Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (241)

Search Parameters:
Keywords = 3D affordance models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
52 pages, 1189 KB  
Systematic Review
A Review on the Applications of GANs for 3D Medical Image Analysis
by Zoha Usama, Azadeh Alavi and Jeffrey Chan
Appl. Sci. 2025, 15(20), 11219; https://doi.org/10.3390/app152011219 - 20 Oct 2025
Viewed by 164
Abstract
Three-dimensional medical images, such as those obtained from MRI scans, offer a comprehensive view that aids in understanding complex shapes and abnormalities better than 2D images, such as X-ray, mammogram, ultrasound, and 2D CT slices. However, MRI machines are often inaccessible in certain [...] Read more.
Three-dimensional medical images, such as those obtained from MRI scans, offer a comprehensive view that aids in understanding complex shapes and abnormalities better than 2D images, such as X-ray, mammogram, ultrasound, and 2D CT slices. However, MRI machines are often inaccessible in certain regions due to their high cost, space and infrastructure requirements, a lack of skilled technicians, and safety concerns regarding metal implants. A viable alternative is generating 3D images from 2D scans, which can enhance medical analysis and diagnosis and also offer earlier detection of tumors and other abnormalities. This systematic review is focused on Generative Adversarial Networks (GANs) for 3D medical image analysis over the last three years, due to their dominant role in 3D medical imaging, offering unparalleled flexibility and adaptability for volumetric medical data, as compared to other generative models. GANs offer a promising solution by generating high-quality synthetic medical images, even with limited data, improving disease detection and classification. The existing surveys do not offer an up-to-date overview of the use of GANs in 3D medical imaging. This systematic review focuses on advancements in GAN technology for 3D medical imaging, analyzing studies, particularly from the recent years 2022–2025, and exploring applications, datasets, methods, algorithms, challenges, and outcomes. It affords particular focus to the modern GAN architectures, datasets, and codes that can be used for 3D medical imaging tasks, so readers looking to use GANs in their research could use this review to help them design their study. Based on PRISMA standards, five scientific databases were searched, including IEEE, Scopus, PubMed, Google Scholar, and Science Direct. A total of 1530 papers were retrieved on the basis of the inclusion criteria. The exclusion criteria were then applied, and after screening the title, abstract, and full-text volume, a total of 56 papers were extracted from these, which were then carefully studied. An overview of the various datasets that are used in 3D medical imaging is also presented. This paper concludes with a discussion of possible future work in this area. Full article
Show Figures

Figure 1

22 pages, 1481 KB  
Article
Sustainable Frugal Innovation in Cultural Heritage for the Production of Decorative Items by Adopting Digital Twin
by Josip Stjepandić, Andrej Bašić, Martin Bilušić and Tomislava Majić
World 2025, 6(4), 137; https://doi.org/10.3390/world6040137 - 11 Oct 2025
Viewed by 280
Abstract
Throughout history, cultural heritage has accumulated, and is often embodied in monuments, structures, and notable figures. Cultural heritage preservation and management also include digitalization, allowing tangible monuments to be managed as digital inventory with “digital twins”. This provides innovative ways to experience and [...] Read more.
Throughout history, cultural heritage has accumulated, and is often embodied in monuments, structures, and notable figures. Cultural heritage preservation and management also include digitalization, allowing tangible monuments to be managed as digital inventory with “digital twins”. This provides innovative ways to experience and interact with the real world, in particular by using modern mobile devices. The digitalization of monuments opens new ways to produce decorative items based on the shape of the monuments. Usually, decorative items are produced by craft businesses, family-run for generations, with specialized skills in metal and stone processing. We developed and tested a methodological proposal for frugal innovation: how to produce decorative items with minimal costs based on digital twins, which are particularly in demand in tourism-driven countries like Croatia. A micro-business with three employees, specializing in “metal art,” aims to innovate and expand by producing small-scale replicas of cultural heritage objects, such as busts, statues, monuments, or profiles. A method has been developed to create replicas in the desired material and at a desired scale, faithfully reproducing the original—whether based on a physical object, 3D model, or photograph. The results demonstrate that this sustainable frugal innovation can be successfully implemented using affordable tools and licenses. Full article
Show Figures

Figure 1

19 pages, 2387 KB  
Article
A Detailed Review of the Design and Evaluation of XR Applications in STEM Education and Training
by Magesh Chandramouli, Aleeha Zafar and Ashayla Williams
Electronics 2025, 14(19), 3818; https://doi.org/10.3390/electronics14193818 - 26 Sep 2025
Viewed by 410
Abstract
Extended reality (XR) technologies—including augmented reality (AR), virtual reality (VR), mixed reality (MR), and desktop virtual reality (dVR)—are rapidly advancing STEM education by providing immersive and interactive learning experiences. Despite their potential, many XR applications lack consistent design grounded in human–computer interaction (HCI), [...] Read more.
Extended reality (XR) technologies—including augmented reality (AR), virtual reality (VR), mixed reality (MR), and desktop virtual reality (dVR)—are rapidly advancing STEM education by providing immersive and interactive learning experiences. Despite their potential, many XR applications lack consistent design grounded in human–computer interaction (HCI), leading to challenges in usability, engagement, and learning outcomes. Through a comprehensive analysis of 50 peer-reviewed studies, this paper reveals both strengths and limitations in current implementations and suggest improvements for reducing cognitive load and enhancing engagement. To support this analysis, we draw briefly on a dual-phase learning model (L1–L2), which distinguishes between interface learning (L1) and conceptual or procedural learning (L2). By aligning theoretical insights with practical HCI strategies, the discussions from this study are intended to offer potentially actionable insights for educators and developers on XR design for STEM education. Based on a detailed analysis of the articles, this paper finally makes recommendations to educators and developers on important considerations and limitations concerning the optimal use of XR technologies in STEM education. The guidelines for design proposed by this review offer directions for developers intending to build XR frameworks that effectively improve presence, interaction, and immersion whilst considering affordability and accessibility. Full article
Show Figures

Figure 1

29 pages, 7962 KB  
Article
Design and Validation of a Compact, Low-Cost Sensor System for Real-Time Indoor Environmental Monitoring
by Vincenzo Di Leo, Alberto Speroni, Giulio Ferla and Juan Diego Blanco Cadena
Buildings 2025, 15(19), 3440; https://doi.org/10.3390/buildings15193440 - 23 Sep 2025
Viewed by 534
Abstract
The growing interest in smart buildings and the integration of IoT-based technologies is driving the development of new tools for monitoring and optimizing indoor environmental quality (IEQ). However, many existing solutions remain expensive, invasive and inflexible. This paper presents the design and validation [...] Read more.
The growing interest in smart buildings and the integration of IoT-based technologies is driving the development of new tools for monitoring and optimizing indoor environmental quality (IEQ). However, many existing solutions remain expensive, invasive and inflexible. This paper presents the design and validation of a compact, low-cost, and real-time sensor system, conceived for seamless integration into indoor environments. The system measures key parameters—including air temperature, relative humidity, illuminance, air quality, and sound pressure level—and is embeddable in standard office equipment with minimal impact. Leveraging 3D printing and open-source hardware/software, the proposed solution offers high affordability (approx. EUR 33), scalability, and potential for workspace retrofits. To assess the system’s performance and relevance, dynamic simulations were conducted to evaluate metrics such as the Mean Radiant Temperature (MRT) and illuminance in an open office layout. In addition, field tests with a functional prototype enabled model validation through on-site measured data. The results highlighted significant local discrepancies—up to 6.9 °C in MRT and 28 klx in illuminance—compared to average conditions, with direct implications for thermal and visual comfort. These findings demonstrate the system’s capacity to support high-resolution environmental monitoring within IoT-enabled buildings, offering a practical path toward the data-driven optimization of occupant comfort and energy efficiency. Full article
Show Figures

Figure 1

16 pages, 6028 KB  
Article
Parahydrogen-Based Hyperpolarization for the Masses at Millitesla Fields
by Garrett L. Wibbels, Clementinah Oladun, Tanner Y. O’Hara, Isaiah Adelabu, Joshua E. Robinson, Firoz Ahmed, Zachary T. Bender, Anna Samoilenko, Joseph Gyesi, Larisa M. Kovtunova, Oleg G. Salnikov, Igor V. Koptyug, Boyd M. Goodson, W. Michael Snow, Eduard Y. Chekmenev and Roman V. Shchepin
Magnetochemistry 2025, 11(9), 80; https://doi.org/10.3390/magnetochemistry11090080 - 22 Sep 2025
Cited by 1 | Viewed by 621
Abstract
Hyperpolarization (HP) techniques, such as Parahydrogen-Induced Polarization (PHIP), Signal Amplification by Reversible Exchange (SABRE), and dissolution Dynamic Nuclear Polarization (d-DNP), significantly enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy for chemical analysis and metabolic imaging. However, the high cost of equipment, ranging [...] Read more.
Hyperpolarization (HP) techniques, such as Parahydrogen-Induced Polarization (PHIP), Signal Amplification by Reversible Exchange (SABRE), and dissolution Dynamic Nuclear Polarization (d-DNP), significantly enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy for chemical analysis and metabolic imaging. However, the high cost of equipment, ranging from tens of thousands to millions of dollars, limits accessibility of hyperpolarization for the broad scientific community. In this work, we aim to mitigate some of the challenges by developing a cost-effective solution for parahydrogen (pH2)-based PHIP and SABRE HP methods. A custom coil-winding machine was designed to fabricate solenoid magnet coils, which were then evaluated for their magnetic field profiles, demonstrating a high degree of magnetic field homogeneity. A model 1H SABRE experiment successfully implemented the constructed solenoid, achieving efficient hyperpolarization. Additionally, the solenoid magnet can be utilized for in situ detection of hyperpolarization when integrated with a low-field NMR spectrometer, reducing the total setup cost to a few thousand dollars. These findings suggest that our approach makes HP technology more affordable and accessible, potentially broadening its applications in chemical and biomedical research, as well as educational settings involving undergraduate student researchers. This work provides a practical pathway to lower the financial barriers associated with pH2 HP setups. Full article
Show Figures

Figure 1

18 pages, 4974 KB  
Article
Assessment of UAV Usage for Flexible Pavement Inspection Using GCPs: Case Study on Palestinian Urban Road
by Ismail S. A. Aburqaq, Sepanta Naimi, Sepehr Saedi and Musab A. A. Shahin
Sustainability 2025, 17(18), 8129; https://doi.org/10.3390/su17188129 - 10 Sep 2025
Viewed by 911
Abstract
Rehabilitation plans are based on pavement condition assessments, which are crucial to modern pavement management systems. However, some of the disadvantages of conventional approaches for road maintenance and repair include the time consumption, high costs, visual errors, seasonal limitations, and low accuracy. Continuous [...] Read more.
Rehabilitation plans are based on pavement condition assessments, which are crucial to modern pavement management systems. However, some of the disadvantages of conventional approaches for road maintenance and repair include the time consumption, high costs, visual errors, seasonal limitations, and low accuracy. Continuous and efficient pavement monitoring is essential, necessitating reliable equipment that can function in a variety of weather and traffic conditions. UAVs offer a practical and eco-friendly alternative for tasks including road inspections, dam monitoring, and the production of 3D ground models and orthophotos. They are more affordable, accessible, and safe than traditional field surveys, and they reduce the environmental effects of pavement management by using less fuel and producing less greenhouse gas emissions. This study uses UAV technology in conjunction with ground control points (GCPs) to assess the kind and amount of damage in flexible pavements. Vertical photogrammetric mapping was utilized to produce 3D road models, which were then processed and analyzed using Agisoft Photoscan (Metashape Professional (64 bit)) software. The sorts of fractures, patch areas, and rut depths on pavement surfaces may be accurately identified and measured thanks to this technique. When compared to field exams, the findings demonstrated an outstanding accuracy with errors of around 3.54 mm in the rut depth, 4.44 cm2 for patch and pothole areas, and a 96% accuracy rate in identifying cracked locations and crack varieties. This study demonstrates how adding GCPs may enhance the UAV image accuracy, particularly in challenging weather and traffic conditions, and promote sustainable pavement management strategies by lowering carbon emissions and resource consumption. Full article
Show Figures

Figure 1

44 pages, 16688 KB  
Article
Comprehensive Design Process of CEB-Reinforced Masonry Panels for Earthquake and Hurricane-Resilient Houses
by Leandro Di Gregorio, Aníbal Costa, Alice Tavares, Hugo Rodrigues, Jorge Fonseca, Gustavo Guimarães, Assed Haddad, Fernando Danziger and Graziella Jannuzzi
Buildings 2025, 15(17), 3242; https://doi.org/10.3390/buildings15173242 - 8 Sep 2025
Viewed by 893
Abstract
Among the threats capable of causing disasters, earthquakes and hurricanes are those that most significantly impact the structures of buildings. This collaboration between UFRJ (Brazil) and UA (Portugal) aims to develop a house model that is both earthquake- and hurricane-resistant, within a specific [...] Read more.
Among the threats capable of causing disasters, earthquakes and hurricanes are those that most significantly impact the structures of buildings. This collaboration between UFRJ (Brazil) and UA (Portugal) aims to develop a house model that is both earthquake- and hurricane-resistant, within a specific range of magnitude to be determined, utilizing straightforward, affordable, and eco-friendly construction methods. SHS-Multirisk was developed under two phases. The first one carried out the design of the SHS-Multirisk 1.0 house model and the second phase comprised the preliminary conception of the SHS-Multirisk 2.0 architecture integrated with structural panels. This paper focuses on presenting the comprehensive research, development, and innovation (R&D&I) process of compressed earth block-reinforced masonry panels and the preliminary evaluation of their technical feasibility to be applied in SHS-Multirisk 2.0 house models. The steps of the process were explored in detail throughout process implementation, which revealed successive multi- and interdisciplinary challenges. Full article
(This article belongs to the Special Issue Reliability and Risk Assessment of Building Structures)
Show Figures

Figure 1

17 pages, 2656 KB  
Article
Chip-Sized Lensless Holographic Microscope for Real-Time On-Chip Biological Sensing
by Sofía Moncada-Madrazo, Sergio Moreno, Oriol Caravaca, Joan Canals, Natalia Castro, Manel López, Javier Ramón-Azcón, Anna Vilà and Ángel Diéguez
Sensors 2025, 25(17), 5247; https://doi.org/10.3390/s25175247 - 23 Aug 2025
Viewed by 971
Abstract
Microscopy is a fundamental tool in biological research. However, conventional microscopes require manual operation and depend on user and equipment availability, limiting their suitability for continuous observation. Moreover, their size and complexity make them impractical for in situ experimentation. In this work, we [...] Read more.
Microscopy is a fundamental tool in biological research. However, conventional microscopes require manual operation and depend on user and equipment availability, limiting their suitability for continuous observation. Moreover, their size and complexity make them impractical for in situ experimentation. In this work, we present a novel, compact, affordable, and portable microscope that enables continuous in situ monitoring by being placed directly on biological samples. This chip-sized lensless holographic microscope (CLHM) is specifically designed to overcome the limitations of traditional microscopy. The device consists solely of an ultra-compact, state-of-the-art micro-LED display and a CMOS sensor, all enclosed within a 3D-printed housing. This unique light source enables a size that is markedly smaller than any comparable technology, allowing a resolution of 2.19 μm within a 7 mm distance between the light source and the camera. This paper demonstrates the CLHM’s versatility by monitoring in vitro models and performing whole-organism morphological analyses of small specimens. These experiments underscore its potential as an on-platform sensing device for continuous, in situ biological monitoring across diverse models. Full article
Show Figures

Figure 1

30 pages, 4096 KB  
Review
New Frontiers in 3D Printing Using Biocompatible Polymers
by Nagireddy Poluri, Jacob Carter, John Grasso, Walter Miller, Matthew Leinbach, Frederick Durant, Riley Benbrook, Assa John, Allan Wang and Xiao Hu
Int. J. Mol. Sci. 2025, 26(16), 8016; https://doi.org/10.3390/ijms26168016 - 19 Aug 2025
Viewed by 1484
Abstract
Biocompatible polymers have emerged as essential materials in medical 3D printing, enabling the fabrication of scaffolds, tissue constructs, drug delivery systems, and biosensors for applications in and on the human body. This review aims to provide a comprehensive overview of the current state [...] Read more.
Biocompatible polymers have emerged as essential materials in medical 3D printing, enabling the fabrication of scaffolds, tissue constructs, drug delivery systems, and biosensors for applications in and on the human body. This review aims to provide a comprehensive overview of the current state of 3D-printable biocompatible polymers and their composites, with an emphasis on their processing methods, properties, and biomedical uses. The scope of this work includes both natural and synthetic biocompatible polymers, polymer–nanocomposite systems, and bioinks that do not require photo initiators. The relevant literature was critically examined to classify materials by type, evaluate their compatibility with major 3D printing techniques such as stereolithography, selective laser sintering, and fused deposition modeling, and assess their performance in various medical applications. Key findings highlight that reinforced polymer composites, tailored surface chemistries, and hybrid printing strategies significantly expand the range of functional, customizable, and affordable biomedical devices. This review concludes by discussing present-day applications and emerging trends, underscoring that 3D-printable biocompatible polymers are rapidly transitioning from research to clinical practice, offering transformative potential for patient-specific healthcare solutions. Full article
(This article belongs to the Special Issue Latest Review Papers in Macromolecules 2025)
Show Figures

Figure 1

13 pages, 3382 KB  
Article
Development of a Personalized and Low-Cost 3D-Printed Liver Model for Preoperative Planning of Hepatic Resections
by Badreddine Labakoum, Amr Farhan, Hamid El malali, Azeddine Mouhsen and Aissam Lyazidi
Appl. Sci. 2025, 15(16), 9033; https://doi.org/10.3390/app15169033 - 15 Aug 2025
Viewed by 925
Abstract
Three-dimensional (3D) printing offers new opportunities in surgical planning and medical education, yet high costs and technological complexity often limit its widespread use, especially in low-resource settings. This study presents a personalized, cost-effective, and anatomically accurate liver model designed using open-source tools and [...] Read more.
Three-dimensional (3D) printing offers new opportunities in surgical planning and medical education, yet high costs and technological complexity often limit its widespread use, especially in low-resource settings. This study presents a personalized, cost-effective, and anatomically accurate liver model designed using open-source tools and affordable 3D-printing techniques. Segmentation of hepatic CT images was performed in 3D Slicer using a region-growing method, and the resulting models were optimized and exported as STL files. The external mold was printed with Fused Deposition Modeling (FDM) using PLA+, while internal structures such as vessels and tumors were fabricated via Liquid Crystal Display (LCD) printing using PLA Pro resin. The final assembly was cast in food-grade gelatin to mimic liver tissue texture. The complete model was produced for under USD 50, with an average total production time of under 128 h. An exploratory pedagogical evaluation with five medical trainees yielded high Likert scores for anatomical understanding (4.6), spatial awareness (4.4), planning confidence (4.2), and realism (4.4). This model demonstrated utility in preoperative discussions and training simulations. The proposed workflow enables the fabrication of low-cost, realistic hepatic phantoms suitable for education and surgical rehearsal, promoting the integration of 3D printing into everyday clinical practice. Full article
Show Figures

Figure 1

18 pages, 2472 KB  
Article
Serum Metabolomic Signatures in Nonhuman Primates Treated with a Countermeasure and Exposed to Partial- or Total-Body Radiation
by Alana D. Carpenter, Yaoxiang Li, Benjamin E. Packer, Oluseyi O. Fatanmi, Stephen Y. Wise, Sarah A. Petrus, Martin Hauer-Jensen, Amrita K. Cheema and Vijay K. Singh
Metabolites 2025, 15(8), 546; https://doi.org/10.3390/metabo15080546 - 12 Aug 2025
Viewed by 666
Abstract
Background: Irradiation-induced injury is a common fallout of radiological/nuclear accidents or therapeutic exposures to high doses of radiation at high dose rates. Currently, there are no prophylactic drugs available to mitigate radiation injury as a result of exposure to lethal doses of [...] Read more.
Background: Irradiation-induced injury is a common fallout of radiological/nuclear accidents or therapeutic exposures to high doses of radiation at high dose rates. Currently, there are no prophylactic drugs available to mitigate radiation injury as a result of exposure to lethal doses of ionizing radiation. Gamma-tocotrienol (GT3) of vitamin E is a promising radioprotector under advanced development which has been tested for efficacy in both murine and nonhuman primate (NHP) models. Previously, we have demonstrated that GT3 has radioprotective efficacy in intestinal epithelial and crypt cells, and restores transcriptomic changes in NHPs with a supralethal dose of 12 Gy total-body irradiation (TBI). Methods: In this study, we evaluated the effect of 12 Gy partial-body irradiation (PBI) or TBI on metabolomic changes in serum samples and the extent to which GT3 was able to modulate these irradiation-induced changes. A total of 32 nonhuman primates were used for this study, and blood sample were collected 3 days (d) prior to irradiation, and 4 h, 8 h, 12 h, 1 d, 2 d, and 6 d post-irradiation. Results: Our results demonstrate that exposure to a supralethal dose of radiation induces a complex range of metabolomic shifts with similar degrees of dysregulation in both partial- and total-body irradiated animals. The C21-steroid hormone biosynthesis and metabolism pathway was significantly dysregulated in both PBI and TBI groups, with minimal protection afforded by GT3 administration. Conclusions: GT3 offered a differential response in terms of protected metabolites and pathways in either group that was most effective at the early post-irradiation time points. Full article
(This article belongs to the Section Advances in Metabolomics)
Show Figures

Figure 1

15 pages, 2101 KB  
Article
Hybrid Laminates Reinforced with Natural and Synthetic Fibers: Experimental Characterization and Preliminary Finite Element Assessment for Prosthetic Applications
by Angel D. Castro-Franco, Miriam Siqueiros-Hernández, Virginia García-Angel, Ismael Mendoza-Muñoz, Benjamín González-Vizcarra, Hernán D. Magaña-Almaguer and Lidia E. Vargas-Osuna
Fibers 2025, 13(8), 107; https://doi.org/10.3390/fib13080107 - 11 Aug 2025
Cited by 1 | Viewed by 583
Abstract
Four configuration laminates made of flax, glass, and basalt were fabricated via vacuum-assisted hand lay-up with added weight and tested under ASTM D3039 and D790. The flax–glass–flax lay-up exhibited the highest tensile strength and flexural strength. Orthotropic elastic properties were determined from remanufactured [...] Read more.
Four configuration laminates made of flax, glass, and basalt were fabricated via vacuum-assisted hand lay-up with added weight and tested under ASTM D3039 and D790. The flax–glass–flax lay-up exhibited the highest tensile strength and flexural strength. Orthotropic elastic properties were determined from remanufactured 90°-rotated specimens. A hexahedral-meshed finite element model using these inputs under a 5256 N load predicted the stress and strain within 1% and 5% of the experimental values. These findings demonstrate that flax–glass hybrids offer mechanical reliability, sustainability, and affordability for next-generation prosthetic applications. Full article
Show Figures

Figure 1

31 pages, 3523 KB  
Article
Sustainable Tunable Anisotropic Ultrasound Medical Phantoms for Skin, Skeletal Muscle, and Other Fibrous Biological Tissues Using Natural Fibers and a Bio-Elastomeric Matrix
by Nuno A. T. C. Fernandes, Diana I. Alves, Diana P. Ferreira, Maria Monteiro, Ana Arieira, Filipe Silva, Betina Hinckel, Ana Leal and Óscar Carvalho
J. Compos. Sci. 2025, 9(7), 370; https://doi.org/10.3390/jcs9070370 - 16 Jul 2025
Cited by 2 | Viewed by 1975
Abstract
Medical phantoms are essential to imaging calibration, clinician training, and the validation of therapeutic procedures. However, most ultrasound phantoms prioritize acoustic realism while neglecting the viscoelastic and anisotropic properties of fibrous soft tissues. This gap limits their effectiveness in modeling realistic biomechanical behavior, [...] Read more.
Medical phantoms are essential to imaging calibration, clinician training, and the validation of therapeutic procedures. However, most ultrasound phantoms prioritize acoustic realism while neglecting the viscoelastic and anisotropic properties of fibrous soft tissues. This gap limits their effectiveness in modeling realistic biomechanical behavior, especially in wave-based diagnostics and therapeutic ultrasound. Current materials like gelatine and agarose fall short in reproducing the complex interplay between the solid and fluid components found in biological tissues. To address this, we developed a soft, anisotropic composite whose dynamic mechanical properties resemble fibrous biological tissues such as skin and skeletal muscle. This material enables wave propagation and vibration studies in controllably anisotropic media, which are rare and highly valuable. We demonstrate the tunability of damping and stiffness aligned with fiber orientation, providing a versatile platform for modeling soft-tissue dynamics and validating biomechanical simulations. The phantoms achieved Young’s moduli of 7.16–11.04 MPa for skin and 0.494–1.743 MPa for muscles, shear wave speeds of 1.51–5.93 m/s, longitudinal wave speeds of 1086–1127 m/s, and sound absorption coefficients of 0.13–0.76 dB/cm/MHz, with storage, loss, and complex moduli reaching 1.035–6.652 kPa, 0.1831–0.8546 kPa, and 2.138–10.82 kPa. These values reveal anisotropic response patterns analogous to native tissues. This novel natural fibrous composite system affords sustainable, low-cost ultrasound phantoms that support both mechanical fidelity and acoustic realism. Our approach offers a route to next-gen tissue-mimicking phantoms for elastography, wave propagation studies, and dynamic calibration across diverse clinical and research applications. Full article
Show Figures

Graphical abstract

20 pages, 3059 KB  
Article
Optimization of Organic Content Removal from Aqueous Solutions by Fenton-Ozonation
by Paixan Febrialy Samba, Marius Sebastian Secula, Sebastien Schaefer and Benoît Cagnon
Appl. Sci. 2025, 15(13), 7370; https://doi.org/10.3390/app15137370 - 30 Jun 2025
Viewed by 559
Abstract
This paper presents a study on the optimization of 2,4-Dichlorophenoxyacetic (2,4-D) acid removal from synthetic wastewater by batch Fenton-Ozonation. The aim of this study is to evaluate the potential of the catalytic system Fe-L27 coupled to ozonation in the presence and absence of [...] Read more.
This paper presents a study on the optimization of 2,4-Dichlorophenoxyacetic (2,4-D) acid removal from synthetic wastewater by batch Fenton-Ozonation. The aim of this study is to evaluate the potential of the catalytic system Fe-L27 coupled to ozonation in the presence and absence of H2O2 as an effective and affordable technique for the treatment of organic pollutants in water. Fenton-like catalysts for the removal of 2,4-D in aqueous solutions were elaborated using catalysts synthesized by the wet impregnation method. The ACs and prepared catalysts were characterized by nitrogen adsorption–desorption isotherms at 77 K, TGA, XPS, SEM, and TEM. Their efficiency as Fenton-like catalysts was studied. In a first step, a response surface modeling method was employed in order to find the optimal parameters of the Fenton process, and then the optimal O3/H2O2 ratio was established at laboratory scale. Finally, the investigated advanced oxidation processes were carried out at pilot scale. The results show that Fenton-like catalysts obtained by the direct impregnation method enhance the degradation rate and mineralization of 2,4-D. Full article
(This article belongs to the Special Issue Promising Sustainable Technologies in Wastewater Treatment)
Show Figures

Figure 1

31 pages, 3123 KB  
Review
A Review of the Potential of Drone-Based Approaches for Integrated Building Envelope Assessment
by Shayan Mirzabeigi, Ryan Razkenari and Paul Crovella
Buildings 2025, 15(13), 2230; https://doi.org/10.3390/buildings15132230 - 25 Jun 2025
Cited by 1 | Viewed by 2137
Abstract
The urgent need for affordable and scalable building retrofit solutions has intensified due to stringent clean energy targets. Traditional building energy audits, which are essential in assessing energy performance, are often time-consuming and costly because of the extensive field analysis required. There has [...] Read more.
The urgent need for affordable and scalable building retrofit solutions has intensified due to stringent clean energy targets. Traditional building energy audits, which are essential in assessing energy performance, are often time-consuming and costly because of the extensive field analysis required. There has been a gradual shift towards the public use of drones, which present opportunities for effective remote procedures that could disrupt a variety of built environment disciplines. Drone-based approaches to data collection offer a great opportunity for the analysis and inspection of existing building stocks, enabling architects, engineers, energy auditors, and owners to document building performance, visualize heat transfer using infrared thermography, and create digital models using 3D photogrammetry. This study provides a review of the potential of a drone-based approach to integrated building envelope assessment, aiming to streamline the process. By evaluating various scanning techniques and their integration with drones, this research explores how drones can enhance data collection for defect identification, as well as digital model creation. A proposed drone-based workflow is tested through a case study in Syracuse, New York, demonstrating its feasibility and effectiveness in creating 3D models and conducting energy simulations. The study also discusses various challenges associated with drone-based approaches, including data accuracy, environmental conditions, operator training, and regulatory compliance, offering practical solutions and highlighting areas for further research. A discussion of the findings underscores the potential of drone technology to revolutionize building inspections, making them more efficient, accurate, and scalable, thus supporting the development of sustainable and energy-efficient buildings. Full article
Show Figures

Figure 1

Back to TopTop