Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = 3D freehand ultrasound

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 558 KiB  
Review
Trackerless 3D Freehand Ultrasound Reconstruction: A Review
by Chrissy A. Adriaans, Mark Wijkhuizen, Lennard M. van Karnenbeek, Freija Geldof and Behdad Dashtbozorg
Appl. Sci. 2024, 14(17), 7991; https://doi.org/10.3390/app14177991 - 6 Sep 2024
Cited by 2 | Viewed by 2544
Abstract
Two-dimensional ultrasound (2D US) is commonly used in clinical settings for its cost-effectiveness and non-invasiveness, but it is limited by spatial orientation and operator dependency. Three-dimensional ultrasound (3D US) overcomes these limitations by adding a third dimension and enhancing integration with other imaging [...] Read more.
Two-dimensional ultrasound (2D US) is commonly used in clinical settings for its cost-effectiveness and non-invasiveness, but it is limited by spatial orientation and operator dependency. Three-dimensional ultrasound (3D US) overcomes these limitations by adding a third dimension and enhancing integration with other imaging modalities. Advances in deep learning (DL) have further propelled the viability of freehand image-based 3D reconstruction, broadening clinical applications in intraoperative and point-of-care (POC) settings. This review evaluates state-of-the-art freehand 3D US reconstruction methods that eliminate the need for external tracking devices, focusing on experimental setups, data acquisition strategies, and reconstruction methodologies. PubMed, Scopus, and IEEE Xplore were searched for studies since 2014 following the PRISMA guidelines, excluding those using additional imaging or tracking systems other than inertial measurement units (IMUs). Fourteen eligible studies were analyzed, showing a shift from traditional speckle decorrelation towards DL-based methods, particularly convolutional neural networks (CNNs). Variability in datasets and evaluation methods hindered a comprehensive quantitative comparison, but notable accuracy improvements were observed with IMUs and integration of contextual and temporal information within CNNs. These advancements enhance freehand 3D US reconstruction feasibility, though variability limits definitive conclusions about the most effective methods. Future research should focus on improving precision in complex trajectories and adaptability across clinical scenarios. Full article
(This article belongs to the Special Issue Novel Applications of Artificial Intelligence in Ultrasound Imaging)
Show Figures

Figure 1

13 pages, 6272 KiB  
Article
Six-Degree-of-Freedom Freehand 3D Ultrasound: A Low-Cost Computer Vision-Based Approach for Orthopedic Applications
by Lorenzo De Sanctis, Arianna Carnevale, Carla Antonacci, Eliodoro Faiella, Emiliano Schena and Umile Giuseppe Longo
Diagnostics 2024, 14(14), 1501; https://doi.org/10.3390/diagnostics14141501 - 12 Jul 2024
Viewed by 1446
Abstract
In orthopedics, X-rays and computed tomography (CT) scans play pivotal roles in diagnosing and treating bone pathologies. Machine bulkiness and the emission of ionizing radiation remain the main problems associated with these techniques. The accessibility and low risks related to ultrasound handling make [...] Read more.
In orthopedics, X-rays and computed tomography (CT) scans play pivotal roles in diagnosing and treating bone pathologies. Machine bulkiness and the emission of ionizing radiation remain the main problems associated with these techniques. The accessibility and low risks related to ultrasound handling make it a popular 2D imaging method. Indeed, 3D ultrasound assembles 2D slices into a 3D volume. This study aimed to implement a probe-tracking method for 6 DoF 3D ultrasound. The proposed method involves a dodecahedron with ArUco markers attached, enabling computer vision tracking of the ultrasound probe’s position and orientation. The algorithm focuses on the data acquisition phase but covers the basic reconstruction required for data generation and analysis. In the best case, the analysis revealed an average error norm of 2.858 mm with a standard deviation norm of 5.534 mm compared to an infrared optical tracking system used as a reference. This study demonstrates the feasibility of performing volumetric imaging without ionizing radiation or bulky systems. This marker-based approach shows promise for enhancing orthopedic imaging, providing a more accessible imaging modality for helping clinicians to diagnose pathologies regarding complex joints, such as the shoulder, replacing standard infrared tracking systems known to suffer from marker occlusion problems. Full article
(This article belongs to the Special Issue Recent Advances in the Diagnosis and Prognosis of Sports Injuries)
Show Figures

Figure 1

23 pages, 3967 KiB  
Review
Review of Three-Dimensional Handheld Photoacoustic and Ultrasound Imaging Systems and Their Applications
by Changyeop Lee, Chulhong Kim and Byullee Park
Sensors 2023, 23(19), 8149; https://doi.org/10.3390/s23198149 - 28 Sep 2023
Cited by 4 | Viewed by 4474
Abstract
Photoacoustic (PA) imaging is a non-invasive biomedical imaging technique that combines the benefits of optics and acoustics to provide high-resolution structural and functional information. This review highlights the emergence of three-dimensional handheld PA imaging systems as a promising approach for various biomedical applications. [...] Read more.
Photoacoustic (PA) imaging is a non-invasive biomedical imaging technique that combines the benefits of optics and acoustics to provide high-resolution structural and functional information. This review highlights the emergence of three-dimensional handheld PA imaging systems as a promising approach for various biomedical applications. These systems are classified into four techniques: direct imaging with 2D ultrasound (US) arrays, mechanical-scanning-based imaging with 1D US arrays, mirror-scanning-based imaging, and freehand-scanning-based imaging. A comprehensive overview of recent research in each imaging technique is provided, and potential solutions for system limitations are discussed. This review will serve as a valuable resource for researchers and practitioners interested in advancements and opportunities in three-dimensional handheld PA imaging technology. Full article
(This article belongs to the Special Issue Feature Papers in Section Biosensors 2023)
Show Figures

Figure 1

26 pages, 2969 KiB  
Article
Image Formation Algorithms for Low-Cost Freehand Ultrasound Scanner Based on Ego-Motion Estimation and Unsupervised Clustering
by Ayusha Abbas, Jeffrey Neasham and Mohsen Naqvi
Electronics 2023, 12(17), 3634; https://doi.org/10.3390/electronics12173634 - 28 Aug 2023
Cited by 3 | Viewed by 2000
Abstract
This paper describes the application of unsupervised learning techniques to improve ego-motion estimation for a low-cost freehand ultrasound probe. Echo decorrelation measurements, which are used to estimate the lateral velocity of a scanning probe as it is passed over the skin, are found [...] Read more.
This paper describes the application of unsupervised learning techniques to improve ego-motion estimation for a low-cost freehand ultrasound probe. Echo decorrelation measurements, which are used to estimate the lateral velocity of a scanning probe as it is passed over the skin, are found to be sensitive to varying tissue types and echogenicity in the imaged scene, and this can impact the geometric accuracy of the generated images. Here, we investigate algorithms to cluster the collated 1D echo data into regions of different echogenicity by applying a Gaussian mixture model (GMM), spatial fuzzy c-means (SFCM) or k-means clustering techniques, after which the decorrelation measurements can focus on the regions that yield the most accurate velocity estimates. A specially designed mechanical rig is used to provide the ground truth for the quantitative analysis of probe position estimation on phantom and in vivo data using different clustering techniques. It is concluded that the GMM is the most effective in classifying regions of echo data, leading to the reconstruction of the most geometrically correct 2D B-mode ultrasound image. Full article
(This article belongs to the Special Issue Ultrasonic Pattern Recognition by Machine Learning)
Show Figures

Figure 1

30 pages, 12366 KiB  
Article
A Freehand 3D Ultrasound Reconstruction Method Based on Deep Learning
by Xin Chen, Houjin Chen, Yahui Peng, Liu Liu and Chang Huang
Electronics 2023, 12(7), 1527; https://doi.org/10.3390/electronics12071527 - 23 Mar 2023
Cited by 9 | Viewed by 6711
Abstract
In the medical field, 3D ultrasound reconstruction can visualize the internal structure of patients, which is very important for doctors to carry out correct analyses and diagnoses. Furthermore, medical 3D ultrasound images have been widely used in clinical disease diagnosis because they can [...] Read more.
In the medical field, 3D ultrasound reconstruction can visualize the internal structure of patients, which is very important for doctors to carry out correct analyses and diagnoses. Furthermore, medical 3D ultrasound images have been widely used in clinical disease diagnosis because they can more intuitively display the characteristics and spatial location information of the target. The traditional way to obtain 3D ultrasonic images is to use a 3D ultrasonic probe directly. Although freehand 3D ultrasound reconstruction is still in the research stage, a lot of research has recently been conducted on the freehand ultrasound reconstruction method based on wireless ultrasonic probe. In this paper, a wireless linear array probe is used to build a freehand acousto-optic positioning 3D ultrasonic imaging system. B-scan is considered the brightness scan. It is used for producing a 2D cross-section of the eye and its orbit. This system is used to collect and construct multiple 2D B-scans datasets for experiments. According to the experimental results, a freehand 3D ultrasonic reconstruction method based on depth learning is proposed, which is called sequence prediction reconstruction based on acoustic optical localization (SPRAO). SPRAO is an ultrasound reconstruction system which cannot be put into medical clinical use now. Compared with 3D reconstruction using a 3D ultrasound probe, SPRAO not only has a controllable scanning area, but also has a low cost. SPRAO solves some of the problems in the existing algorithms. Firstly, a 60 frames per second (FPS) B-scan sequence can be synthesized using a 12 FPS wireless ultrasonic probe through 2–3 acquisitions. It not only effectively reduces the requirement for the output frame rate of the ultrasonic probe, but also increases the moving speed of the wireless probe. Secondly, SPRAO analyzes the B-scans through speckle decorrelation to calibrate the acousto-optic auxiliary positioning information, while other algorithms have no solution to the cumulative error of the external auxiliary positioning device. Finally, long short-term memory (LSTM) is used to predict the spatial position and attitude of B-scans, and the calculation of pose deviation and speckle decorrelation is integrated into a 3D convolutional neural network (3DCNN). Prepare for real-time 3D reconstruction under the premise of accurate spatial pose of B-scans. At the end of this paper, SPRAO is compared with linear motion, IMU, speckle decorrelation, CNN and other methods. From the experimental results, it can be observed that the spatial pose deviation of B-scans output using SPRAO is the best of these methods. Full article
Show Figures

Figure 1

33 pages, 7351 KiB  
Review
Recent Advances in Tracking Devices for Biomedical Ultrasound Imaging Applications
by Chang Peng, Qianqian Cai, Mengyue Chen and Xiaoning Jiang
Micromachines 2022, 13(11), 1855; https://doi.org/10.3390/mi13111855 - 29 Oct 2022
Cited by 14 | Viewed by 7249
Abstract
With the rapid advancement of tracking technologies, the applications of tracking systems in ultrasound imaging have expanded across a wide range of fields. In this review article, we discuss the basic tracking principles, system components, performance analyses, as well as the main sources [...] Read more.
With the rapid advancement of tracking technologies, the applications of tracking systems in ultrasound imaging have expanded across a wide range of fields. In this review article, we discuss the basic tracking principles, system components, performance analyses, as well as the main sources of error for popular tracking technologies that are utilized in ultrasound imaging. In light of the growing demand for object tracking, this article explores both the potential and challenges associated with different tracking technologies applied to various ultrasound imaging applications, including freehand 3D ultrasound imaging, ultrasound image fusion, ultrasound-guided intervention and treatment. Recent development in tracking technology has led to increased accuracy and intuitiveness of ultrasound imaging and navigation with less reliance on operator skills, thereby benefiting the medical diagnosis and treatment. Although commercially available tracking systems are capable of achieving sub-millimeter resolution for positional tracking and sub-degree resolution for orientational tracking, such systems are subject to a number of disadvantages, including high costs and time-consuming calibration procedures. While some emerging tracking technologies are still in the research stage, their potentials have been demonstrated in terms of the compactness, light weight, and easy integration with existing standard or portable ultrasound machines. Full article
Show Figures

Figure 1

21 pages, 1481 KiB  
Article
The Short-Term Impact of Botulinum Neurotoxin-A on Muscle Morphology and Gait in Children with Spastic Cerebral Palsy
by Nicky Peeters, Eirini Papageorgiou, Britta Hanssen, Nathalie De Beukelaer, Lauraine Staut, Marc Degelaen, Christine Van den Broeck, Patrick Calders, Hilde Feys, Anja Van Campenhout and Kaat Desloovere
Toxins 2022, 14(10), 676; https://doi.org/10.3390/toxins14100676 - 29 Sep 2022
Cited by 10 | Viewed by 3804
Abstract
Children with spastic cerebral palsy (SCP) are often treated with intramuscular Botulinum Neurotoxin type-A (BoNT-A). Recent studies demonstrated BoNT-A-induced muscle atrophy and variable effects on gait pathology. This group-matched controlled study in children with SCP compared changes in muscle morphology 8–10 weeks post-BoNT-A [...] Read more.
Children with spastic cerebral palsy (SCP) are often treated with intramuscular Botulinum Neurotoxin type-A (BoNT-A). Recent studies demonstrated BoNT-A-induced muscle atrophy and variable effects on gait pathology. This group-matched controlled study in children with SCP compared changes in muscle morphology 8–10 weeks post-BoNT-A treatment (n = 25, median age 6.4 years, GMFCS level I/II/III (14/9/2)) to morphological changes of an untreated control group (n = 20, median age 7.6 years, GMFCS level I/II/III (14/5/1)). Additionally, the effects on gait and spasticity were assessed in all treated children and a subgroup (n = 14), respectively. BoNT-A treatment was applied following an established integrated approach. Gastrocnemius and semitendinosus volume and echogenicity intensity were assessed by 3D-freehand ultrasound, spasticity was quantified through electromyography during passive muscle stretches at different velocities. Ankle and knee kinematics were evaluated by 3D-gait analysis. Medial gastrocnemius (p = 0.018, −5.2%) and semitendinosus muscle volume (p = 0.030, −16.2%) reduced post-BoNT-A, but not in the untreated control group, while echogenicity intensity did not change. Spasticity reduced and ankle gait kinematics significantly improved, combined with limited effects on knee kinematics. This study demonstrated that BoNT-A reduces spasticity and partly improves pathological gait but reduces muscle volume 8–10 weeks post-injections. Close post-BoNT-A follow-up and well-considered treatment selection is advised before BoNT-A application in SCP. Full article
(This article belongs to the Special Issue Botulinum Toxin in the Management of Children with Cerebral Palsy)
Show Figures

Figure 1

14 pages, 3960 KiB  
Article
Accuracy Report on a Handheld 3D Ultrasound Scanner Prototype Based on a Standard Ultrasound Machine and a Spatial Pose Reading Sensor
by Radu Chifor, Tiberiu Marita, Tudor Arsenescu, Andrei Santoma, Alexandru Florin Badea, Horatiu Alexandru Colosi, Mindra-Eugenia Badea and Ioana Chifor
Sensors 2022, 22(9), 3358; https://doi.org/10.3390/s22093358 - 27 Apr 2022
Cited by 5 | Viewed by 3416
Abstract
The aim of this study was to develop and evaluate a 3D ultrasound scanning method. The main requirements were the freehand architecture of the scanner and high accuracy of the reconstructions. A quantitative evaluation of a freehand 3D ultrasound scanner prototype was performed, [...] Read more.
The aim of this study was to develop and evaluate a 3D ultrasound scanning method. The main requirements were the freehand architecture of the scanner and high accuracy of the reconstructions. A quantitative evaluation of a freehand 3D ultrasound scanner prototype was performed, comparing the ultrasonographic reconstructions with the CAD (computer-aided design) model of the scanned object, to determine the accuracy of the result. For six consecutive scans, the 3D ultrasonographic reconstructions were scaled and aligned with the model. The mean distance between the 3D objects ranged between 0.019 and 0.05 mm and the standard deviation between 0.287 mm and 0.565 mm. Despite some inherent limitations of our study, the quantitative evaluation of the 3D ultrasonographic reconstructions showed comparable results to other studies performed on smaller areas of the scanned objects, demonstrating the future potential of the developed prototype. Full article
Show Figures

Figure 1

18 pages, 1083 KiB  
Article
Reduced Cross-Sectional Muscle Growth Six Months after Botulinum Toxin Type-A Injection in Children with Spastic Cerebral Palsy
by Nathalie De Beukelaer, Guido Weide, Ester Huyghe, Ines Vandekerckhove, Britta Hanssen, Nicky Peeters, Julie Uytterhoeven, Jorieke Deschrevel, Karen Maes, Marlies Corvelyn, Domiziana Costamagna, Ghislaine Gayan-Ramirez, Anja Van Campenhout and Kaat Desloovere
Toxins 2022, 14(2), 139; https://doi.org/10.3390/toxins14020139 - 14 Feb 2022
Cited by 22 | Viewed by 5743
Abstract
Botulinum Neurotoxin type-A (BoNT-A) injections are widely used as first-line spasticity treatment in spastic cerebral palsy (SCP). Despite improved clinical outcomes, concerns regarding harmful effects on muscle morphology have been raised. Yet, the risk of initiating BoNT-A to reduce muscle growth remains unclear. [...] Read more.
Botulinum Neurotoxin type-A (BoNT-A) injections are widely used as first-line spasticity treatment in spastic cerebral palsy (SCP). Despite improved clinical outcomes, concerns regarding harmful effects on muscle morphology have been raised. Yet, the risk of initiating BoNT-A to reduce muscle growth remains unclear. This study investigated medial gastrocnemius (MG) morphological muscle growth in children with SCP (n = 26, median age of 5.2 years (3.5)), assessed by 3D-freehand ultrasound prior to and six months post-BoNT-A injections. Post-BoNT-A MG muscle growth of BoNT-A naive children (n = 11) was compared to (a) muscle growth of children who remained BoNT-A naive after six months (n = 11) and (b) post-BoNT-A follow-up data of children with a history of BoNT-A treatment (n = 15). Six months after initiating BoNT-A injection, 17% decrease in mid-belly cross-sectional area normalized to skeletal growth and 5% increase in echo-intensity were illustrated. These muscle outcomes were only significantly altered when compared with children who remained BoNT-A naive (+4% and −3%, respectively, p < 0.01). Muscle length growth persevered over time. This study showed reduced cross-sectional growth post-BoNT-A treatment suggesting that re-injections should be postponed at least beyond six months. Future research should extend follow-up periods investigating muscle recovery in the long-term and should include microscopic analysis. Full article
(This article belongs to the Special Issue Botulinum Toxin in the Management of Children with Cerebral Palsy)
Show Figures

Figure 1

15 pages, 5344 KiB  
Article
Versatile Low-Cost Volumetric 3D Ultrasound Imaging Using Gimbal-Assisted Distance Sensors and an Inertial Measurement Unit
by Taehyung Kim, Dong-Hyun Kang, Shinyong Shim, Maesoon Im, Bo Kyoung Seo, Hyungmin Kim and Byung Chul Lee
Sensors 2020, 20(22), 6613; https://doi.org/10.3390/s20226613 - 19 Nov 2020
Cited by 12 | Viewed by 6760
Abstract
This study aims at creating low-cost, three-dimensional (3D), freehand ultrasound image reconstructions from commercial two-dimensional (2D) probes. The low-cost system that can be attached to a commercial 2D ultrasound probe consists of commercial ultrasonic distance sensors, a gimbal, and an inertial measurement unit [...] Read more.
This study aims at creating low-cost, three-dimensional (3D), freehand ultrasound image reconstructions from commercial two-dimensional (2D) probes. The low-cost system that can be attached to a commercial 2D ultrasound probe consists of commercial ultrasonic distance sensors, a gimbal, and an inertial measurement unit (IMU). To calibrate irregular movements of the probe during scanning, relative position data were collected from the ultrasonic sensors that were attached to a gimbal. The directional information was provided from the IMU. All the data and 2D ultrasound images were combined using a personal computer to reconstruct 3D ultrasound image. The relative position error of the proposed system was less than 0.5%. The overall shape of the cystic mass in the breast phantom was similar to those from 2D and sections of 3D ultrasound images. Additionally, the pressure and deformations of lesions could be obtained and compensated by contacting the probe to the surface of the soft tissue using the acquired position data. The proposed method did not require any initial marks or receivers for the reconstruction of a 3D ultrasound image using a 2D ultrasound probe. Even though our system is less than $500, a valuable volumetric ultrasound image could be provided to the users. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

20 pages, 7873 KiB  
Article
Probe Sector Matching for Freehand 3D Ultrasound Reconstruction
by Xin Chen, Houjin Chen, Yahui Peng and Dan Tao
Sensors 2020, 20(11), 3146; https://doi.org/10.3390/s20113146 - 2 Jun 2020
Cited by 3 | Viewed by 4159
Abstract
A 3D ultrasound image reconstruction technique, named probe sector matching (PSM), is proposed in this paper for a freehand linear array ultrasound probe equipped with multiple sensors, providing the position and attitude of the transducer and the pressure between the transducer and the [...] Read more.
A 3D ultrasound image reconstruction technique, named probe sector matching (PSM), is proposed in this paper for a freehand linear array ultrasound probe equipped with multiple sensors, providing the position and attitude of the transducer and the pressure between the transducer and the target surface. The proposed PSM method includes three main steps. First, the imaging target and the working range of the probe are set to be the center and the radius of the imaging field of view, respectively. To reconstruct a 3D volume, the positions of all necessary probe sectors are pre-calculated inversely to form a sector database. Second, 2D cross-section probe sectors with the corresponding optical positioning, attitude and pressure information are collected when the ultrasound probe is moving around the imaging target. Last, an improved 3D Hough transform is used to match the plane of the current probe sector to the existing sector images in the sector database. After all pre-calculated probe sectors are acquired and matched into the 3D space defined by the sector database, a 3D ultrasound reconstruction is completed. The PSM is validated through two experiments: a virtual simulation using a numerical model and a lab experiment using a real physical model. The experimental results show that the PSM effectively reduces the errors caused by changes in the target position due to the uneven surface pressure or the inhomogeneity of the transmission media. We conclude that the PSM proposed in this study may help to design a lightweight, inexpensive and flexible ultrasound device with accurate 3D imaging capacity. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

16 pages, 3457 KiB  
Article
Three-Dimensional Registration of Freehand-Tracked Ultrasound to CT Images of the Talocrural Joint
by Nazlı Tümer, Aimee C. Kok, Frans M. Vos, Geert J. Streekstra, Christian Askeland, Gabrielle J. M. Tuijthof and Amir A. Zadpoor
Sensors 2018, 18(7), 2375; https://doi.org/10.3390/s18072375 - 21 Jul 2018
Cited by 4 | Viewed by 4821
Abstract
A rigid surface–volume registration scheme is presented in this study to register computed tomography (CT) and free-hand tracked ultrasound (US) images of the talocrural joint. Prior to registration, bone surfaces expected to be visible in US are extracted from the CT volume and [...] Read more.
A rigid surface–volume registration scheme is presented in this study to register computed tomography (CT) and free-hand tracked ultrasound (US) images of the talocrural joint. Prior to registration, bone surfaces expected to be visible in US are extracted from the CT volume and bone contours in 2D US data are enhanced based on monogenic signal representation of 2D US images. A 3D monogenic signal data is reconstructed from the 2D data using the position of the US probe recorded with an optical tracking system. When registering the surface extracted from the CT scan to the monogenic signal feature volume, six transformation parameters are estimated so as to optimize the sum of monogenic signal features over the transformed surface. The robustness of the registration algorithm was tested on a dataset collected from 12 cadaveric ankles. The proposed method was used in a clinical case study to investigate the potential of US imaging for pre-operative planning of arthroscopic access to talar (osteo)chondral defects (OCDs). The results suggest that registrations with a registration error of 2 mm and less is achievable, and US has the potential to be used in assessment of an OCD’ arthroscopic accessibility, given the fact that 51% of the talar surface could be visualized. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

22 pages, 5671 KiB  
Article
Quantitative Assessment of Variational Surface Reconstruction from Sparse Point Clouds in Freehand 3D Ultrasound Imaging during Image-Guided Tumor Ablation
by Shuangcheng Deng, Yunhua Li, Lipei Jiang and Ping Liang
Appl. Sci. 2016, 6(4), 114; https://doi.org/10.3390/app6040114 - 19 Apr 2016
Cited by 1 | Viewed by 7335
Abstract
Surface reconstruction for freehand 3D ultrasound is used to provide 3D visualization of a VOI (volume of interest) during image-guided tumor ablation surgery. This is a challenge because the recorded 2D B-scans are not only sparse but also non-parallel. To solve this issue, [...] Read more.
Surface reconstruction for freehand 3D ultrasound is used to provide 3D visualization of a VOI (volume of interest) during image-guided tumor ablation surgery. This is a challenge because the recorded 2D B-scans are not only sparse but also non-parallel. To solve this issue, we established a framework to reconstruct the surface of freehand 3D ultrasound imaging in 2011. The key technique for surface reconstruction in that framework is based on variational interpolation presented by Greg Turk for shape transformation and is named Variational Surface Reconstruction (VSR). The main goal of this paper is to evaluate the quality of surface reconstructions, especially when the input data are extremely sparse point clouds from freehand 3D ultrasound imaging, using four methods: Ball Pivoting, Power Crust, Poisson, and VSR. Four experiments are conducted, and quantitative metrics, such as the Hausdorff distance, are introduced for quantitative assessment. The experiment results show that the performance of the proposed VSR method is the best of the four methods at reconstructing surface from sparse data. The VSR method can produce a close approximation to the original surface from as few as two contours, whereas the other three methods fail to do so. The experiment results also illustrate that the reproducibility of the VSR method is the best of the four methods. Full article
Show Figures

Graphical abstract

Back to TopTop