Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,141)

Search Parameters:
Keywords = 22q11.2 region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1540 KiB  
Article
Molecular and Clinical Characterization of Crimean–Congo Hemorrhagic Fever in Bulgaria, 2015–2024
by Kim Ngoc, Ivan Stoikov, Ivelina Trifonova, Elitsa Panayotova, Evgenia Taseva, Iva Trifonova and Iva Christova
Pathogens 2025, 14(8), 785; https://doi.org/10.3390/pathogens14080785 - 6 Aug 2025
Abstract
Crimean–Congo hemorrhagic fever (CCHF) is a zoonotic viral disease endemic to parts of Africa, Asia and southeastern Europe. Bulgaria is one of the few European countries with the consistent annual reporting of human CCHF cases. This study provides a descriptive overview of 24 [...] Read more.
Crimean–Congo hemorrhagic fever (CCHF) is a zoonotic viral disease endemic to parts of Africa, Asia and southeastern Europe. Bulgaria is one of the few European countries with the consistent annual reporting of human CCHF cases. This study provides a descriptive overview of 24 confirmed CCHF cases in Bulgaria between 2015 and 2024. Laboratory confirmation was performed by an enzyme-linked immunosorbent assay (ELISA) and/or real-time reverse transcriptase polymerase chain reaction (RT-qPCR) testing. Common findings included fever, fatigue, gastrointestinal symptoms, thrombocytopenia, leukopenia, liver dysfunction and coagulopathy. Two fatal cases were recorded. Two samples collected in 2016 and 2024 were subjected to whole-genome sequencing. Phylogenetic analysis showed that both strains clustered within the Turkish branch of the Europe 1 genotype and shared high genetic similarity with previous Bulgarian strains, as well as strains from neighboring countries. These findings suggest the long-term persistence of a genetically stable viral lineage in the region. Continuous molecular and clinical surveillance is necessary to monitor the evolution and public health impact of CCHFV in endemic areas. Full article
20 pages, 8429 KiB  
Article
Altitude and Temperature Drive Spatial and Temporal Changes in Vegetation Cover on the Eastern Tibetan Plateau
by Yu Feng, Hongjin Zhu, Xiaojuan Zhang, Feilong Qin, Peng Ye, Pengtao Niu, Xueman Wang and Songlin Shi
Earth 2025, 6(3), 92; https://doi.org/10.3390/earth6030092 (registering DOI) - 6 Aug 2025
Abstract
The Tibetan Plateau (TP) is experiencing higher warming rates than elsewhere, which may affect regional vegetation growth. Particularly on the Eastern Tibetan Plateau (ETP), where the topography is diverse and rich in biodiversity, it is necessary to clarify the drivers of climate and [...] Read more.
The Tibetan Plateau (TP) is experiencing higher warming rates than elsewhere, which may affect regional vegetation growth. Particularly on the Eastern Tibetan Plateau (ETP), where the topography is diverse and rich in biodiversity, it is necessary to clarify the drivers of climate and topography on vegetation cover. In this research, we selected the Shaluli Mountains (SLLM) in the ETP as the study area, monitored the spatial and temporal dynamics of the regional vegetation cover using remote sensing methods, and quantified the drivers of vegetation change using Geodetector (GD). The results showed a decreasing trend in annual precipitation (PRE) (−2.4054 mm/year) and the Palmer Drought Severity Index (PDSI) (−0.1813/year) in the SLLM. Annual maximum temperature (TMX) on the spatial and temporal scales showed an overall increasing trend, and the regional climate tended to become warmer and drier. Since 2000, fractional vegetation cover (FVC) has shown a fluctuating upward trend, with an average value of 0.6710, and FVC has spatially shown a pattern of “low in the middle and high in the surroundings”. The areas with non-significant increases (p > 0.05) and significant increases (p < 0.05) in FVC accounted for 46.03% and 5.76% of the SLLM. Altitude (q = 0.3517) and TMX (q = 0.3158) were the main drivers of FVC changes. As altitude and TMX increased, FVC showed a trend of increasing and then decreasing. The results of this study help us to clarify the influence of climate and topography on the vegetation ecosystem of the ETP and provide a scientific basis for regional biodiversity conservation and sustainable development. Full article
Show Figures

Figure 1

24 pages, 1420 KiB  
Article
Transcriptomic Characterization of Candidate Genes for Fusarium Resistance in Maize (Zea mays L.)
by Aleksandra Sobiech, Agnieszka Tomkowiak, Tomasz Jamruszka, Tomasz Kosiada, Julia Spychała, Maciej Lenort and Jan Bocianowski
Pathogens 2025, 14(8), 779; https://doi.org/10.3390/pathogens14080779 - 6 Aug 2025
Abstract
Fusarium diseases are among the most dangerous fungal diseases of plants. To date, there are no plant protectants that completely prevent fusariosis. Current breeding trends are therefore focused on increasing genetic resistance. While global modern maize breeding relies on various molecular genetics techniques, [...] Read more.
Fusarium diseases are among the most dangerous fungal diseases of plants. To date, there are no plant protectants that completely prevent fusariosis. Current breeding trends are therefore focused on increasing genetic resistance. While global modern maize breeding relies on various molecular genetics techniques, they are useless without a precise characterization of genomic regions that determine plant physiological responses to fungi. The aim of this study was thus to characterize the expression of candidate genes that were previously reported by our team as harboring markers linked to fusarium resistance in maize. The plant material included one susceptible and four resistant varieties. Biotic stress was induced in adult plants by inoculation with fungal spores under controlled conditions. qRT-PCR was performed. The analysis focused on four genes that encode for GDSL esterase/lipase (LOC100273960), putrescine hydroxycinnamyltransferase (LOC103649226), peroxidase 72 (LOC100282124), and uncharacterized protein (LOC100501166). Their expression showed differences between analyzed time points and varieties, peaking at 6 hpi. The resistant varieties consistently showed higher levels of expression compared to the susceptible variety, indicating their stronger defense responses. Moreover, to better understand the function of these genes, their expression in various organs and tissues was also evaluated using publicly available transcriptomic data. Our results are consistent with literature reports that clearly indicate the involvement of these genes in the resistance response to fusarium. Thus, they further emphasize the high usefulness of the previously selected markers in breeding programs to select fusarium-resistant maize genotypes. Full article
(This article belongs to the Special Issue Current Research on Fusarium: 2nd Edition)
24 pages, 759 KiB  
Article
The Mediating Role of the Firm Image in the Relationship Between Integrated Reporting and Firm Value in GCC Countries
by Mohammed Saleem Alatawi, Zaidi Mat Daud and Jalila Johari
J. Risk Financial Manag. 2025, 18(8), 438; https://doi.org/10.3390/jrfm18080438 - 6 Aug 2025
Abstract
In the context of the GCC, the adoption of integrated reporting (IR) remains limited, due in part to weak regulatory enforcement, a lack of awareness of the strategic benefits of IR, and a strong focus on short-term financial results. This limited reporting context [...] Read more.
In the context of the GCC, the adoption of integrated reporting (IR) remains limited, due in part to weak regulatory enforcement, a lack of awareness of the strategic benefits of IR, and a strong focus on short-term financial results. This limited reporting context presents a significant challenge for firms to credibly demonstrate their value to the market and attract potential investors, thus communicating long-term value. Given these limitations, this study considers how IR contributes to firm value, but also examines the mediating role that firm image (FI) plays in this relationship as a reputational construct representing stakeholder perspectives of a firm’s transparency and accountability. The research employs a quantitative methodology, analysing secondary data from corporate governance and integrated reports spanning 2017–2018 to 2022–2023. Findings indicate a positive and robust relationship between integrated reporting and the firm’s value, which was assessed using Tobin’s Q. The findings highlight the significant mediating role of firm image, illustrating how IR practices, via increased transparency, accountability, and sustainability, enhance firm value. This study provides significant insights for researchers, policymakers, and corporate managers, highlighting the strategic relevance of IR in the GCC region. The findings demonstrate that integrated reporting improves transparency, accountability, and sustainability, thereby assisting corporate managers in utilising IR to enhance firm image and facilitate value creation. Policymakers can utilise these insights to develop regulatory frameworks that promote integrated reporting practices, thereby enhancing transparency and sustainable growth within the corporate sector. Full article
(This article belongs to the Special Issue Emerging Trends and Innovations in Corporate Finance and Governance)
Show Figures

Figure 1

22 pages, 2208 KiB  
Article
Macroeconomic Effects of Oil Price Shocks in the Context of Geopolitical Events: Evidence from Selected European Countries
by Mariola Piłatowska and Andrzej Geise
Energies 2025, 18(15), 4165; https://doi.org/10.3390/en18154165 - 6 Aug 2025
Abstract
For a long time, the explanation of the various determinants of oil price fluctuations and their impact on economic activity has been based on the supply and demand mechanism. However, with various volatile changes in the international situation in recent years, such as [...] Read more.
For a long time, the explanation of the various determinants of oil price fluctuations and their impact on economic activity has been based on the supply and demand mechanism. However, with various volatile changes in the international situation in recent years, such as threats to public health and an increase in regional conflicts, special attention has been paid to the geopolitical context as an additional driver of oil price fluctuations. This study examines the relationship between oil price changes and GDP growth and other macroeconomic variables from the perspective of the vulnerability of oil-importing and oil-exporting countries to unexpected oil price shocks, driven by tense geopolitical events, in three European countries (Norway, Germany, and Poland). We apply the Structural Vector Autoregressive (SVAR) model and orthogonalized impulse response functions, based on quarterly data, in regard to two samples: the first spans 1995Q1–2019Q4 (pre-2020 sample), with relatively gradual changes in oil prices, and the second spans 1995Q1–2024Q2 (whole sample), with sudden fluctuations in oil prices due to geopolitical developments. A key finding of this research is that vulnerability to unpredictable oil price shocks related to geopolitical tensions is higher than in regard to expected gradual changes in oil prices, both in oil-importing and oil-exporting countries. Different causality patterns and stronger responses in regard to GDP growth during the period, including in regard to tense geopolitical events in comparison to the pre-2020 sample, lead to the belief that economies are not more resilient to oil price shocks as has been suggested by some studies, which referred to periods that were not driven by geopolitical events. Our research also suggests that countries implementing policies to reduce oil dependency and promote investment in alternative energy sources are better equipped to mitigate the adverse effects of oil price shocks. Full article
(This article belongs to the Special Issue Energy and Environmental Economic Theory and Policy)
Show Figures

Figure 1

16 pages, 2071 KiB  
Article
Mapping QTL and Identifying Candidate Genes for Resistance to Brown Stripe in Highly Allo-Autopolyploid Modern Sugarcane
by Wei Cheng, Zhoutao Wang, Fu Xu, Yingying Yang, Jie Fang, Jianxiong Wu, Junjie Pan, Qiaomei Wang and Liping Xu
Horticulturae 2025, 11(8), 922; https://doi.org/10.3390/horticulturae11080922 (registering DOI) - 5 Aug 2025
Abstract
Disease resistance is one of the most important target traits for sugarcane genetic improvement. Sugarcane brown stripe (SBS) caused by Helminthosporium stenospilum is one of the most destructive foliar diseases, which not only reduces harvest cane yield but also sugar content. This study [...] Read more.
Disease resistance is one of the most important target traits for sugarcane genetic improvement. Sugarcane brown stripe (SBS) caused by Helminthosporium stenospilum is one of the most destructive foliar diseases, which not only reduces harvest cane yield but also sugar content. This study aimed to identify quantitative trait loci (QTL) and candidate genes associated with SBS resistance. Here, the phenotypic investigation in six field habitats showed a continuous normal distribution, revealing that the SBS resistance trait is a quantitative trait. Two high-density linkage maps based on the single-dose markers calling from the Axiom Sugarcane100K SNP chip were constructed for the dominant sugarcane cultivars YT93-159 (SBS-resistant) and ROC22 (SBS-susceptible) with a density of 2.53 cM and 2.54 cM per SNP marker, and mapped on 87 linkage groups (LGs) and 80 LGs covering 3069.45 cM and 1490.34 cM of genetic distance, respectively. A total of 32 QTL associated with SBS resistance were detected by QTL mapping, which explained 3.73–11.64% of the phenotypic variation, and the total phenotypic variance explained (PVE) in YT93-159 and ROC22 was 107.44% and 79.09%, respectively. Among these QTL, four repeatedly detected QTL (qSBS-Y38-1, qSBS-Y38-2, qSBS-R8, and qSBS-R46) were considered stable QTL. Meanwhile, two major QTL, qSBS-Y38 and qSBS-R46, could account for 11.47% and 11.64% of the PVE, respectively. Twenty-five disease resistance candidate genes were screened by searching these four stable QTL regions in their corresponding intervals, of which Soffic.01G0010840-3C (PR3) and Soffic.09G0017520-1P (DND2) were significantly up-regulated in YT93-159 by qRT-PCR, while Soffic.01G0040620-1P (EDR2) was significantly up-regulated in ROC22. These results will provide valuable insights for future studies on sugarcane breeding in combating this disease. Full article
(This article belongs to the Special Issue Disease Diagnosis and Control for Fruit Crops)
Show Figures

Figure 1

21 pages, 3733 KiB  
Article
DNO-RL: A Reinforcement-Learning-Based Approach to Dynamic Noise Optimization for Differential Privacy
by Guixin Wang, Xiangfei Liu, Yukun Zheng, Zeyu Zhang and Zhiming Cai
Electronics 2025, 14(15), 3122; https://doi.org/10.3390/electronics14153122 - 5 Aug 2025
Abstract
With the globalized deployment of cross-border vehicle location services and the trajectory data, which contain user identity information and geographically sensitive features, the variability in privacy regulations in different jurisdictions can further exacerbate the technical and compliance challenges of data privacy protection. Traditional [...] Read more.
With the globalized deployment of cross-border vehicle location services and the trajectory data, which contain user identity information and geographically sensitive features, the variability in privacy regulations in different jurisdictions can further exacerbate the technical and compliance challenges of data privacy protection. Traditional static differential privacy mechanisms struggle to accommodate spatiotemporal heterogeneity in dynamic scenarios because of the use of a fixed privacy budget parameter, leading to wasted privacy budgets or insufficient protection of sensitive regions. This study proposes a reinforcement-learning-based dynamic noise optimization method (DNO-RL) that dynamically adjusts the Laplacian noise scale by real-time sensing of vehicle density, region sensitivity, and the remaining privacy budget via a deep Q-network (DQN), with the aim of providing context-adaptive differential privacy protection for cross-border vehicle location services. Simulation experiments of cross-border scenarios based on the T-Drive dataset showed that DNO-RL reduced the average localization error by 28.3% and saved 17.9% of the privacy budget compared with the local differential privacy under the same privacy budget. This study provides a new paradigm for the dynamic privacy–utility balancing of cross-border vehicular networking services. Full article
Show Figures

Figure 1

25 pages, 4865 KiB  
Article
Mathematical Modeling, Bifurcation Theory, and Chaos in a Dusty Plasma System with Generalized (r, q) Distributions
by Beenish, Maria Samreen and Fehaid Salem Alshammari
Axioms 2025, 14(8), 610; https://doi.org/10.3390/axioms14080610 - 5 Aug 2025
Abstract
This study investigates the dynamics of dust acoustic periodic waves in a three-component, unmagnetized dusty plasma system using generalized (r,q) distributions. First, boundary conditions are applied to reduce the model to a second-order nonlinear ordinary differential equation. [...] Read more.
This study investigates the dynamics of dust acoustic periodic waves in a three-component, unmagnetized dusty plasma system using generalized (r,q) distributions. First, boundary conditions are applied to reduce the model to a second-order nonlinear ordinary differential equation. The Galilean transformation is subsequently applied to reformulate the second-order ordinary differential equation into an unperturbed dynamical system. Next, phase portraits of the system are examined under all possible conditions of the discriminant of the associated cubic polynomial, identifying regions of stability and instability. The Runge–Kutta method is employed to construct the phase portraits of the system. The Hamiltonian function of the unperturbed system is subsequently derived and used to analyze energy levels and verify the phase portraits. Under the influence of an external periodic perturbation, the quasi-periodic and chaotic dynamics of dust ion acoustic waves are explored. Chaos detection tools confirm the presence of quasi-periodic and chaotic patterns using Basin of attraction, Lyapunov exponents, Fractal Dimension, Bifurcation diagram, Poincaré map, Time analysis, Multi-stability analysis, Chaotic attractor, Return map, Power spectrum, and 3D and 2D phase portraits. In addition, the model’s response to different initial conditions was examined through sensitivity analysis. Full article
(This article belongs to the Special Issue Trends in Dynamical Systems and Applied Mathematics)
Show Figures

Figure 1

22 pages, 982 KiB  
Article
Cross-Cultural Adaptation and Validation of the Spanish HLS-COVID-Q22 Questionnaire for Measuring Health Literacy on COVID-19 in Peru
by Manuel Caipa-Ramos, Katarzyna Werner-Masters, Silvia Quispe-Prieto, Alberto Paucar-Cáceres and Regina Nina-Chipana
Healthcare 2025, 13(15), 1903; https://doi.org/10.3390/healthcare13151903 - 5 Aug 2025
Abstract
Background/Objectives: The social importance of health literacy (HL) is widely understood, and its measurement is the subject of various studies. Due to the recent pandemic, several instruments for measuring HL about COVID-19 have been proposed in different countries, including the HLS-COVID-Q22 questionnaire. The [...] Read more.
Background/Objectives: The social importance of health literacy (HL) is widely understood, and its measurement is the subject of various studies. Due to the recent pandemic, several instruments for measuring HL about COVID-19 have been proposed in different countries, including the HLS-COVID-Q22 questionnaire. The diversity of cultures and languages necessitates the cross-cultural adaptation of this instrument. Thus, the present study translates, adapts, and validates the psychometric properties of the HLS-COVID-Q22 questionnaire to provide its cross-cultural adaptation from English to Spanish (Peru). Methods: As part of ensuring that the final questionnaire accommodates the cultural nuances and idiosyncrasies of the target language, the following activities were carried out: (a) a survey of 40 respondents; and (b) a focus group with 10 participants, followed by expert approval. In addition, the validity and reliability of the health instrument have been ascertained through a further pilot test administered to 490 people in the city of Tacna in southern Peru. Results: The resulting questionnaire helps measure HL in Peru, aiding better-informed decision-making for individual health choices. Conclusions: The presence of such a tool is advantageous in case of similar global health emergencies, when the questionnaire can be made readily available to support a promotion of strategies towards better self-care. Moreover, it encourages other Latin American stakeholders to adjust the instrument to their own cultural, language, and socio-economic contexts, thus invigorating the regional and global expansion of the HL study network. Full article
Show Figures

Figure 1

20 pages, 4989 KiB  
Article
Analysis of the Trade-Off/Synergy Effect and Driving Factors of Ecosystem Services in Hulunbuir City, China
by Shimin Wei, Jian Hou, Yan Zhang, Yang Tai, Xiaohui Huang and Xiaochen Guo
Agronomy 2025, 15(8), 1883; https://doi.org/10.3390/agronomy15081883 - 4 Aug 2025
Abstract
An in-depth understanding of the spatiotemporal heterogeneity of ecosystem service (ES) trade-offs and synergies, along with their driving factors, is crucial for formulating key ecological restoration strategies and effectively allocating ecological environmental resources in the Hulunbuir region. This study employed an integrated analytical [...] Read more.
An in-depth understanding of the spatiotemporal heterogeneity of ecosystem service (ES) trade-offs and synergies, along with their driving factors, is crucial for formulating key ecological restoration strategies and effectively allocating ecological environmental resources in the Hulunbuir region. This study employed an integrated analytical approach combining the InVEST model, ArcGIS geospatial processing, R software environment, and Optimal Parameter Geographical Detector (OPGD). The spatiotemporal patterns and driving factors of the interaction of four major ES functions in Hulunbuir area from 2000 to 2020 were studied. The research findings are as follows: (1) carbon storage (CS) and soil conservation (SC) services in the Hulunbuir region mainly show a distribution pattern of high values in the central and northeast areas, with low values in the west and southeast. Water yield (WY) exhibits a distribution pattern characterized by high values in the central–western transition zone and southeast and low values in the west. For forage supply (FS), the overall pattern is higher in the west and lower in the east. (2) The trade-off relationships between CS and WY, CS and SC, and SC and WY are primarily concentrated in the western part of Hulunbuir, while the synergistic relationships are mainly observed in the central and eastern regions. In contrast, the trade-off relationships between CS and FS, as well as FS and WY, are predominantly located in the central and eastern parts of Hulunbuir, with the intensity of these trade-offs steadily increasing. The trade-off relationship between SC and FS is almost widespread throughout HulunBuir. (3) Fractional vegetation cover, mean annual precipitation, and land use type were the primary drivers affecting ESs. Among these factors, fractional vegetation cover demonstrates the highest explanatory power, with a q-value between 0.6 and 0.9. The slope and population density exhibit relatively weak explanatory power, with q-values ranging from 0.001 to 0.2. (4) The interactions between factors have a greater impact on the inter-relationships of ESs in the Hulunbuir region than individual factors alone. The research findings have facilitated the optimization and sustainable development of regional ES, providing a foundation for ecological conservation and restoration in Hulunbuir. Full article
Show Figures

Figure 1

25 pages, 3310 KiB  
Article
Real-Time Signal Quality Assessment and Power Adaptation of FSO Links Operating Under All-Weather Conditions Using Deep Learning Exploiting Eye Diagrams
by Somia A. Abd El-Mottaleb and Ahmad Atieh
Photonics 2025, 12(8), 789; https://doi.org/10.3390/photonics12080789 - 4 Aug 2025
Abstract
This paper proposes an intelligent power adaptation framework for Free-Space Optics (FSO) communication systems operating under different weather conditions exploiting a deep learning (DL) analysis of received eye diagram images. The system incorporates two Convolutional Neural Network (CNN) architectures, LeNet and Wide Residual [...] Read more.
This paper proposes an intelligent power adaptation framework for Free-Space Optics (FSO) communication systems operating under different weather conditions exploiting a deep learning (DL) analysis of received eye diagram images. The system incorporates two Convolutional Neural Network (CNN) architectures, LeNet and Wide Residual Network (Wide ResNet) algorithms to perform regression tasks that predict received signal quality metrics such as the Quality Factor (Q-factor) and Bit Error Rate (BER) from the received eye diagram. These models are evaluated using Mean Squared Error (MSE) and the coefficient of determination (R2 score) to assess prediction accuracy. Additionally, a custom CNN-based classifier is trained to determine whether the BER reading from the eye diagram exceeds a critical threshold of 104; this classifier achieves an overall accuracy of 99%, correctly detecting 194/195 “acceptable” and 4/5 “unacceptable” instances. Based on the predicted signal quality, the framework activates a dual-amplifier configuration comprising a pre-channel amplifier with a maximum gain of 25 dB and a post-channel amplifier with a maximum gain of 10 dB. The total gain of the amplifiers is adjusted to support the operation of the FSO system under all-weather conditions. The FSO system uses a 15 dBm laser source at 1550 nm. The DL models are tested on both internal and external datasets to validate their generalization capability. The results show that the regression models achieve strong predictive performance, and the classifier reliably detects degraded signal conditions, enabling the real-time gain control of the amplifiers to achieve the quality of transmission. The proposed solution supports robust FSO communication under challenging atmospheric conditions including dry snow, making it suitable for deployment in regions like Northern Europe, Canada, and Northern Japan. Full article
Show Figures

Figure 1

32 pages, 944 KiB  
Review
Continuous Manufacturing of Recombinant Drugs: Comprehensive Analysis of Cost Reduction Strategies, Regulatory Pathways, and Global Implementation
by Sarfaraz K. Niazi
Pharmaceuticals 2025, 18(8), 1157; https://doi.org/10.3390/ph18081157 - 4 Aug 2025
Abstract
The biopharmaceutical industry is undergoing a fundamental transformation from traditional batch manufacturing to continuous manufacturing (CM) for recombinant drugs and biosimilars, driven by regulatory support through the International Council for Harmonization (ICH) Q13 guidance and compelling economic advantages. This comprehensive review examines the [...] Read more.
The biopharmaceutical industry is undergoing a fundamental transformation from traditional batch manufacturing to continuous manufacturing (CM) for recombinant drugs and biosimilars, driven by regulatory support through the International Council for Harmonization (ICH) Q13 guidance and compelling economic advantages. This comprehensive review examines the technical, economic, and regulatory aspects of implementing continuous manufacturing specifically for recombinant protein production and biosimilar development, synthesizing validated data from peer-reviewed research, regulatory sources, and global implementation case studies. The analysis demonstrates that continuous manufacturing offers substantial benefits, including a reduced equipment footprint of up to 70%, a 3- to 5-fold increase in volumetric productivity, enhanced product quality consistency, and facility cost reductions of 30–50% compared to traditional batch processes. Leading biomanufacturers across North America, Europe, and the Asia–Pacific region are successfully integrating perfusion upstream processes with connected downstream bioprocesses, enabling the fully end-to-end continuous manufacture of biopharmaceuticals with demonstrated commercial viability. The regulatory framework has been comprehensively established through ICH Q13 guidance and region-specific implementations across the FDA, EMA, PMDA, and emerging market authorities. This review provides a critical analysis of advanced technologies, including single-use perfusion bioreactors, continuous chromatography systems, real-time process analytical technology, and Industry 4.0 integration strategies. The economic modeling presents favorable return-on-investment profiles, accompanied by a detailed analysis of global market dynamics, regional implementation patterns, and supply chain integration opportunities. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

16 pages, 6927 KiB  
Article
Physiological and Transcriptomic Mechanisms Underlying Vitamin C-Mediated Cold Stress Tolerance in Grafted Cucumber
by Panpan Yu, Junkai Wang, Xuyang Zhang, Zhenglong Weng, Kaisen Huo, Qiuxia Yi, Chenxi Wu, Sunjeet Kumar, Hao Gao, Lin Fu, Yanli Chen and Guopeng Zhu
Plants 2025, 14(15), 2398; https://doi.org/10.3390/plants14152398 - 2 Aug 2025
Viewed by 266
Abstract
Cucumbers (Cucumis sativus L.) are highly sensitive to cold, but grafting onto cold-tolerant rootstocks can enhance their low-temperature resilience. This study investigates the physiological and molecular mechanisms by which exogenous vitamin C (Vc) mitigates cold stress in grafted cucumber seedlings. Using cucumber [...] Read more.
Cucumbers (Cucumis sativus L.) are highly sensitive to cold, but grafting onto cold-tolerant rootstocks can enhance their low-temperature resilience. This study investigates the physiological and molecular mechanisms by which exogenous vitamin C (Vc) mitigates cold stress in grafted cucumber seedlings. Using cucumber ‘Chiyu 505’ as the scion and pumpkin ‘Chuangfan No.1’ as the rootstock, seedlings were grafted using the whip grafting method. In the third true leaf expansion stage, seedlings were foliar sprayed with Vc at concentrations of 50, 100, 150, and 200 mg L−1. Three days after initial spraying, seedlings were subjected to cold stress (8 °C) for 3 days, with continued spraying. After that, morphological and physiological parameters were assessed. Results showed that 150 mg L−1 Vc treatment was most impactive, significantly reducing the cold damage index while increasing the root-to-shoot ratio, root vitality, chlorophyll content, and activities of antioxidant enzymes (SOD, POD, CAT). Moreover, this treatment enhanced levels of soluble sugars, soluble proteins, and proline compared to control. However, 200 mg L−1 treatment elevated malondialdehyde (MDA) content, indicating potential oxidative stress. For transcriptomic analysis, leaves from the 150 mg L−1 Vc and CK treatments were sampled at 0, 1, 2, and 3 days of cold stress. Differential gene expression revealed that genes associated with photosynthesis (LHCA1), stress signal transduction (MYC2-1, MYC2-2, WRKY22, WRKY2), and antioxidant defense (SOD-1, SOD-2) were initially up-regulated and subsequently down-regulated, as validated by qRT-PCR. Overall, we found that the application of 150 mg L−1 Vc enhanced cold tolerance in grafted cucumber seedlings by modulating gene expression networks related to photosynthesis, stress response, and the antioxidant defense system. This study provides a way for developing Vc biostimulants to enhance cold tolerance in grafted cucumbers, improving sustainable cultivation in low-temperature regions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

16 pages, 2656 KiB  
Article
Plastic Film Mulching Regulates Soil Respiration and Temperature Sensitivity in Maize Farming Across Diverse Hydrothermal Conditions
by Jianjun Yang, Rui Wang, Xiaopeng Shi, Yufei Li, Rafi Ullah and Feng Zhang
Agriculture 2025, 15(15), 1667; https://doi.org/10.3390/agriculture15151667 - 1 Aug 2025
Viewed by 179
Abstract
Soil respiration (Rt), consisting of heterotrophic (Rh) and autotrophic respiration (Ra), plays a vital role in terrestrial carbon cycling and is sensitive to soil temperature and moisture. In dryland agriculture, plastic film mulching (PM) is widely used to regulate soil hydrothermal conditions, but [...] Read more.
Soil respiration (Rt), consisting of heterotrophic (Rh) and autotrophic respiration (Ra), plays a vital role in terrestrial carbon cycling and is sensitive to soil temperature and moisture. In dryland agriculture, plastic film mulching (PM) is widely used to regulate soil hydrothermal conditions, but its effects on Rt components and their temperature sensitivity (Q10) across regions remain unclear. A two-year field study was conducted at two rain-fed maize sites: Anding (warmer, semi-arid) and Yuzhong (colder, drier). PM significantly increased Rt, Rh, and Ra, especially Ra, due to enhanced root biomass and improved microclimate. Yield increased by 33.6–165%. Peak respiration occurred earlier in Anding, aligned with maize growth and soil temperature. PM reduced Q10 of Rt and Ra in Anding, but only Ra in Yuzhong. Rh Q10 remained stable, indicating microbial respiration was less sensitive to temperature changes. Structural equation modeling revealed that Rt and Ra were mainly driven by soil temperature and root biomass, while Rh was more influenced by microbial biomass carbon (MBC) and dissolved organic carbon (DOC). Despite increased CO2 emissions, PM improved carbon emission efficiency (CEE), particularly in Yuzhong (+67%). The application of PM is recommended to enhance yield while optimizing carbon efficiency in dryland farming systems. Full article
Show Figures

Figure 1

17 pages, 4370 KiB  
Article
PSG and Other Candidate Genes as Potential Biomarkers of Therapy Resistance in B-ALL: Insights from Chromosomal Microarray Analysis and Machine Learning
by Valeriya Surimova, Natalya Risinskaya, Ekaterina Kotova, Abdulpatakh Abdulpatakhov, Anastasia Vasileva, Yulia Chabaeva, Sofia Starchenko, Olga Aleshina, Nikolay Kapranov, Irina Galtseva, Alina Ponomareva, Ilya Kanivets, Sergey Korostelev, Sergey Kulikov, Andrey Sudarikov and Elena Parovichnikova
Int. J. Mol. Sci. 2025, 26(15), 7437; https://doi.org/10.3390/ijms26157437 - 1 Aug 2025
Viewed by 156
Abstract
Chromosomal microarray analysis (CMA) was performed for 40 patients with B-ALL undergoing treatment according to the ALL-2016 protocol to investigate the copy number alterations (CNAs) and copy neutral loss of heterozygosity (cnLOH) associated with minimal residual disease (MRD)-positive remission. Aberrations involving over 20,000 [...] Read more.
Chromosomal microarray analysis (CMA) was performed for 40 patients with B-ALL undergoing treatment according to the ALL-2016 protocol to investigate the copy number alterations (CNAs) and copy neutral loss of heterozygosity (cnLOH) associated with minimal residual disease (MRD)-positive remission. Aberrations involving over 20,000 genes were identified, and a random forest approach was applied to isolate a subset of genes whose CNAs and cnLOH are significantly associated with poor therapeutic response. We have assembled the triple matched healthy population data and used that data as a reference, but not as a matched control. We identified a recurrent cluster of cnLOH in the 19q13.2–19q13.31 region, significantly enriched in MRD-positive patients (70% vs. 47% in the reference group vs. 16% in MRD-negative patients). This region includes the pregnancy-specific glycoprotein (PSG) gene family and the oncogene ERF, suggesting a potential role in leukemic persistence and treatment resistance. Additionally, we observed significant deletions involving 7p22.3 and 16q13, often as part of large-scale losses affecting almost the entire chromosomes 7 and 16, indicative of global chromosomal instability. These findings highlight specific genomic regions potentially involved in therapy resistance and may contribute to improved risk stratification in B-ALL. Our findings emphasize the value of high-resolution CMA in diagnostics and risk stratification and suggest that PSG genes and other candidate genes could serve as biomarkers for predicting treatment outcomes. Full article
(This article belongs to the Special Issue Cancer Genomics)
Show Figures

Figure 1

Back to TopTop