Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (189)

Search Parameters:
Keywords = 3D cell trap

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1443 KB  
Article
The Presence of Neutrophil Extracellular Traps (NETs) in Brain Tumor Vessels Is Linked to Platelet Aggregates and Podoplanin in the Tumor Microenvironment
by Pegah Mir Seyed Nazari, Öykü Özer, Thomas Roetzer-Pejrimovsky, Maximilian J. Mair, Julia Riedl, Christine Brostjan, Anna Sophie Berghoff, Matthias Preusser, Johannes A. Hainfellner, Christine Marosi, Ingrid Pabinger and Cihan Ay
Cancers 2025, 17(19), 3141; https://doi.org/10.3390/cancers17193141 - 27 Sep 2025
Viewed by 413
Abstract
Background: Multiple mechanisms might lead to cancer-related hypercoagulability. In brain tumors, podoplanin, via its ability to activate platelets, seems to play a crucial role in developing venous thromboembolism (VTE). Different stimuli (including activated platelets) can trigger the release of prothrombotic neutrophil extracellular [...] Read more.
Background: Multiple mechanisms might lead to cancer-related hypercoagulability. In brain tumors, podoplanin, via its ability to activate platelets, seems to play a crucial role in developing venous thromboembolism (VTE). Different stimuli (including activated platelets) can trigger the release of prothrombotic neutrophil extracellular traps (NETs) by neutrophils. It remains to be elucidated whether podoplanin-induced platelet aggregates might also impact NET formation and subsequent hypercoagulability and thrombosis. Methods: Patients with glioma were enrolled in this prospective observational cohort study. The primary endpoint was VTE. Immunohistochemical staining of NETs (via citrullinated histone H3 [H3Cit]) and neutrophils (via myeloperoxidase [MPO]) was conducted in glioma specimens and correlated with intravascular platelet clusters (via CD61) and podoplanin. Results: In total, 154 patients were included. H3Cit+ tumor vessels were found in 45/154 cases. H3Cit were significantly associated with increased intravascular platelet clusters (CD61− vs. CD61+ vs. CD61++ vs. CD61+++: 3.7% (1/27) vs. 18.6% (11/59) vs. 39.4% (13/33) vs. 57.1% (20/35), p < 0.001) and podoplanin expression (PDPN− vs. PDPN+: 14.3% (7/49) vs. 36.2% (38/105), p = 0.007) in the tumor tissue. Furthermore, H3Cit+ tumor vessels were significantly associated with tumor-infiltrating MPO+ neutrophils (H3Cit− vs. H3Cit+, median [Q1-Q3]: 6.0 [3.3–12.3] vs. 12.5 [5.9–22.0] cells/mm2, p < 0.001) and with D-dimer levels (H3Cit− vs. H3Cit+: 0.53 [0.32–1.10] vs. 0.84 [0.46–2.75] µg/mL, p = 0.034). The VTE risk was not linked to H3Cit+ tumor vessels (p = 0.613, log-rank). Conclusions: H3Cit in tumor vessels was not associated with VTE. However, H3Cit was linked to a local procoagulant phenotype in glioma, thereby potentially contributing to a systemic hypercoagulable state and thrombus formation. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

21 pages, 6518 KB  
Article
Topological Rainbow Trapping in One-Dimensional Magnetoelastic Phononic Crystal Slabs
by Wen Xiao, Fuhao Sui, Jiujiu Chen, Hongbo Huang and Tao Luo
Magnetochemistry 2025, 11(10), 83; https://doi.org/10.3390/magnetochemistry11100083 - 25 Sep 2025
Viewed by 264
Abstract
We design a one-dimensional magnetoelastic phononic crystal slab composed of the smart magnetostrictive material Terfenol-D and pure tungsten. Band inversion and topological phase transitions are achieved by modifying the geometric parameters of the non-magnetic medium within the unit cell. The emergence of topological [...] Read more.
We design a one-dimensional magnetoelastic phononic crystal slab composed of the smart magnetostrictive material Terfenol-D and pure tungsten. Band inversion and topological phase transitions are achieved by modifying the geometric parameters of the non-magnetic medium within the unit cell. The emergence of topological interface states within overlapping bandgaps, exhibiting distinct topological properties, along with their robustness against interfacial structural defects, is confirmed. The coupling effects between adjacent topological interface states in a sandwich-like supercell configuration are investigated, and their tunability under external magnetic fields is demonstrated. A Su-Schrieffer-Heeger (SSH) phononic crystal slab system under gradient magnetic fields is proposed. Critically, and in stark contrast to previous static or structurally graded designs, we achieve reconfigurable rainbow trapping of topological interface states solely by reprogramming the gradient magnetic field, leaving the physical structure entirely unchanged. This highly localized, compact, and broadband-tunable topological rainbow trapping system design holds significant promise for applications in elastic energy harvesting, wave filtering, and multi-frequency signal processing. Full article
(This article belongs to the Special Issue Advances in Low-Dimensional Magnetic Materials)
Show Figures

Figure 1

15 pages, 2669 KB  
Article
Integrative Study of Dipsaci Radix and Phlomidis Radix: Nomenclature, Morphology, DNA-Based Authentication, and Comparative Effects on Osteoclastogenesis
by Jun-Ho Song, Yun-Soo Seo, Yeseul Kim, Sohee Jeong, Sungyu Yang, Goya Choi, Joong-Sun Kim and Inkyu Park
Pharmaceuticals 2025, 18(9), 1418; https://doi.org/10.3390/ph18091418 - 20 Sep 2025
Viewed by 407
Abstract
Background/Objectives: Dipsaci Radix (Dipsacus asper) and Phlomidis Radix (Phlomoides umbrosa) are both traditional medicines used in Korea and China for various bone-associated diseases. However, the two are misused due to similarities in name and appearance. Additionally, D. japonicus [...] Read more.
Background/Objectives: Dipsaci Radix (Dipsacus asper) and Phlomidis Radix (Phlomoides umbrosa) are both traditional medicines used in Korea and China for various bone-associated diseases. However, the two are misused due to similarities in name and appearance. Additionally, D. japonicus root frequently contaminates Dipsaci Radix in Korean herbal markets. Methods: We examined morphological plant traits and performed a DNA barcoding analysis using ITS2 and matK sequences to differentiate between these three species. The effects of root extracts on bone resorption and osteoclast differentiation, measured as tartrate-resistant acid phosphatase (TRAP)-positive cell formation, were evaluated using mouse (5 weeks male ICR mice) bone marrow-derived macrophages. Cytotoxicity assays were conducted to assess extract safety. Results: Phlomoides umbrosa is easily distinguished by its verticillaster inflorescences and 2-labiate corollas. Dipsacus asper and D. japonicus, which share globose inflorescences, are distinguishable by flower color and leaf lobation. The ITS2 and matK sequences clearly differentiated the three species, with haplotype analysis supporting their genetic distinctiveness, enabling robust species discrimination. All three extracts decreased osteoclastic bone resorption and inhibited TRAP-positive cell formations in a dose-dependent manner. Only the D. japonicus extract demonstrated toxicity. Conclusions: This integrative study provides the current scientific names of the original species and proposes their use in the Korean Herbal Pharmacopoeia. Moreover, a reasonable molecular method for authenticating medicinal materials is suggested. Dipsacus japonicus shows promise as an additional origin species in the Korean Pharmacopoeia. However, processing methods that reduce toxicity must be discovered. Full article
Show Figures

Figure 1

18 pages, 4115 KB  
Article
Coptidis Rhizoma Water Extract Attenuates RANKL-Induced Osteoclast Differentiation via MAPK, Akt, and NF-κB Pathways and Prevents Ovariectomy (OVX)-Mediated Bone Loss
by Sang-Yong Han and Yun-Kyung Kim
Int. J. Mol. Sci. 2025, 26(17), 8707; https://doi.org/10.3390/ijms26178707 - 6 Sep 2025
Viewed by 1151
Abstract
Excessive osteoclast activity in bone remodeling can lead to an imbalance between bone resorption and formation, a common occurrence in abnormal bone metabolic diseases. This research investigates the effect of Coptidis rhizoma water extract (CRW) on osteoclastogenesis provoked by RANKL in vitro and [...] Read more.
Excessive osteoclast activity in bone remodeling can lead to an imbalance between bone resorption and formation, a common occurrence in abnormal bone metabolic diseases. This research investigates the effect of Coptidis rhizoma water extract (CRW) on osteoclastogenesis provoked by RANKL in vitro and bone destruction mediated by ovariectomy (OVX) in vivo. CRW, prepared from dried Coptidis rhizoma (CR), was analyzed for its active compounds—coptisine and berberine—using HPLC analysis. CRW markedly decreased the size and number of TRAP-positive multinucleated cells (TRAP+ MNCs), suppressed F-actin ring formation, and diminished bone resorption in RANKL-treated cultures. In the early phase of differentiation, CRW suppressed the phosphorylation of MAPKs p38, JNK, and ERK, as well as NF-κB p65, Iκ-Bα, and Akt. CRW also down-regulated RANKL-mediated induction of c-Fos and NFATc1 and attenuated the activation of NFATc1- dependent genes, such as OSCAR, ATP6V0D2, ACP5 (TRAP), OC-STAMP, DC-STAMP, CTSK (cathepsin K), CALCR (calcitonin receptor), and MMP-9. In ovariectomized rats, micro-CT and histological analyses showed that CRW alleviated femoral bone destruction. These findings indicate that CRW restrains osteoclast differentiation and function and may have therapeutic potential for disorders driven by excessive osteoclast activity. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

13 pages, 7865 KB  
Article
FlbD: A Regulator of Hyphal Growth, Stress Resistance, Pathogenicity, and Chlamydospore Production in the Nematode-Trapping Fungus Arthrobotrys flagrans
by Yu Zhang, Shun-Qiao Peng, Wang-Ting He, Fei-Fei Gao, Qian-Fei Shi and Guo-Hong Li
Microorganisms 2025, 13(8), 1847; https://doi.org/10.3390/microorganisms13081847 - 7 Aug 2025
Viewed by 471
Abstract
Arthrobotrys flagrans is a typical nematode-trapping fungus that captures nematodes by producing three-dimensional networks. FlbD is a DNA-binding protein containing a Myb domain, which plays a significant role in fungal development. However, the biological function of FlbD in nematode-trapping fungi remains unknown. In [...] Read more.
Arthrobotrys flagrans is a typical nematode-trapping fungus that captures nematodes by producing three-dimensional networks. FlbD is a DNA-binding protein containing a Myb domain, which plays a significant role in fungal development. However, the biological function of FlbD in nematode-trapping fungi remains unknown. In this study, we analyzed the physicochemical properties and conserved domains of AfFlbD and constructed the AfFlbD knockout strains (ΔAfFlbD) using homologous recombination. Our functional analysis revealed that the mutants produced more cottony aerial mycelia at the colony center. Additionally, the cell length of the mutants was reduced, indicating that AfFlbD regulates cell morphology in A. flagrans. Chemical stress tolerance assays of the mutants demonstrated reduced sensitivity to NaCl and sorbitol stresses but increased sensitivity to SDS and H2O2 stresses compared to the WT strain. Interestingly, the mutants spontaneously produced traps, and its pathogenicity to nematodes was significantly enhanced, suggesting that AfFlbD negatively regulates the pathogenicity of A. flagrans. Furthermore, the number of chlamydospores produced by the mutants was markedly reduced, though their morphology remained unchanged. Fluorescence localization analysis showed that AfFlbD localizes to the nuclei of chlamydospores, thereby regulating chlamydospore formation. This study provides important theoretical insights into the biological function of the FlbD transcription factor and offers new perspectives for the application of nematode-trapping fungi as a method of controlling plant-parasitic nematodes. Full article
(This article belongs to the Special Issue Microorganisms as Biocontrol Agents in Plant Pathology, 2nd Edition)
Show Figures

Figure 1

19 pages, 5798 KB  
Article
High-Dose Tranexamic Acid Enhances Circulating Neutrophil Extracellular Traps and Thrombus in Thrombosis Mouse Model
by Jung-Wook Song, Eun-Hye Seo, Un Yung Choi, Chung-Sik Oh, Aram Kim, Keeho Song, Seung-Hyun Lee and Jin Kook Kim
Biomedicines 2025, 13(6), 1284; https://doi.org/10.3390/biomedicines13061284 - 23 May 2025
Viewed by 828
Abstract
Background/Objectives: Tranexamic acid (TXA) reduces mortality in patients with massive hemorrhage by inhibiting fibrinolysis. However, it is associated with an increased risk of thrombosis. The activation of neutrophil extracellular traps (NETs) has been implicated in the formation of thrombosis. This study investigated [...] Read more.
Background/Objectives: Tranexamic acid (TXA) reduces mortality in patients with massive hemorrhage by inhibiting fibrinolysis. However, it is associated with an increased risk of thrombosis. The activation of neutrophil extracellular traps (NETs) has been implicated in the formation of thrombosis. This study investigated the effects of tranexamic acid on circulating and localized NETs, neutrophils, platelets, and the vascular endothelium in a mouse model of thrombosis. Methods: A ferric chloride-induced thrombosis mouse model was used and divided into five groups: a Control group that received intraperitoneal phosphate-buffered saline (PBS), and four experimental groups that received intraperitoneal tranexamic acid at doses of 5 mg/kg, 10 mg/kg, 20 mg/kg, and 30 mg/kg, respectively. To evaluate the expression of circulating and localized NETs, neutrophils, platelets, vascular endothelial cells, fibrinogen, and D-dimer, the following markers were analyzed: myeloperoxidase (MPO), neutrophil marker, cluster of differentiation (CD)31, CD34, fibrinogen α-chain, and D-dimer. These markers were assessed using flow cytometry, immunohistofluorescence staining, and Western blot analysis. The primary endpoint was the differential expression of anti-MPO antibody among the groups. Results: In total, data from 20 thrombosis mouse models were analyzed. For each group, four samples were assessed by flow cytometry, and three samples by immunohistofluorescence staining and Western blot analysis, respectively. In the flow cytometric analysis, circulating anti-MPO antibody expression was significantly higher in the TXA 20 and TXA 30 groups compared to the Control group (p = 0.001 and p = 0.001, respectively). Immunohistofluorescence staining revealed that D-dimer expression in the thrombotic femoral artery was significantly lower in the TXA 5, TXA 10, and TXA 20 groups compared to the Control group (p = 0.005; p = 0.018; p = 0.004, respectively), but significantly higher in the TXA 30 group than in the Control group (p = 0.044). Similarly, the expression of anti-fibrinogen antibody was significantly lower in the TXA 5, TXA 10, and TXA 20 groups compared to the Control group (p = 0.038; p = 0.003; p = 0.041, respectively). Western blot analysis showed no significant differences in the expression of anti-Ly6B.2, anti-fibrinogen, and anti-CD31 antibodies among the groups. Conclusions: The present study suggests that high-dose tranexamic acid (30 mg/kg) administration may increase circulating NETs and localized D-dimer levels, indicating a higher potential for thrombosis in a thrombosis mouse model. These findings imply that the prothrombotic effects of tranexamic acid may be dose-dependent and could vary based on underlying disease conditions. Therefore, the careful dosage adjustment of tranexamic acid may be necessary, particularly in patients at risk of thrombosis. Full article
(This article belongs to the Special Issue Molecular Researches in Pro-Thrombotic Disorders—2nd Edition)
Show Figures

Figure 1

15 pages, 8761 KB  
Article
Solvent-Engineered PEACl Passivation: A Pathway to 24.27% Efficiency and Industrially Scalable Perovskite Solar Cells
by Min Xin, Ihtesham Ghani, Yu Zhang, Huaxi Gao, Danish Khan, Xin Yang and Zeguo Tang
Nanomaterials 2025, 15(9), 699; https://doi.org/10.3390/nano15090699 - 6 May 2025
Viewed by 1400
Abstract
Addressing the critical challenges of interfacial defects and insufficient stability in perovskite solar cells, this work introduces a co-solvent engineering strategy to dynamically regulate the phenethylammonium chloride (PEACl) passivation layer. The effect of isopropyl alcohol (IPA) and a DMSO: IPA (1:100) mixture as [...] Read more.
Addressing the critical challenges of interfacial defects and insufficient stability in perovskite solar cells, this work introduces a co-solvent engineering strategy to dynamically regulate the phenethylammonium chloride (PEACl) passivation layer. The effect of isopropyl alcohol (IPA) and a DMSO: IPA (1:100) mixture as solvent for forming the PEACl 2D passivation layer is systematically explored, and the synergistic interplay between solvent coordination strength and crystallization kinetics is systematically investigated. The DMSO: IPA (1:100) blend balances Pb-O coordination (via DMSO) and rapid phase separation (via IPA), enabling the oriented growth of a dense, ultrathin 2D perovskite overlayer. This suppresses defect density (electron traps reduced to 1.68 × 1015 cm−3) and extends carrier lifetime, yielding a champion power conversion efficiency (PCE) of 24.27%—a significant improvement over the control (22.73%). For the first time, we establish a dual-parameter “solvent coordination-crystallization kinetics” model, providing a universal framework for designing environmentally benign solvent systems and advancing the industrial scalability of high-performance perovskite solar cells (PSCs). Full article
(This article belongs to the Special Issue Advanced Nanoscale Materials and (Flexible) Devices)
Show Figures

Graphical abstract

18 pages, 5752 KB  
Article
An In Vitro Cell Model of Intestinal Barrier Function Using a Low-Cost 3D-Printed Transwell Device and Paper-Based Cell Membrane
by Pitaksit Supjaroen, Wisanu Niamsi, Parichut Thummarati and Wanida Laiwattanapaisal
Int. J. Mol. Sci. 2025, 26(6), 2524; https://doi.org/10.3390/ijms26062524 - 12 Mar 2025
Cited by 1 | Viewed by 2649
Abstract
Current in vitro methods for intestinal barrier assessment predominantly utilize two-dimensional (2D) membrane inserts in standard culture plates, which are widely recognized for their inability to replicate the microenvironment critical to intestinal barrier functionality. Our study focuses on creating an alternative method for [...] Read more.
Current in vitro methods for intestinal barrier assessment predominantly utilize two-dimensional (2D) membrane inserts in standard culture plates, which are widely recognized for their inability to replicate the microenvironment critical to intestinal barrier functionality. Our study focuses on creating an alternative method for intestinal barrier function by integrating a 3D-printed transwell device with a paper-based membrane. Caco-2 cells were grown on a Matrigel-modified paper membrane, in which the tight junction formation was evaluated using TEER measurements. Neutrophil-like dHL-60 cells were employed for neutrophil extracellular trap (NET) formation experiments. Furthermore, intestinal barrier dysfunction was demonstrated using NET-isolated and Staurosporine interventions. Intestinal barrier characteristics were investigated through immunofluorescence staining of specific proteins and scanning electron microscopy (SEM). Our paper-based intestinal barrier exhibited an increased resistance in a time-dependent manner, consistent with immunofluorescence images of Zonulin Occludens-1 (ZO-1) expression. Interestingly, immunofluorescence analysis revealed changes in the morphology of the intestinal barrier and the formation of surface villi. These disruptions were found to alter the localization of tight junctions, impacting epithelial polarization and surface functionality. Moreover, we successfully demonstrated the permeability of a paper-based intestinal barrier using FITC-dextran assay. Hence, the 3D-printed transwell device integrated with a paper membrane insert presents a straightforward, cost-effective, and sustainable platform for an in vitro cell model to evaluate intestinal barrier function. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

18 pages, 7328 KB  
Article
Arcyriaflavin A Alleviates Osteoporosis by Suppressing RANKL-Induced Osteoclastogenesis
by Mengbo Zhu, Mingwei Xu, Damien Bertheloot, Victoria C. Brom, Alexander Sieberath, Jochen Salber, Kristian Welle, Christof Burger, Dieter C. Wirtz, Shaowei Wang and Frank A. Schildberg
Int. J. Mol. Sci. 2025, 26(5), 2141; https://doi.org/10.3390/ijms26052141 - 27 Feb 2025
Viewed by 1288
Abstract
Osteoclasts (OCs) are important therapeutic targets in the treatment of osteoporosis. The aim of this study was to explore a novel therapeutic approach for osteoporosis using Arcyriaflavin A (ArcyA), a natural compound derived from the marine invertebrate Eudistoma sp. We systematically evaluated the [...] Read more.
Osteoclasts (OCs) are important therapeutic targets in the treatment of osteoporosis. The aim of this study was to explore a novel therapeutic approach for osteoporosis using Arcyriaflavin A (ArcyA), a natural compound derived from the marine invertebrate Eudistoma sp. We systematically evaluated the effects of ArcyA on OC differentiation and function in mouse models using molecular biology assays, cellular function analyses and in vivo animal experiments. We also evaluated the efficacy of ArcyA in human cells. The TRAP staining results provide the first clear evidence of the drug’s inhibitory effect, whereby the administration of ArcyA led to a significant reduction in TRAP-positive cells compared to the control group at concentrations that were non-toxic to bone marrow macrophages. Meanwhile, a significant reduction in the number of multinucleated giant cells with more than ten nuclei was observed. Furthermore, similar TRAP staining results were reproduced in human OCs, suggesting that ArcyA has the same effect on OCs derived from human PBMCs. At the molecular level, ArcyA treatment resulted in the downregulation of genes relevant to OC differentiation (NFATc1, cFos and TNFrsf11α), fusion and survival (DCstamp and ATP6v0d2) and resorption function (CTSK, MMP9, integrin β3 and ACP5). A western blot analysis of the corresponding proteins (NFATc1, cFos, CTSK and integrin β3) further confirmed the PCR results. Furthermore, ArcyA-treated OCs produced significantly fewer resorption pits, indicating suppressed bone resorption activity. Consistent with this, in vivo experiments using an ovariectomy (OVX)-induced osteoporosis mouse model showed that ArcyA treatment significantly alleviated bone loss. Mice in the treatment groups had higher BV/TV values, and this therapeutic effect was enhanced in a dose-dependent manner. In addition, our research also showed that IκB could be a potential target for the inhibitory effect of ArcyA. In conclusion, these findings suggest that ArcyA has significant therapeutic potential for the treatment of osteoporosis by inhibiting osteoclastogenesis and bone resorption. Further studies are warranted to explore its clinical applications. Full article
Show Figures

Figure 1

17 pages, 8025 KB  
Article
Improving the Sensitivity of a Dark-Resonance Atomic Magnetometer
by Hao Zhai, Wei Li and Guangxiang Jin
Sensors 2025, 25(4), 1229; https://doi.org/10.3390/s25041229 - 18 Feb 2025
Cited by 2 | Viewed by 994
Abstract
The combination of unmanned aerial vehicles and atomic magnetometers can be used for detection applications such as mineral resource exploration, environmental protection, and earthquake monitoring, as well as the detection of sunken ships and unexploded ordnance. A dark-resonance atomic magnetometer offers the significant [...] Read more.
The combination of unmanned aerial vehicles and atomic magnetometers can be used for detection applications such as mineral resource exploration, environmental protection, and earthquake monitoring, as well as the detection of sunken ships and unexploded ordnance. A dark-resonance atomic magnetometer offers the significant advantages of a fully optical probe and omnidirectional measurement with no dead zones, making it an ideal choice for airborne applications on unmanned aerial vehicles. Enhancing the sensitivity of such atomic magnetometers is an essential task. In this study, we sought to enhance the sensitivity of a dark-state resonance atomic magnetometer. Initially, through theoretical analysis, we compared the excitation effects of coherent population trapping (CPT) resonance on the D1 and D2 transitions of 133Cs thermal vapor. The results indicate that excitation via the D1 line yields an increase in resonance contrast and a reduction in linewidth when compared with excitation through the D2 line, aligning with theoretical predictions. Subsequently, considering the impact of various quantum system parameters on sensitivity, as well as their interdependent characteristics, two experimental setups were developed for empirical investigation. One setup focused on parameter optimization experiments, where we compared the linewidth and contrast of CPT resonances excited by both D1 and D2 transitions; this led to an optimization of atomic cell size, buffer gas pressure, and operating temperature, resulting in an ideal parameter range. The second setup was employed to validate these optimized parameters using a coupled dark-state atom magnetometer experiment, achieving approximately a 10-fold improvement in sensitivity. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

20 pages, 3572 KB  
Article
Paeoniflorin Attenuates APAP-Induced Liver Injury via Intervening the Crosstalk Between Hepatocyte Pyroptosis and NETs
by Yu-Ru Zhu, Ya-Qin Yang, Dan-Dan Ruan, Yue-Mei Que, Hang Gao, Yan-Zi Yang and Hua-Jun Zhao
Int. J. Mol. Sci. 2025, 26(4), 1493; https://doi.org/10.3390/ijms26041493 - 11 Feb 2025
Cited by 2 | Viewed by 1749
Abstract
(1) Liver injury caused by an overdose of acetaminophen (APAP) represents a major public health concern. Paeoniflorin (PF) has been reported to have anti-inflammatory and liver-protective effects, but the underlying mechanisms remain unclear. This study aimed to investigate the effect of PF on [...] Read more.
(1) Liver injury caused by an overdose of acetaminophen (APAP) represents a major public health concern. Paeoniflorin (PF) has been reported to have anti-inflammatory and liver-protective effects, but the underlying mechanisms remain unclear. This study aimed to investigate the effect of PF on the crosstalk between pyroptosis and NETs in AILI. (2) APAP-treated C57BL/6J mice were used to demonstrate the protective effect of PF on liver injury. HepG2 and dHL-60 cells were cultured to study the effects of PF on hepatocyte pyroptosis and neutrophil extracellular traps (NETs) in vitro. Moreover, cell co-culture experiments were performed, and mice were treated with a NETs-depleting agent and hepatocyte pyroptosis inhibitor to investigate the improvement of AILI induced by PF through regulating the crosstalk between hepatocyte pyroptosis and NETs. (3) PF significantly alleviated AILI. Additionally, PF inhibited the expression of pyroptosis-related proteins, high-mobility group box 1 (HMGB1), and NETs-associated proteins in vitro and in vivo. The co-culture experiments demonstrated that PF not only inhibited the NETs triggered by hepatocyte pyroptosis, but also suppressed the hepatocyte pyroptosis induced by NETs. In mice with depleted neutrophils, the level of hepatocyte pyroptosis notably decreased, indicating a diminished impact of PF. Similarly, NETs formation was reduced in mice receiving a pyroptosis inhibitor compared to the APAP group. Compared with DNase I alone, the reduction effect of PF combined with DNase I on serum ALT and AST levels decreased from 46.857% and 39.927% to 44.347% and 33.419%, respectively. Compared with DSF alone, PF combined with DSF reduced the ALT and AST levels from 46.857% and 39.927% to 45.347% and 36.419%, respectively. (4) PF demonstrated therapeutic effects on AILI. Its mechanism involves the regulation of the crosstalk between hepatocyte pyroptosis and NETs. This research substantiates the pharmacological promise of PF as a therapeutic intervention for acute AILI. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

20 pages, 4250 KB  
Article
Exploring the Optoelectronic Properties and Solar Cell Performance of Cs2SnI6−xBrx Lead-Free Double Perovskites: Combined DFT and SCAPS Simulation
by B. Rezini, T. Seddik, M. Batouche, H. Ben Abdallah, W. Ouerghui, Mostafa M. Salah, Muhammad Ahsan, Ahmed Shaker, Tahani I. Al-Muhimeed, Ahmed Saeed and Mohamed Mousa
Physics 2025, 7(1), 3; https://doi.org/10.3390/physics7010003 - 17 Jan 2025
Cited by 7 | Viewed by 3466
Abstract
This paper presents detailed results regarding the physical behavior of Cs2SnI6−xBrx alloys for their potential use in photovoltaic applications. Numerical computations based on density functional theory (DFT) revealed that Br substitution at I sites significantly influenced the electronic [...] Read more.
This paper presents detailed results regarding the physical behavior of Cs2SnI6−xBrx alloys for their potential use in photovoltaic applications. Numerical computations based on density functional theory (DFT) revealed that Br substitution at I sites significantly influenced the electronic structure of Cs2SnI6, resulting in an increase in bandgap values from 1.33 eV to 2.24 eV. Additionally, we analyzed the optical properties, including the absorption coefficient, which exhibited high values in the visible light region, highlighting the material’s excellent light-trapping abilities. Moreover, Cs2SnI6−xBrx compounds were employed as absorber materials in an fluorine-doped tin oxide (FTO) TiO2/Cs2SnI6/P3HT/Ag perovskite solar cell (PSC) to investigate its performance. The simulation process consisted of two interconnected steps: (i) the DFT calculations to derive the material properties and (ii) the SCAPS–1D (one-dimensional (1D) solar cell capacity simulator) simulation to model device performance. To ensure reliability, the SCAPS–1D simulation was calibrated against experimental data. Following this, Cs2SnI6−xBrx compound with various ratios of Br content, ranging from 0 to 6, was investigated to propose an efficient solar cell design. Furthermore, the cell structure was optimized, resulting in a development in the power conversion efficiency (PCE) from 0.47% to 3.07%. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

12 pages, 3116 KB  
Article
Origin of the Temperature Dependence of Gate-Induced Drain Leakage-Assisted Erase in Three-Dimensional nand Flash Memories
by David G. Refaldi, Gerardo Malavena, Luca Chiavarone, Alessandro S. Spinelli and Christian Monzio Compagnoni
Micromachines 2024, 15(12), 1516; https://doi.org/10.3390/mi15121516 - 20 Dec 2024
Cited by 1 | Viewed by 1601
Abstract
Through detailed experimental and modeling activities, this paper investigates the origin of the temperature dependence of the Erase operation in 3D nand flash arrays. First of all, experimental data collected down to the cryogenic regime on both charge-trap and floating-gate arrays are provided [...] Read more.
Through detailed experimental and modeling activities, this paper investigates the origin of the temperature dependence of the Erase operation in 3D nand flash arrays. First of all, experimental data collected down to the cryogenic regime on both charge-trap and floating-gate arrays are provided to demonstrate that the reduction in temperature makes cells harder to Erase irrespective of the nature of their storage layer. This evidence is then attributed to the weakening, with the decrease in temperature, of the gate-induced drain leakage (GIDL) current exploited to set the electrostatic potential of the body of the nand strings during Erase. Modeling results for the GIDL-assisted Erase operation, finally, allow not only to support this conclusion but also to directly correlate the change with temperature of the electrostatic potential of the string body with the change with temperature of the erased threshold-voltage of the memory cells. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

11 pages, 3596 KB  
Article
Mitigation of 1-Row Hammer in BCAT Structures Through Buried Oxide Integration and Investigation of Inter-Cell Disturbances
by Yeon-Seok Kim and Min-Woo Kwon
Electronics 2024, 13(24), 4936; https://doi.org/10.3390/electronics13244936 - 13 Dec 2024
Viewed by 1540
Abstract
Dynamic random-access memory (DRAM) is crucial for high-performance computing due to its speed and storage capacity. As the demand for high-capacity memory increases, DRAM has adopted a scaled-down approach for the next generation. However, the reduced distance between cells leads to electrical interference, [...] Read more.
Dynamic random-access memory (DRAM) is crucial for high-performance computing due to its speed and storage capacity. As the demand for high-capacity memory increases, DRAM has adopted a scaled-down approach for the next generation. However, the reduced distance between cells leads to electrical interference, known as the 1-row Hammer effect, which degrades DRAM performance and poses security risks. Therefore, the 1-row Hammer effect is a critical issue in current DRAM technology. In this study, we investigate the principles and impact of the 1-row Hammer phenomenon on DRAM. The 1-row Hammer effect can cause two types of failures: D0 and D1. We focus on D0 failures, which occur when stored data transition from 0 to 1 due to repeated accesses. This phenomenon involves the capture and diffusion of electrons, influenced by interfacial traps and device structures. To investigate the D0 failure, we simulated the 1-row Hammer effect using a mixed-mode approach to examine its effects on interfacial traps and device structure changes. This study aims to improve our understanding of row Hammer and suggests a mitigation strategy using buried oxide. The proposed structure mitigates the D0 failure by approximately 25%, effectively improving the security and reliability of DRAM. Full article
(This article belongs to the Section Semiconductor Devices)
Show Figures

Figure 1

11 pages, 4652 KB  
Article
Improving 795 nm Single-Frequency Laser’s Frequency Stability by Means of the Bright-State Spectroscopy with Rubidium Vapor Cell
by Junye Zhao, Yongbiao Yang, Lulu Zhang, Yang Li and Junmin Wang
Photonics 2024, 11(12), 1165; https://doi.org/10.3390/photonics11121165 - 11 Dec 2024
Cited by 1 | Viewed by 1443
Abstract
The utilization of atomic or molecular spectroscopy for frequency locking of single-frequency laser to improve laser frequency stability plays an important role in the experimental investigation of optically pumped atomic magnetometers, atomic clocks, laser cooling and trapping of atoms, etc. We have experimentally [...] Read more.
The utilization of atomic or molecular spectroscopy for frequency locking of single-frequency laser to improve laser frequency stability plays an important role in the experimental investigation of optically pumped atomic magnetometers, atomic clocks, laser cooling and trapping of atoms, etc. We have experimentally demonstrated a technique for frequency stabilization of a single-frequency laser employing the bright state spectroscopy (BSS) with a rubidium atomic vapor cell. By utilizing the counter-propagating dual-frequency 795 nm laser beams with mutually orthogonal linear polarization and a frequency difference of 6.834 GHz, which is equal to the hyperfine splitting of rubidium-87 ground state 5S1/2, an absorption-enhanced signal with narrow linewidth at the center of Doppler-broadened transmission spectroscopy is observed when continuous scanning the laser frequency over rubidium-87 D1 transition. This is the so-called BSS. Amplitude of the absorption-enhanced signal in the BSS is much larger compared with the conventional saturation absorption spectroscopy (SAS). The relationship between linewidth and amplitude of the BSS signal and laser beam intensity has been investigated. This high-contrast absorption-enhanced BSS signal has been employed for the laser frequency stabilization. The experimental results show that the frequency stability is 4.4×1011 with an integration time of 40 s, near one order of magnitude better than that for using the SAS. Full article
Show Figures

Figure 1

Back to TopTop