Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = 3D printing dental restoration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2269 KiB  
Article
Photocurable Resin Composites with Silica Micro- and Nano-Fillers for 3D Printing of Dental Restorative Materials
by Pirat Karntiang, Hiroshi Ikeda, Yuki Nagamatsu and Hiroshi Shimizu
J. Compos. Sci. 2025, 9(8), 405; https://doi.org/10.3390/jcs9080405 - 1 Aug 2025
Viewed by 285
Abstract
This study aimed to develop experimental filler-reinforced resin composites for vat-photopolymerization 3D printing and to evaluate the effects of filler addition on their mechanical, physicochemical, and bonding properties for dental restorative applications. Silanized nano- and/or micro-fillers were incorporated into acrylic resin monomers to [...] Read more.
This study aimed to develop experimental filler-reinforced resin composites for vat-photopolymerization 3D printing and to evaluate the effects of filler addition on their mechanical, physicochemical, and bonding properties for dental restorative applications. Silanized nano- and/or micro-fillers were incorporated into acrylic resin monomers to formulate photocurable resins suitable for vat-photopolymerization. The rheological behavior of these liquid-state resins was assessed through viscosity measurements. Printed resin composites were fabricated and characterized for mechanical properties—including flexural strength, flexural modulus, and Vickers hardness—both before and after 8 weeks of water immersion. Physicochemical properties, such as water sorption, water solubility, and degree of conversion, were also evaluated. Additionally, shear bond strength to a resin-based luting agent was measured before and after artificial aging via thermocycling. A commercial dental CAD-CAM resin composite served as a reference material. Filler incorporation significantly improved the mechanical properties of the printed composites. The highest performance was observed in the composite containing 60 wt% micro-fillers, with a flexural strength of 168 ± 10 MPa, flexural modulus of 6.3 ± 0.4 GPa, and Vickers hardness of 63 ± 1 VHN, while the commercial CAD-CAM composite showed values of 152 ± 8 MPa, 7.9 ± 0.3 GPa, and 66 ± 2 VHN, respectively. Filler addition did not adversely affect the degree of conversion, although the relatively low conversion led to the elution of unpolymerized monomers and increased water solubility. The shear bond strength of the optimal printed composite remained stable after aging without silanization, demonstrating superior bonding performance compared with the CAD-CAM composite. These findings suggest that the developed 3D-printed resin composite is a promising candidate for dental restorative materials. Full article
(This article belongs to the Special Issue Innovations in Direct and Indirect Dental Composite Restorations)
Show Figures

Figure 1

17 pages, 3105 KiB  
Article
Cell Viability of Wharton’s Jelly-Derived Mesenchymal Stem Cells (WJ-MSCs) on 3D-Printed Resins for Temporary Dental Restorations
by Mónica Antonio-Flores, Andrés Eliú Castell-Rodríguez, Gabriela Piñón-Zárate, Beatriz Hernández-Téllez, Abigailt Flores-Ledesma, Enrique Pérez-Martínez, Carolina Sámano-Valencia, Gerardo Quiroz-Petersen and Katia Jarquín-Yáñez
J. Compos. Sci. 2025, 9(8), 404; https://doi.org/10.3390/jcs9080404 - 1 Aug 2025
Viewed by 434
Abstract
There is insufficient evidence regarding the cytotoxicity of restorative 3D-printing resins, used as part of the digital workflow in dentistry. This study presents a novel comparative evaluation of cell viability and adhesion using human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs), a less commonly [...] Read more.
There is insufficient evidence regarding the cytotoxicity of restorative 3D-printing resins, used as part of the digital workflow in dentistry. This study presents a novel comparative evaluation of cell viability and adhesion using human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs), a less commonly used but clinically relevant cell line in dental biomaterials research. The aim of this study was to evaluate the cell viability of WJ-MSCs seeded on 3D-printed resins intended for temporary restorations. Resin discs of three commercial 3D-printing resins (NextDent C&B, Leaf Dental C&B, and UNIZ Temp) and a conventional self-curing acrylic resin (NicTone) were used. WJ-MSCs were cultured on the specimens for 1, 4, and 10 days. Cell viability was assessed using the PrestoBlue assay, Live/Dead immunofluorescence staining, and 7AAD/Annexin V staining. Cell adhesion was evaluated using scanning electron microscopy. Direct exposure to the 3D-printed resins and the self-curing acrylic caused slight reductions in cell viability compared to the control group in both microscopic analyses. 7AAD/Annexin V showed the highest percentage of viable WBCs for the conventional acrylic (34%), followed by UNIZ (35%), NextDent (42%), and Leaf Dental (36%) (ANOVA p < 0.05 Tukey’s post-hoc test p < 0.05). These findings suggest that 3D-printed resins could be considered safe for use in temporary restorations. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

25 pages, 659 KiB  
Systematic Review
Mechanical and Physical Properties of Durable Prosthetic Restorations Printed Using 3D Technology in Comparison with Hybrid Ceramics and Milled Restorations—A Systematic Review
by Bettanapalya. V. Swapna, B. Shivamurthy, Vinu Thomas George, Kavishma Sulaya and Vaishnavi M Nayak
Prosthesis 2025, 7(4), 90; https://doi.org/10.3390/prosthesis7040090 - 1 Aug 2025
Viewed by 147
Abstract
Background/Objectives: Additive manufacturing (AM) technology has emerged as an innovative approach in dentistry. Recently, manufacturers have developed permanent resins engineered explicitly for the fabrication of definitive prostheses using AM techniques. This systematic review evaluated the mechanical and physical properties of 3D-printed permanent resins [...] Read more.
Background/Objectives: Additive manufacturing (AM) technology has emerged as an innovative approach in dentistry. Recently, manufacturers have developed permanent resins engineered explicitly for the fabrication of definitive prostheses using AM techniques. This systematic review evaluated the mechanical and physical properties of 3D-printed permanent resins in comparison to milled resins and hybrid ceramics for the fabrication of indirect dental restorations. Methods: Three electronic databases—Scopus, Web of Science, and PubMed—were searched for English-language articles. Two independent researchers conducted study selection, data extraction, quality assessment, and the evaluation of the certainty of evidence. In vitro studies assessing the mechanical and physical properties of the permanent resins were included in this review. Results: A total of 1779 articles were identified through electronic databases. Following full-text screening and eligibility assessment, 13 studies published between 2023 and 2024 were included in this qualitative review. The investigated outcomes included physical properties (surface roughness, color changes, water sorption/solubility) and mechanical properties (flexural strength, elastic modulus, microhardness). Conclusions: Three-dimensionally printed permanent resins show promising potential for fabricating indirect dental restorations. However, the current evidence regarding their mechanical and physical properties remain limited and inconsistent, mainly due to variability in study methodologies. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

14 pages, 2138 KiB  
Article
Comparison Between Bond Strengths of a Resin Cement on Traditional Prosthetic Substrates and a 3D-Printed Resin for Permanent Restorations
by Alessandro Vichi, Hanan Al-Johani, Dario Balestra and Chris Louca
Coatings 2025, 15(8), 896; https://doi.org/10.3390/coatings15080896 - 1 Aug 2025
Viewed by 293
Abstract
Recently, 3D-printed resins have been introduced as materials for definitive indirect restorations. Herein, a comparative assessment of the bond strengths of 3D-printed resins to a resin cement was performed. Methods: four definitive restorative materials were selected, i.e., a Feldspar ceramic (VITA Mark II, [...] Read more.
Recently, 3D-printed resins have been introduced as materials for definitive indirect restorations. Herein, a comparative assessment of the bond strengths of 3D-printed resins to a resin cement was performed. Methods: four definitive restorative materials were selected, i.e., a Feldspar ceramic (VITA Mark II, VM), a polymer-infiltrated ceramic network (VITA Enamic, VE), a nanohybrid resin composite (Grandio Bloc, GB), and one 3D-printed resin (Crown Permanent, CP). VM and VE were etched and silanized, GB was sandblasted, and CP was glass bead blasted; for one further experimental group, this was followed by sandblasting (CPs). A resin cement (RelyX Unicem) was then used for bonding, and then a notched shear bond strength test (nSBS) was performed. Failure modes were observed and classified as adhesive, cohesive, or mixed, and SEM representative images were taken. Data were statistically analyzed with one-way ANOVA, Tukey, and Chi-square tests. Significant differences were detected in nSBS among materials (p < 0.001). The highest nSBS was found in VM (30.3 ± 1.8 MPa) a, followed by CPb, GBbc, CPbc, and VEc. Failure modes were significantly different (p < 0.001), and with different prevalent failure modes. The bond strength for 3D-printed permanent resin materials was shown to be lower than that of the felspathic ceramic but comparable to that of the resin block and PICN substrates. Full article
(This article belongs to the Special Issue Advanced Polymer Coatings: Materials, Methods, and Applications)
Show Figures

Figure 1

29 pages, 2309 KiB  
Systematic Review
The Influence of Printing Orientation on the Properties of 3D-Printed Polymeric Provisional Dental Restorations: A Systematic Review and Meta-Analysis
by Firas K. Alqarawi
J. Funct. Biomater. 2025, 16(8), 278; https://doi.org/10.3390/jfb16080278 - 31 Jul 2025
Viewed by 381
Abstract
Three-dimensional printing is commonly used to fabricate provisional dental restorations. Studies have reported that changes in printing orientation affect the physical and mechanical properties of 3D-printed polymeric provisional restorations; however the findings have been inconsistent. Therefore, this systematic review and meta-analysis aims to [...] Read more.
Three-dimensional printing is commonly used to fabricate provisional dental restorations. Studies have reported that changes in printing orientation affect the physical and mechanical properties of 3D-printed polymeric provisional restorations; however the findings have been inconsistent. Therefore, this systematic review and meta-analysis aims to analyze the articles evaluating the influence of printing orientation on the physical and mechanical properties of 3D-printed polymeric provisional dental restorations. Recommendations provided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed to structure and compose the review. The PICO (Participant, Intervention, Comparison, Outcome) question ordered was: ‘Do 3D-printed provisional dental restorations (P) printed at various orientations (except 0°) (I) exhibit similar physical and mechanical properties (O) when compared to those printed at a 0° orientation (C)?’. An electronic search was conducted on 28 and 29 April 2025, by two independent researchers across four databases (MEDLINE/PubMed, Scopus, Cochrane Library, and Web of Science) to systematically collect relevant articles published up to March 2025. After removing duplicate articles and applying predefined inclusion and exclusion criteria, twenty-one articles were incorporated into this review. Self-designed Performa’s were used to tabulate all relevant information. For the quality analysis, the modified CONSORT scale was utilized. The quantitative analysis was performed on only fifteen out of twenty-one articles. It can be concluded that the printing orientation affects some of the tested properties, which include fracture strength (significantly higher for specimens printed at 0° when compared to 90°), wear resistance (significantly higher for specimens printed at 90° when compared to 0°), microhardness (significantly higher for specimens printed at 90°and 45° when compared to 0°), color stability (high at 0°), and surface roughness (significantly higher for specimens printed at 45° and 90° when compared to 0°). There were varied outcomes in terms of flexural strength and elastic modulus. Full article
(This article belongs to the Special Issue Advances in Restorative Dentistry Materials)
Show Figures

Figure 1

6 pages, 1231 KiB  
Interesting Images
A Personalized 3D-Printed CAD/CAM Functional Space Maintainer Following the Premature Loss of a Primary First Molar in a Five-Year-Old Child
by Rasa Mladenovic, Andrija Nedeljkovic, Ljiljana Vujacic, Marko Stevanovic, Vladan Djordjevic, Srbislav Pajic and Kristina Mladenovic
Reports 2025, 8(3), 125; https://doi.org/10.3390/reports8030125 - 29 Jul 2025
Viewed by 286
Abstract
Primary teeth play a crucial role in a child’s development, particularly in maintaining space for permanent teeth. The premature loss of a primary tooth can lead to orthodontic issues, making the use of space maintainers essential to ensure proper growth and development of [...] Read more.
Primary teeth play a crucial role in a child’s development, particularly in maintaining space for permanent teeth. The premature loss of a primary tooth can lead to orthodontic issues, making the use of space maintainers essential to ensure proper growth and development of permanent teeth. To preserve space, the fabrication of a space maintainer is necessary. Since conventional space maintainers do not restore masticatory function, this study presents an innovative solution for space preservation following the extraction of the first primary molar through the design of the functional space maintainer KOS&MET (Key Orthodontic System and Materials Enhanced Therapy). The space maintainer was designed using the 3Shape Dental Designer 2023 version software tool and manufactured via additive 3D printing, utilizing a metal alloy with high resistance to masticatory forces. The crown is supported by the primary canine, while an intraoral window is created to monitor the eruption of the successor tooth. This design does not interfere with occlusion and enables bilateral chewing. Masticatory performance was assessed using two-color chewing gum, and the results showed improvement after cementing the space maintainer. This innovative approach not only preserves space for permanent teeth but also enhances masticatory function, contributing to the proper growth and development of the jaws and teeth. Full article
(This article belongs to the Special Issue Oral Disorders in the Pediatric Population)
Show Figures

Figure 1

18 pages, 4344 KiB  
Review
Additive Manufacturing Technologies and Their Applications in Dentistry: A Systematic Literature Review
by Dragana Oros, Marko Penčić, Marko Orošnjak and Slawomir Kedziora
Appl. Sci. 2025, 15(15), 8346; https://doi.org/10.3390/app15158346 - 26 Jul 2025
Viewed by 388
Abstract
Additive manufacturing (AM) has emerged as a transformative technology in dentistry, enabling the production of patient-specific dental applications with reduced costs and fabrication times. Despite the growth of applications, a consolidated understanding of current 3D printing technologies, materials, and performance in dental settings [...] Read more.
Additive manufacturing (AM) has emerged as a transformative technology in dentistry, enabling the production of patient-specific dental applications with reduced costs and fabrication times. Despite the growth of applications, a consolidated understanding of current 3D printing technologies, materials, and performance in dental settings remains fragmented. Here, we perform a Systematic Literature Review (SLR) using the PRISMA protocol, retrieving 19 closely related primary studies. The evidence is synthesized across three axes: application domain, AM technology, and critical quality parameters. Dental restorations, prosthetics, crowns, and implants are the most common applications, while fused deposition modeling, stereolithography, digital light processing, selective laser sintering, and laser-directed energy deposition are the most used technologies. AM materials include polymers, metals, and emerging biomaterials. Key quality determinants include dimensional accuracy, wear and corrosion resistance, and photosensitivity. Notably, biocompatibility and cytotoxicity remain underexplored yet critical factors for ensuring long-term clinical safety. The evidence also suggests a lack of in vivo studies, insufficient tribological and microbiological testing, including limited data degradation pathways of AM materials under oral conditions. Understanding that there are disconnects between the realization of the clinical and the economic benefits of 3D printing in dentistry, future research requires standardized testing frameworks and long-term biocompatibility validation. Full article
Show Figures

Figure 1

13 pages, 2438 KiB  
Article
The Integration of Micro-CT Imaging and Finite Element Simulations for Modelling Tooth-Inlay Systems for Mechanical Stress Analysis: A Preliminary Study
by Nikoleta Nikolova, Miryana Raykovska, Nikolay Petkov, Martin Tsvetkov, Ivan Georgiev, Eugeni Koytchev, Roumen Iankov, Mariana Dimova-Gabrovska and Angela Gusiyska
J. Funct. Biomater. 2025, 16(7), 267; https://doi.org/10.3390/jfb16070267 - 21 Jul 2025
Viewed by 570
Abstract
This study presents a methodology for developing and validating digital models of tooth-inlay systems, aiming to trace the complete workflow from clinical procedures to simulation by involving dental professionals—dentists for manual cavity preparation and dental technicians for restoration modelling—while integrating micro-computed tomography (micro-CT) [...] Read more.
This study presents a methodology for developing and validating digital models of tooth-inlay systems, aiming to trace the complete workflow from clinical procedures to simulation by involving dental professionals—dentists for manual cavity preparation and dental technicians for restoration modelling—while integrating micro-computed tomography (micro-CT) imaging with finite element analysis (FEA). The proposed workflow includes (1) the acquisition of high-resolution 3D micro-CT scans of a non-restored tooth, (2) image segmentation and reconstruction to create anatomically accurate digital twins and mesh generation, (3) the selection of proper resin and the 3D printing of four typodonts, (4) the manual preparation of cavities on the typodonts, (5) the acquisition of high-resolution 3D micro-CT scans of the typodonts, (6) mesh generation, digital inlay and onlay modelling and material property assignment, and (7) nonlinear FEA simulations under representative masticatory loading. The approach enables the visualisation of stress and deformation patterns, with preliminary results indicating stress concentrations at the tooth-restoration interface integrating different cavity alternatives and restorations on the same tooth. Quantitative outputs include von Mises stress, strain energy density, and displacement distribution. This study demonstrates the feasibility of using image-based, tooth-specific digital twins for biomechanical modelling in dentistry. The developed framework lays the groundwork for future investigations into the optimisation of restoration design and material selection in clinical applications. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

20 pages, 3348 KiB  
Article
Influence of the Processing Method on the Nano-Mechanical Properties and Porosity of Dental Acrylic Resins Fabricated by Heat-Curing, 3D Printing and Milling Techniques
by Marina Imre, Veaceslav Șaramet, Lucian Toma Ciocan, Vlad-Gabriel Vasilescu, Elena Iuliana Biru, Jana Ghitman, Mihaela Pantea, Alexandra Ripszky, Adriana Lucia Celebidache and Horia Iovu
Dent. J. 2025, 13(7), 311; https://doi.org/10.3390/dj13070311 - 10 Jul 2025
Viewed by 345
Abstract
Background: Acrylic resin-based materials are a versatile category used extensively in various dental applications. Processed by current modern technologies, such as CAD/CAM technologies or 3D printing, these materials have revolutionized the field of dentistry for the efficient creation of dental devices. However, [...] Read more.
Background: Acrylic resin-based materials are a versatile category used extensively in various dental applications. Processed by current modern technologies, such as CAD/CAM technologies or 3D printing, these materials have revolutionized the field of dentistry for the efficient creation of dental devices. However, despite their extensive use, a limited number of comparative studies exist that investigate how different processing methods—such as traditional techniques, 3D printing, and CAD/CAM milling—impact the nano-mechanical behavior and internal porosity of these materials, which are critical for their long-term clinical performance. Objectives: The purpose of this study is to evaluate the nanomechanical properties (hardness, elasticity, and stiffness) and micro-porosity of acrylic resin-based materials indicated for temporary prosthodontic appliances manufactured by new technologies (milling, 3D printing) compared to traditional methods. Methods: The hardness, elasticity, and stiffness measurements were performed by the nano-metric indentation method (nanoindentation), and the quantitative morphological characterization of the porosity of the acrylic resin samples obtained by 3D printing and CAD/CAM milling was performed by micro-computed tomography. Results: According to nanomechanical investigations, CAD/CAM milling restorative specimens exhibited the greatest mechanical performances (E~5.233 GPa and H~0.315 GPa), followed by 3D printed samples, while the lowest mechanical properties were registered for the specimen fabricated by the traditional method (E~3.552 GPa, H~0.142 GPa). At the same time, the results of porosity studies (micro-CT) suggested that 3D printed specimens demonstrated a superior degree of porosity (temporary crown—22.93% and splints—8.94%) compared to CAD/CAM milling restorative samples (5.73%). Conclusions: The comparative analysis of these results allows for the optimal selection of the processing method in order to ensure the specific requirements of the various clinical applications. Full article
Show Figures

Figure 1

37 pages, 438 KiB  
Review
Three-Dimensionally Printed Splints in Dentistry: A Comprehensive Review
by Luka Šimunović, Samir Čimić and Senka Meštrović
Dent. J. 2025, 13(7), 312; https://doi.org/10.3390/dj13070312 - 10 Jul 2025
Viewed by 682
Abstract
Three-dimensional (3D) printing has emerged as a transformative technology in dental splint fabrication, offering significant advancements in customization, production speed, material efficiency, and patient comfort. This comprehensive review synthesizes the current literature on the clinical use, benefits, limitations, and future directions of 3D-printed [...] Read more.
Three-dimensional (3D) printing has emerged as a transformative technology in dental splint fabrication, offering significant advancements in customization, production speed, material efficiency, and patient comfort. This comprehensive review synthesizes the current literature on the clinical use, benefits, limitations, and future directions of 3D-printed dental splints across various disciplines, including prosthodontics, orthodontics, oral surgery, and restorative dentistry. Key 3D printing technologies such as stereolithography (SLA), digital light processing (DLP), and material jetting are discussed, along with the properties of contemporary photopolymer resins used in splint fabrication. Evidence indicates that while 3D-printed splints generally meet ISO standards for flexural strength and wear resistance, their mechanical properties are often 15–30% lower than those of heat-cured PMMA in head-to-head tests (flexural strength range 50–100 MPa vs. PMMA 100–130 MPa), and study-to-study variability is high. Some reports even show significantly reduced hardness and fatigue resistance in certain resins, underscoring material-specific heterogeneity. Clinical applications reviewed include occlusal stabilization for bruxism and temporomandibular disorders, surgical wafers for orthognathic procedures, orthodontic retainers, and endodontic guides. While current limitations include material aging, post-processing complexity, and variability in long-term outcomes, ongoing innovations—such as flexible resins, multi-material printing, and AI-driven design—hold promise for broader adoption. The review concludes with evidence-based clinical recommendations and identifies critical research gaps, particularly regarding long-term durability, pediatric applications, and quality control standards. This review supports the growing role of 3D printing as an efficient and versatile tool for delivering high-quality splint therapy in modern dental practice. Full article
(This article belongs to the Special Issue Digital Dentures: 2nd Edition)
12 pages, 1030 KiB  
Article
3D Printed Posterior Connector Dimensions’ Effect on Fracture Properties of Provisional Two-Unit Fixed Dental Prostheses
by Turki S. Alkhallagi, Manal A. Alqahtani and Thamer Y. Marghalani
Appl. Sci. 2025, 15(13), 7171; https://doi.org/10.3390/app15137171 - 25 Jun 2025
Viewed by 395
Abstract
This in vitro study aims to investigate the fracture properties of 3D-printed resin provisional material designed with different connector dimensions for two-unit fixed dental prostheses (FDPs). The master model was digitally designed following Shillingburg’s all-ceramic restoration tooth preparation guidelines and milled from aluminum. [...] Read more.
This in vitro study aims to investigate the fracture properties of 3D-printed resin provisional material designed with different connector dimensions for two-unit fixed dental prostheses (FDPs). The master model was digitally designed following Shillingburg’s all-ceramic restoration tooth preparation guidelines and milled from aluminum. Four two-unit FDPs with different connector dimensions were designed: 2 × 3 mm, 3 × 3 mm, 3 × 4 mm, and 4 × 4 mm (width × length) (Groups A, B, C, and D, respectively; n = 10 for each group). These specimens were printed using 3D-printed resin material (Detax FREEPRINT® temp). Forty specimens were subjected to a three-point test using a universal testing machine until fracture. The failure mode was examined under a stereomicroscope. The Kruskal–Wallis test at α = 0.05 revealed non-significant differences in fracture resistance load but significantly different elastic modulus, yield strength, and compressive strength (p = 0.061, p < 0.001, p < 0.001, and p < 0.001, respectively) among the different groups. The 2 × 3 mm connectors had higher means of modulus, yield strength, and compressive strength compared to the other groups. The study found that the maximum load causing fractures in 3D-printed provisional material connectors was consistent, regardless of connector cross-section variations. The 2 × 3 mm group performed best, while the 4 × 4 mm group performed worst. Full article
(This article belongs to the Special Issue 3D Printed Materials Dentistry II)
Show Figures

Figure 1

9 pages, 859 KiB  
Article
Fourier-Transform Infrared Spectroscopy Analysis of 3D-Printed Dental Resins Reinforced with Yttria-Stabilized Zirconia Nanoparticles
by Andrea Izabella Borș
Dent. J. 2025, 13(6), 272; https://doi.org/10.3390/dj13060272 - 18 Jun 2025
Viewed by 371
Abstract
Background/Objectives: This study investigates the chemical structure and molecular interactions in 3D-printed dental resins reinforced with varying concentrations of Yttria-Stabilized Zirconia (YSZ) nanoparticles, using Fourier-Transform Infrared Spectroscopy (FTIR) to assess the compatibility and bonding behavior at the molecular level. Methods: Three groups of [...] Read more.
Background/Objectives: This study investigates the chemical structure and molecular interactions in 3D-printed dental resins reinforced with varying concentrations of Yttria-Stabilized Zirconia (YSZ) nanoparticles, using Fourier-Transform Infrared Spectroscopy (FTIR) to assess the compatibility and bonding behavior at the molecular level. Methods: Three groups of 3D-printed methacrylate-based resin discs were fabricated: a control (0% YSZ), and experimental groups reinforced with 1% and 3% YSZ nanoparticles. Samples were produced using Digital Light Processing (DLP) technology and post-processed under standardized conditions. FTIR spectra were collected via ATR mode over a wavenumber range of 4000–600 cm−1. Spectral differences at key wavenumbers (1721.16, 1237.11, and 929.62 cm−1) were statistically analyzed using one-way ANOVA and Tukey’s post hoc test. Results: FTIR spectra showed no significant shifts in the ester carbonyl band at 1721.16 cm−1, suggesting the preservation of the core resin matrix. However, a statistically significant increase in absorbance at 1237.11 cm−1 was observed in the 1% YSZ group (p = 0.034), indicating dipolar interaction. A distinct new peak at 929.62 cm−1, corresponding to Zr–O vibrations, emerged in the 3% YSZ group (p = 0.002), confirming successful nanoparticle integration. Conclusions: YSZ nanoparticles enhance specific molecular interactions within methacrylate-based dental resins without compromising structural integrity. These findings support the potential application of YSZ-reinforced 3D-printed resins in durable, biocompatible permanent dental restorations. Full article
(This article belongs to the Special Issue Feature Papers in Digital Dentistry)
Show Figures

Figure 1

15 pages, 2358 KiB  
Article
Effect of Print Orientation and Thermal Aging on the Flexural Strength of Zirconia-Reinforced Three-Dimensional-Printed Restorative Resin Materials
by Yunus Emre Özden, Bengü Doğu Kaya, Pınar Yılmaz Atalı, Fusun Ozer and Zeynep Ozkurt Kayahan
Molecules 2025, 30(11), 2337; https://doi.org/10.3390/molecules30112337 - 27 May 2025
Cited by 1 | Viewed by 646
Abstract
This study evaluated the effects of print orientation and thermal aging on the flexural strength (FS) and flexural modulus (FM) of novel permanent three-dimensional (3D)-printed polymethyl methacrylate (PMMA) resins reinforced with nano-zirconia and nano-silica. Bar-shaped specimens (25 × 2 × 2 mm) were [...] Read more.
This study evaluated the effects of print orientation and thermal aging on the flexural strength (FS) and flexural modulus (FM) of novel permanent three-dimensional (3D)-printed polymethyl methacrylate (PMMA) resins reinforced with nano-zirconia and nano-silica. Bar-shaped specimens (25 × 2 × 2 mm) were fabricated using a digital light processing (DLP) 3D printer (Asiga Max UV, Asiga Inc., Australia) in two orientations (0° and 90°). Specimens underwent three-point bending tests at 24 h and after artificial thermal aging (10,000 and 30,000 cycles) to simulate one and three years of intraoral conditions. Scanning electron microscopy (SEM) was used to analyze fracture patterns. Print orientation did not significantly affect FS or FM (p > 0.05). However, artificial aging significantly reduced FS and FM after 10,000 cycles (p < 0.001), with further deterioration after 30,000 cycles. The micro hybrid resin composite exhibited higher FS than the 3D-printed materials throughout aging. SEM analysis revealed distinct fracture patterns, with 3D-printed resins displaying radial fractures and the micro hybrid composite exhibiting horizontal fractures. These findings indicate that aging plays a more critical role in the long-term mechanical performance of 3D-printed restorative resins than print orientation. This study provides original data on the effects of print orientation and prolonged thermal aging on the mechanical behavior of permanent three-dimensional (3D)-printed dental resins. Furthermore, the comparative evaluation of aging protocols simulating one and three years of intraoral service represents a novel contribution to the existing literature. Further studies are required to optimize the mechanical durability of 3D-printed dental restorations. Full article
Show Figures

Figure 1

13 pages, 4984 KiB  
Article
Evaluation of Manufacturing Accuracy in Merlon Fracture Models Fabricated by Vat Photopolymerization 3D-Printing Technologies
by Hee-jung Lee, Chang-sub Jeong, Joon-mo Moon, Ji-myung Bae, Eun-joo Choi and Seung-han Oh
Appl. Sci. 2025, 15(10), 5595; https://doi.org/10.3390/app15105595 - 16 May 2025
Viewed by 430
Abstract
This study evaluates the manufacturing accuracy of Merlon fracture models produced using two vat-photopolymerization-based three-dimensional (3D) printers: digital light processing (DLP) and liquid-crystal display (LCD). The Merlon fracture model is used to assess dimensional precision and machining accuracy. The root mean square (RMS) [...] Read more.
This study evaluates the manufacturing accuracy of Merlon fracture models produced using two vat-photopolymerization-based three-dimensional (3D) printers: digital light processing (DLP) and liquid-crystal display (LCD). The Merlon fracture model is used to assess dimensional precision and machining accuracy. The root mean square (RMS) values, wall and bottom thicknesses, and field-emission scanning electron microscopy images are analyzed. The DLP-based printers exhibit lower RMS values and superior accuracy compared with LCD-based printing and subtractive milling. Polymer-based slurries for permanent dental applications exhibit better dimensional stability than those for temporary restorations. This study also highlights the significant impact of postprocessing and cleaning procedures on the final model accuracy. These findings suggest that optimizing the postprocessing parameters is crucial for enhancing the precision of 3D-printed dental restorations. The Merlon fracture model is a viable method for evaluating additive manufacturing accuracy, contributing to the improved clinical application of vat photopolymerization in dental prosthetics. Full article
(This article belongs to the Special Issue Advances in Additive Manufacturing: Novel Technologies and Processes)
Show Figures

Figure 1

63 pages, 13322 KiB  
Review
Three-Dimensional Printing Resin-Based Dental Provisional Crowns and Bridges: Recent Progress in Properties, Applications, and Perspectives
by Xiaoxu Liang, Biao Yu, Yuan Dai, Yueyang Wang, Mingye Hu, Hai-Jing Zhong and Jingwei He
Materials 2025, 18(10), 2202; https://doi.org/10.3390/ma18102202 - 10 May 2025
Cited by 2 | Viewed by 1824
Abstract
Three-dimensional (3D) printing represents a pivotal technological advancement in dental prosthetics, fundamentally transforming the fabrication of provisional crowns and bridges through innovative vat photopolymerization methodologies, specifically stereolithography (SLA) and digital light processing (DLP). This comprehensive scholarly review critically examines the technological landscape of [...] Read more.
Three-dimensional (3D) printing represents a pivotal technological advancement in dental prosthetics, fundamentally transforming the fabrication of provisional crowns and bridges through innovative vat photopolymerization methodologies, specifically stereolithography (SLA) and digital light processing (DLP). This comprehensive scholarly review critically examines the technological landscape of 3D-printed resin-based dental provisional crowns and bridges, systematically analyzing their material performance, clinical applications, and prospective developmental trajectories. Empirical investigations demonstrate that these advanced restorations exhibit remarkable mechanical characteristics, including flexural strength ranging from 60 to 90 MPa and fracture resistance of 1000–1200 N, consistently matching or surpassing traditional manufacturing techniques. The digital workflow introduces substantial procedural innovations, dramatically reducing fabrication time while simultaneously achieving superior marginal adaptation and internal architectural precision. Despite these significant technological advancements, critical challenges persist, encompassing material durability limitations, interlayer bonding strength inconsistencies, and the current paucity of longitudinal clinical evidence. Contemporary research initiatives are strategically focused on optimizing resin formulations through strategic filler incorporation, enhancing post-processing protocols, and addressing fundamental limitations in color stability and water sorption characteristics. Ultimately, this scholarly review aims to provide comprehensive insights that will inform evidence-based clinical practices and delineate future research trajectories in the dynamically evolving domain of digital dentistry, with the paramount objective of advancing patient outcomes through technological innovation and precision-driven methodological approaches. Full article
(This article belongs to the Special Issue Research and Application Advantages of 3D-Printed Dental Materials)
Show Figures

Figure 1

Back to TopTop