enabling early maintenance interventions, and monitoring factors that could compromise structural integrity. Modal analysis studies the dynamic response of structures when subjected to vibrations, evaluating natural frequencies and vibration modes. This study focuses on detecting and comparing the natural frequencies of a 3-DoF structure under various excitation scenarios, including ambient vibration (in healthy and damaged conditions), two types of transient excitation, and three harmonic excitation variations. Signal processing techniques, specifically Power Spectral Density (PSD) and Continuous Wavelet Transform (CWT), were employed. Each method provides valuable insights into frequency and time-frequency domain analysis. Under ambient vibration excitation, the damaged condition exhibits spectral differences in amplitude and frequency compared to the undamaged state. For the transient excitations, the scalogram images reveal localized energetic differences in frequency components over time, whereas PSD alone cannot observe these behaviors. For the harmonic excitations, PSD provides higher spectral resolution, while CWT adds insight into temporal energy evolution near resonance bands. This study discusses how these analyses provide sensitive features for damage detection applications, as well as the influence of different excitation types on the natural frequencies of the structure. Full article
(This article belongs to the Special Issue State-of-the-Art Structural Health Monitoring Application)
Show Figures

Figure 1

25 pages, 8282 KiB  
Article
Performance Evaluation of Robotic Harvester with Integrated Real-Time Perception and Path Planning for Dwarf Hedge-Planted Apple Orchard
by Tantan Jin, Xiongzhe Han, Pingan Wang, Yang Lyu, Eunha Chang, Haetnim Jeong and Lirong Xiang
Agriculture 2025, 15(15), 1593; https://doi.org/10.3390/agriculture15151593 - 24 Jul 2025
Viewed by 252
Abstract
Apple harvesting faces increasing challenges owing to rising labor costs and the limited seasonal workforce availability, highlighting the need for robotic harvesting solutions in precision agriculture. This study presents a 6-DOF robotic arm system designed for harvesting in dwarf hedge-planted orchards, featuring a [...] Read more.
Apple harvesting faces increasing challenges owing to rising labor costs and the limited seasonal workforce availability, highlighting the need for robotic harvesting solutions in precision agriculture. This study presents a 6-DOF robotic arm system designed for harvesting in dwarf hedge-planted orchards, featuring a lightweight perception module, a task-adaptive motion planner, and an adaptive soft gripper. A lightweight approach was introduced by integrating the Faster module within the C2f module of the You Only Look Once (YOLO) v8n architecture to optimize the real-time apple detection efficiency. For motion planning, a Dynamic Temperature Simplified Transition Adaptive Cost Bidirectional Transition-Based Rapidly Exploring Random Tree (DSA-BiTRRT) algorithm was developed, demonstrating significant improvements in the path planning performance. The adaptive soft gripper was evaluated for its detachment and load-bearing capacities. Field experiments revealed that the direct-pull method at 150 mN·m torque outperformed the rotation-pull method at both 100 mN·m and 150 mN·m. A custom control system integrating all components was validated in partially controlled orchards, where obstacle clearance and thinning were conducted to ensure operation safety. Tests conducted on 80 apples showed a 52.5% detachment success rate and a 47.5% overall harvesting success rate, with average detachment and full-cycle times of 7.7 s and 15.3 s per apple, respectively. These results highlight the system’s potential for advancing robotic fruit harvesting and contribute to the ongoing development of autonomous agricultural technologies. Full article
(This article belongs to the Special Issue Agricultural Machinery and Technology for Fruit Orchard Management)
Show Figures

Figure 1

17 pages, 8082 KiB  
Article
NPS6D100—A 6D Nanopositioning System with Sub-10 nm Performance in a Ø100 mm × 10 mm Workspace
by Steffen Hesse, Alex Huaman, Michael Katzschmann and Ludwig Herzog
Actuators 2025, 14(8), 361; https://doi.org/10.3390/act14080361 - 22 Jul 2025
Viewed by 144
Abstract
This paper presents the development of a compact nanopositioning stage with long-range capabilities and six-degree-of-freedom (DOF) closed-loop control. The system, referred to as NPS6D100, provides Ø100 mm planar and 10 mm vertical travel range while maintaining direct force transfer to the moving platform [...] Read more.
This paper presents the development of a compact nanopositioning stage with long-range capabilities and six-degree-of-freedom (DOF) closed-loop control. The system, referred to as NPS6D100, provides Ø100 mm planar and 10 mm vertical travel range while maintaining direct force transfer to the moving platform (or slider) in all DOFs. Based on an integrated planar direct drive concept, the system is enhanced by precise vertical actuation and full 6D output feedback control. The mechanical structure, drive architecture, guiding, and measurement subsystems are described in detail, along with experimental results that confirm sub-10 nm servo errors under constant setpoint operation and in synchronized multi-axis motion scenarios. With its scalable and low-disturbance design, the NPS6D100 is well suited as a nanopositioning platform for sub-10 nm applications in nanoscience and precision metrology. Full article
(This article belongs to the Special Issue Recent Developments in Precision Actuation Technologies)
Show Figures

Figure 1

21 pages, 1188 KiB  
Article
Enhanced Array Synthesis and DOA Estimation Exploiting UAV Array with Coprime Frequencies
by Long Zhang, Weijia Cui, Nae Zheng, Song Chen and Yuxi Du
Drones 2025, 9(8), 515; https://doi.org/10.3390/drones9080515 - 22 Jul 2025
Viewed by 185
Abstract
The challenge of achieving high-precision direction-of-arrival (DOA) estimation with enhanced degrees of freedom (DOFs) under a limited number of physical array elements remains a critical issue in array signal processing. To address this limitation, this paper makes the following three key contributions: (1) [...] Read more.
The challenge of achieving high-precision direction-of-arrival (DOA) estimation with enhanced degrees of freedom (DOFs) under a limited number of physical array elements remains a critical issue in array signal processing. To address this limitation, this paper makes the following three key contributions: (1) a novel moving sparse array synthesis model incorporating time-frequency-spatial joint processing for coprime frequencies signal sources; (2) an optimized coprime frequencies-based unmanned aerial vehicle array (CF-UAVA) configuration with derived closed-form expressions for the distribution of synthesized array; and (3) two DOA estimation methods: a group sparsity-based approach universally applicable to the proposed aperture synthesis model and a joint group sparsity and virtual array interpolation tailored for the proposed CF-UAVA configuration. Comprehensive simulation results demonstrate the superior DOA estimation accuracy and increased DOFs achieved by our proposed aperture synthesis model and DOA estimation algorithms compared to conventional approaches. Full article
Show Figures

Figure 1

19 pages, 4729 KiB  
Article
Performance Enhancement of Seismically Protected Buildings Using Viscoelastic Tuned Inerter Damper
by Pan-Pan Gai, Jun Dai, Yang Yang, Qin-Sheng Bi, Qing-Song Guan and Gui-Yu Zhang
Actuators 2025, 14(8), 360; https://doi.org/10.3390/act14080360 - 22 Jul 2025
Viewed by 136
Abstract
In this paper, a viscoelastic (VE) tuned inerter damper (TID) that replaces conventional stiffness and damping elements with a cost-effective VE element is proposed to achieve a target-based improvement of seismically protected buildings. The semi-analytical solution of the optimal tuning frequency ratio of [...] Read more.
In this paper, a viscoelastic (VE) tuned inerter damper (TID) that replaces conventional stiffness and damping elements with a cost-effective VE element is proposed to achieve a target-based improvement of seismically protected buildings. The semi-analytical solution of the optimal tuning frequency ratio of the VE TID is presented based on a two-degree-of-freedom (2-DOF) system, accounting for inherent structural damping disturbances, and then is extended to a MDOF system via an effective mass ratio. The accuracy of the semi-analytical solution is validated by comparing the numerical solution. Finally, numerical analyses on a viscoelastically damped building and a base-isolated building with optimally designed VE TIDs under historical earthquakes are performed. The numerical results validate the target-based improvement capability of the VE TID with a modest mass ratio in avoiding large strokes or deformation of existing dampers and isolators, and further reducing the specific mode vibration. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

Back to TopTop