Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,648)

Search Parameters:
Keywords = 2-D array

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5170 KB  
Article
Two-Dimensional Digital Electromagnetic Micro-Conveyance Device
by Célien Bergeron, Gabriel Géron, Laurent Petit, Erwan Dupont, Nicolas Piton and Christine Prelle
Actuators 2026, 15(2), 75; https://doi.org/10.3390/act15020075 - 26 Jan 2026
Abstract
This paper presents a 2D micro-conveyance device based on a 3 × 3 electromagnetic digital actuator array. This device allows the conveyed object to be moved between several discrete positions distributed in the xy-plane through a collaborative actuation of the digital actuators. Each [...] Read more.
This paper presents a 2D micro-conveyance device based on a 3 × 3 electromagnetic digital actuator array. This device allows the conveyed object to be moved between several discrete positions distributed in the xy-plane through a collaborative actuation of the digital actuators. Each digital actuator includes a mobile permanent magnet placed in a square cavity and can be moved between four discrete positions. An analytical model of the digital actuators was proposed and used to design the conveyance device. Then, a prototype was built using rapid prototyping techniques and was experimentally characterized. The reachable workspace of the conveyance device is 56 mm × 56 mm in the xy-plane, and the proposed architecture enables the workspace to be easily enlarged by adding elementary modules. The distance between two discrete positions is 4 mm, and the positioning repeatability was measured as 5.5 µm. The maximum conveyance velocity and transportable mass were found to be up to 16 mm.s−1 and 15 g, respectively. Full article
14 pages, 6257 KB  
Article
High-Performance D-Band Frequency Multiplier Using Aligned Carbon Nanotube Schottky Barrier Diodes
by Linxin Dai, Junhong Wu and Honggang Liu
Electronics 2026, 15(3), 537; https://doi.org/10.3390/electronics15030537 - 26 Jan 2026
Abstract
Millimeter-wave (mmWave)/terahertz (THz) devices relying on conventional semiconductor technologies face significant performance bottlenecks, constraining their use in next-generation electronic systems. To address these challenges, this work demonstrates high-performance THz Schottky barrier diodes (SBDs) based on aligned carbon nanotube (ACNT) arrays, and the realization [...] Read more.
Millimeter-wave (mmWave)/terahertz (THz) devices relying on conventional semiconductor technologies face significant performance bottlenecks, constraining their use in next-generation electronic systems. To address these challenges, this work demonstrates high-performance THz Schottky barrier diodes (SBDs) based on aligned carbon nanotube (ACNT) arrays, and the realization of a D-band second-harmonic frequency multiplier. The ACNT-SBDs exhibit superior electrical and radio-frequency (RF) characteristics, achieving a forward current density of 0.14 mA·μm−1 at −1.3 V and an intrinsic cutoff frequency (fC) of 506 GHz. The developed small-signal model of diodes shows close agreement with measurements, with S-parameter relative errors below 0.7% from 100 MHz to 67 GHz. The implemented 154 GHz D-band multiplier achieved a maximum output power of −18.97 dBm and a minimum conversion loss of 27.92 dB, outperforming previously reported frequency multipliers based on carbon nanotubes or two-dimensional (2D) materials. This study not only establishes the outstanding high-frequency response, nonlinear efficiency, and integration potential of ACNT-based devices but also provides a promising technical pathway for future THz communication and sensing applications. Full article
22 pages, 4360 KB  
Article
Genomic Insights into Antimicrobial Biosynthetic Potential of Bacillus velezensis Isolated from Traditional Peruvian Tocosh
by Dámaris Esquén Bayona, Cristian Mauricio Barreto Pinilla, Jimena Giraldo Flores, Belkys Medrano Salazar, Jesús Valencia Navarro, Joaquin Rodriguez Trelles, Kiara Flores Jiménez, Joaquim Ruiz, Roberto Alcántara and Frank Guzman Escudero
Microorganisms 2026, 14(2), 287; https://doi.org/10.3390/microorganisms14020287 - 26 Jan 2026
Abstract
Tocosh, a traditional Peruvian fermented potato product, is known for its health-promoting properties, including its antioxidant, anti-inflammatory, probiotic, and antibiotic effects, which have popularized its consumption, particularly in rural areas. To gain a better understanding of its antimicrobial properties, this study aimed to [...] Read more.
Tocosh, a traditional Peruvian fermented potato product, is known for its health-promoting properties, including its antioxidant, anti-inflammatory, probiotic, and antibiotic effects, which have popularized its consumption, particularly in rural areas. To gain a better understanding of its antimicrobial properties, this study aimed to perform a comprehensive whole-genome analysis and functional assessment of the Bacillus velezensis TCSH0001 strain isolated from tocosh. The isolate was identified through whole-genome sequencing using the MinION nanopore platform. AntiSMASH analysis revealed nine biosynthetic gene clusters (BGCs) potentially responsible for producing secondary metabolites with antibiotic potential. Notably, seven BGCs showed a 100% similarity to known clusters involved in the biosynthesis of polyketide synthases (PKSs) and non-ribosomal peptides (NRPSs), including difficidin, bacillibactin, bacilysin, macrolactin H, bacillaene, fengycin, and bacillomycin D. In vitro analysis revealed antimicrobial activity against S. aureus strains. In addition, RT-qPCR indicated that the expression of the baeJ (bacillaene), bmyA (bacillomycin D), and pks2A (macrolactin H) occurs predominantly during the exponential growth phase. Our results suggest that this B. velezensis strain has the capacity to produce a diverse array of bioactive compounds, supporting the traditional use of tocosh as a natural antimicrobial agent, and revealing the potential of the strain as a high NRPS producer. Full article
(This article belongs to the Special Issue Genomics of Microorganisms from Traditional Fermented Products)
Show Figures

Figure 1

25 pages, 4936 KB  
Article
Drone-Enabled Non-Invasive Ultrasound Method for Rodent Deterrence
by Marija Ratković, Vasilije Kovačević, Matija Marijan, Maksim Kostadinov, Tatjana Miljković and Miloš Bjelić
Drones 2026, 10(2), 84; https://doi.org/10.3390/drones10020084 - 25 Jan 2026
Abstract
Unmanned aerial vehicles open new possibilities for developing technologies that support more sustainable and efficient agriculture. This paper presents a non-invasive method for repelling rodents from crop fields using ultrasound. The proposed system is implemented as a spherical-cap ultrasound loudspeaker array consisting of [...] Read more.
Unmanned aerial vehicles open new possibilities for developing technologies that support more sustainable and efficient agriculture. This paper presents a non-invasive method for repelling rodents from crop fields using ultrasound. The proposed system is implemented as a spherical-cap ultrasound loudspeaker array consisting of eight transducers, mounted on a drone that overflies the field while emitting sound in the 20–70 kHz range. The hardware design includes both the loudspeaker array and a custom printed circuit board hosting power amplifiers and a signal generator tailored to drive multiple ultrasonic transducers. In parallel, a genetic algorithm is used to compute flight paths that maximize coverage and increase the probability of driving rodents away from the protected area. As part of the validation phase, artificial intelligence models for rodent detection using a thermal camera are developed to provide quantitative feedback on system performance. The complete prototype is evaluated through a series of experiments conducted both in controlled laboratory conditions and in the field. Field trials highlight which parts of the concept are already effective and identify open challenges that need to be addressed in future work to move from a research prototype toward a deployable product. Full article
(This article belongs to the Special Issue Advances of UAV in Precision Agriculture—2nd Edition)
Show Figures

Figure 1

23 pages, 13361 KB  
Article
Conceptual Design and Structural Assessment of a Hemispherical Two-Chamber Water Cherenkov Detector for Extensive Air-Shower Arrays
by Jasmina Isaković, Marina Manganaro and Michele Doro
Universe 2026, 12(2), 29; https://doi.org/10.3390/universe12020029 - 24 Jan 2026
Viewed by 38
Abstract
A conceptual design study is presented for a hemispherical, two-chamber water Cherenkov detector instrumented with bladder-embedded light traps. The detector consists of a rigid aluminium vessel enclosing a water volume that is divided into an outer, optically black chamber and a inner, reflective [...] Read more.
A conceptual design study is presented for a hemispherical, two-chamber water Cherenkov detector instrumented with bladder-embedded light traps. The detector consists of a rigid aluminium vessel enclosing a water volume that is divided into an outer, optically black chamber and a inner, reflective chamber lined by a flexible bladder. Arrays of light-trap modules, based on plastic scintillators with wavelength-shifting elements and thin silicon photomultipliers, are integrated into the bladder and selected inner surfaces. This geometry is intended to enhance muon tagging, increase acceptance for inclined air showers, and enable improved discrimination between electromagnetic and hadronic components. The study describes the mechanical and optical layout of the detector, the baseline aluminium housing, and the use of 3D-printed hexagonal prototypes to validate integration of the bladder and readout electronics. A first-order structural assessment based on thin-shell and plate theory is presented, indicating large safety margins for the hemispherical shells and identifying the flat base as the mechanically most loaded component. While GEANT4 simulations for detector response to extensive air showers in the atmosphere and performance measurements are left to future work, the present study establishes a mechanically validated, costed baseline design and outlines the steps needed to assess its impact in air-shower arrays. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

20 pages, 7268 KB  
Article
A Two-Dimensional (2-D) Sensor Network Architecture with Artificial Intelligence Models for the Detection of Magnetic Anomalies
by Paolo Gastaldo, Rodolfo Zunino, Alessandro Bellesi, Alessandro Carbone, Marco Gemma and Edoardo Ragusa
Sensors 2026, 26(3), 764; https://doi.org/10.3390/s26030764 - 23 Jan 2026
Viewed by 101
Abstract
The paper presents the development and preliminary evaluation of a two-dimensional (2-D) network of magnetometers for magnetic anomaly detection. The configuration significantly improves over the existing one-dimensional (1-D) architecture, as it enhances the spatial characterization of magnetic anomalies through the simultaneous acquisition of [...] Read more.
The paper presents the development and preliminary evaluation of a two-dimensional (2-D) network of magnetometers for magnetic anomaly detection. The configuration significantly improves over the existing one-dimensional (1-D) architecture, as it enhances the spatial characterization of magnetic anomalies through the simultaneous acquisition of data over an extended area. This leads to a reliable estimation of the target motion parameters. Each sensor node in the network includes a custom-designed electronic system, integrating a biaxial fluxgate magnetometer that operates in null mode. Deep learning models process the raw measurements collected by the magnetometers and extract structured information that enables both automated detection and preliminary target tracking. In the experimental evaluation, a 5×5 array of nodes was deployed over a 12×12 m2 area for terrestrial tests, using moving ferromagnetic cylinders as targets. The results confirmed the feasibility of the 2-D configuration and supported its integration into intelligent, real-time surveillance systems for security and underwater monitoring applications. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

15 pages, 3943 KB  
Article
Capture Radius of Rod-Shaped Matrix: Characteristics and Influencing Factors in Low-Intensity Gradient Magnetic Fields
by Hongliang Shang, Tiange Wang, Zhengchang Shen and Guoping Li
Minerals 2026, 16(1), 109; https://doi.org/10.3390/min16010109 - 21 Jan 2026
Viewed by 50
Abstract
In magnetic separation processes, the capture radius Rc of magnetic particles achieved by the magnetic matrix constitutes a critical parameter governing the separation efficiency and operational performance of magnetic separation equipment. Through a systematic study of the characteristics of Rc and [...] Read more.
In magnetic separation processes, the capture radius Rc of magnetic particles achieved by the magnetic matrix constitutes a critical parameter governing the separation efficiency and operational performance of magnetic separation equipment. Through a systematic study of the characteristics of Rc and the factors influencing it, the application capability of separation systems can be notably improved. To address the lack of systematic research on Rc under low magnetic field intensities (<0.6 T), a key gap compared to conventional high gradient magnetic separation (HGMS) operating at ≥0.6 T, the motion trajectories of magnetic particles adjacent to a rod-shaped matrix, as well as their final capture or repulsion behaviors, were observed via a high-speed camera. Concurrently, these processes were accurately reproduced using the finite element method (FEM). This study innovatively integrates experimental validation and FEM simulation, achieving mutual verification that single-method studies cannot provide. Based on the experimentally validated FEM model, the effects of magnetic field intensity H, rod-shaped matrix diameter Φ, magnetic particle diameter d, and fluid viscosity η on the motion of magnetic particles were methodically investigated. The velocity characteristics of particles at critical positions between the capture and repulsion zones were analyzed to determine the capture radius of the rod-shaped matrix under specified conditions. Drawing on the identified parametric effects, the developed capture radius prediction model fills the research gap in low-intensity HGMS and serves as a theoretical reference for optimizing both the spacing design of industrial-scale rod-shaped matrix arrays and their matching with relevant operating parameters, and the development of energy-efficient magnetic separation equipment. Full article
Show Figures

Graphical abstract

38 pages, 12262 KB  
Article
A Reproducible FPGA–ADC Synchronization Architecture for High-Speed Data Acquisition
by Van Muoi Ngo and Thanh Dong Nguyen
Data 2026, 11(1), 23; https://doi.org/10.3390/data11010023 - 21 Jan 2026
Viewed by 91
Abstract
High-speed data acquisition systems based on field-programmable gate arrays (FPGAs) often face synchronization challenges when interfacing with commercial analog-to-digital converters (ADCs), particularly under constrained hardware routing conditions and vendor-specific clocking assumptions. This work presents a vendor-independent FPGA–ADC synchronization architecture that enables reliable and [...] Read more.
High-speed data acquisition systems based on field-programmable gate arrays (FPGAs) often face synchronization challenges when interfacing with commercial analog-to-digital converters (ADCs), particularly under constrained hardware routing conditions and vendor-specific clocking assumptions. This work presents a vendor-independent FPGA–ADC synchronization architecture that enables reliable and repeatable high-speed data acquisition without relying on clock-capable input resources. Clock and frame signals are internally reconstructed and phase-aligned within the FPGA using mixed-mode clock management (MMCM) and input serializer/deserializer (ISERDES) resources, enabling time-sequential phase observation without the need for parallel snapshot or delay-line structures. Rather than targeting absolute metrological limits, the proposed approach emphasizes a reproducible and transparent data acquisition methodology applicable across heterogeneous FPGA–ADC platforms, in which clock synchronization is treated as a system-level design parameter affecting digital interface timing integrity and data reproducibility. Experimental validation using a custom Kintex-7 (XC7K325T) FPGA and an AFE7225 ADC demonstrates stable synchronization at sampling rates of up to 125 MS/s, with frequency-offset tolerance determined by the phase-tracking capability of the internal MMCM-based alignment loop. Consistent signal acquisition is achieved over the 100 kHz–20 MHz frequency range. The measured interface level timing uncertainty remains below 10 ps RMS, confirming robust clock and frame alignment. Meanwhile, the observed signal-to-noise ratio (SNR) performance, exceeding 80 dB, reflects the phase–noise-limited measurement quality of the system. The proposed architecture provides a cost-effective, scalable, and reproducible solution for experimental and research-oriented FPGA-based data acquisition systems operating under practical hardware constraints. Full article
(This article belongs to the Topic Data Stream Mining and Processing)
Show Figures

Figure 1

14 pages, 3272 KB  
Article
High-Precision Endoscopic Shape Sensing Using Two Calibrated Outer Cores of MC-FBG Array
by Bo Xia, Chujie Tu, Weiliang Zhao, Xiangpeng Xiao, Jialei Zuo, Yan He and Zhijun Yan
Photonics 2026, 13(1), 92; https://doi.org/10.3390/photonics13010092 - 20 Jan 2026
Viewed by 112
Abstract
We present a high-precision endoscopic shape-sensing method using only two calibrated outer cores of a multicore fiber Bragg grating (MC-FBG) array. By leveraging the geometric relationship among two non-collinear outer cores and the central core, the method estimates curvature and bending angle without [...] Read more.
We present a high-precision endoscopic shape-sensing method using only two calibrated outer cores of a multicore fiber Bragg grating (MC-FBG) array. By leveraging the geometric relationship among two non-collinear outer cores and the central core, the method estimates curvature and bending angle without relying on multiple outer-core channels, thereby reducing complexity and error propagation. On canonical shapes, the proposed method achieves maximum relative reconstruction errors of 1.62% for a 2D circular arc and 2.81% for a 3D helix, with the corresponding RMSE values reported for completeness. In addition, representative endoscope-relevant configurations including the α-loop, reversed α-loop, and N-loop are accurately reconstructed, and temperature tests over 25–81 °C further verify stable reconstruction performance under thermal disturbances. This work provides a resource-efficient and high-fidelity solution for endoscopic shape sensing with strong potential for integration into next-generation image-guided and robot-assisted surgical systems. Full article
(This article belongs to the Special Issue Emerging Technologies and Applications in Fiber Optic Sensing)
Show Figures

Figure 1

12 pages, 1899 KB  
Article
Packaging of 128-Channel Optical Phased Array for LiDAR
by Abu Sied, Eun-Su Lee, Kwon-Wook Chun, Jinung Jin and Min-Cheol Oh
Photonics 2026, 13(1), 88; https://doi.org/10.3390/photonics13010088 - 20 Jan 2026
Viewed by 164
Abstract
We developed a complete packaging strategy for a 128-channel optical phased array (OPA) for Light Detection and Ranging (LiDAR) applications operating at a 1550 nm wavelength. The process comprised three major steps: waveguide end-facet polishing, fiber-to-optical waveguide pigtailing, and electrical wire bonding. Sequential [...] Read more.
We developed a complete packaging strategy for a 128-channel optical phased array (OPA) for Light Detection and Ranging (LiDAR) applications operating at a 1550 nm wavelength. The process comprised three major steps: waveguide end-facet polishing, fiber-to-optical waveguide pigtailing, and electrical wire bonding. Sequential polishing with silicon carbide paper followed by colloidal silica reduced coupling losses to 0.74 dB per facet. An automated fiber alignment setup was used to perform edge coupling. The electrical connections, formed under optimized wire-bonding conditions (18 mW ultrasonic power), achieved a bond strength of 4.66 gf while maintaining electrode-pad integrity. The final packaged device demonstrated uniform optical throughput, with a throughput power variation maintained below 0.2 dB following the packaging process, and a uniform electrical resistance of 0.48% across all 128 channels, verifying the process stability and packaging integrity. These results confirmed that the proposed packaging scheme offers a dependable route for photonic integration in LiDAR applications. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics and Future Prospects)
Show Figures

Figure 1

14 pages, 3259 KB  
Article
Design of Circularly Polarized VCSEL Based on Cascaded Chiral GaAs Metasurface
by Xiaoming Wang, Bo Cheng, Yuxiao Zou, Guofeng Song, Kunpeng Zhai and Fuchun Sun
Photonics 2026, 13(1), 87; https://doi.org/10.3390/photonics13010087 - 19 Jan 2026
Viewed by 108
Abstract
Vertical cavity surface emitting lasers (VCSELs) have shown great potential in high-speed communication, quantum information processing, and 3D sensing due to their excellent beam quality and low power consumption. However, generating high-purity and controllable circularly polarized light usually requires external optical components such [...] Read more.
Vertical cavity surface emitting lasers (VCSELs) have shown great potential in high-speed communication, quantum information processing, and 3D sensing due to their excellent beam quality and low power consumption. However, generating high-purity and controllable circularly polarized light usually requires external optical components such as quarter-wave plates, which undoubtedly increases system complexity and volume, hindering chip-level integration. To address this issue, we propose a monolithic integration scheme that directly integrates a custom-designed double-layer asymmetric metasurface onto the upper distributed Bragg reflector of a chiral VCSEL. This metasurface consists of a rotated GaAs elliptical nanocolumn array and an anisotropic grating above it. By precisely controlling the relative orientation between the two, the in-plane symmetry of the structure is effectively broken, introducing a significant optical chirality response at a wavelength of 1550 nm. Numerical simulations show that this structure can achieve a near 100% high reflectivity for the left circularly polarized light (LCP), while suppressing the reflectivity of the right circularly polarized light (RCP) to approximately 33%, thereby obtaining an efficient in-cavity circular polarization selection function. Based on this, the proposed VCSEL can directly emit high-purity RCP without any external polarization control components. This compact circularly polarized laser source provides a key solution for achieving the next generation of highly integrated photonic chips and will have a profound impact on frontier fields such as spin optics, secure communication, and chip-level quantum light sources. Full article
Show Figures

Figure 1

15 pages, 5132 KB  
Article
A Spaceborne Integrated S/Ka Dual-Band Dual-Reflector Antenna
by Zenan Yang, Weiqiang Han, Liang Tang, Haihua Wang, Yilin Wang and Yongchang Jiao
Micromachines 2026, 17(1), 124; https://doi.org/10.3390/mi17010124 - 18 Jan 2026
Viewed by 217
Abstract
To address the diverse requirements of satellite communication applications involving medium-/low-rate reliable links and high-rate high-capacity services, an integrated S/Ka dual-band dual-reflector antenna is proposed as an effective solution. Owing to the stringent spatial constraints of satellite platforms, the longer operating wavelengths in [...] Read more.
To address the diverse requirements of satellite communication applications involving medium-/low-rate reliable links and high-rate high-capacity services, an integrated S/Ka dual-band dual-reflector antenna is proposed as an effective solution. Owing to the stringent spatial constraints of satellite platforms, the longer operating wavelengths in the S-band lead to oversized feed horns in the integrated antenna design, which induces severe secondary aperture blockage, thus degrading aperture efficiency and impeding practical mechanical layout implementation. To alleviate this critical drawback, the proposed antenna achieves multi-band aperture reuse by deploying an array with four miniaturized S-band radiating elements around a broadband Ka-band feed horn. A frequency-selective surface (FSS)-based sub-reflector is further designed to effectively enhance the effective aperture size for the S-band operation, while ensuring unobstructed electromagnetic propagation in the Ka-band, thus enabling simultaneous dual-band high-gain radiation. After comprehensive electromagnetic simulation and parametric optimization for the antenna feed and the FSS sub-reflector, experimental measurements verify that the S-band left-hand and right-hand circularly polarized (LHCP/RHCP) channels achieve more than 20.2 dBic gains with more than 6° half-power beamwidths (HPBWs), and the Ka-band channel yields gains exceeding 41.2 dBic, with HPBWs greater than 0.8°. Full article
Show Figures

Figure 1

17 pages, 3200 KB  
Article
The Self-Assembling Peptide P11-4 Induces the Expression of Mineralization-Related Genes in Odontoblasts Independently of Metabolic Alterations
by Leticia Martins Pereira, Marina Damasceno e Souza de Carvalho Chiari, Diego Mauro Carneiro Pereira, Regina Maria Puppin-Rontani and Fábio Dupart Nascimento
J. Funct. Biomater. 2026, 17(1), 50; https://doi.org/10.3390/jfb17010050 - 18 Jan 2026
Viewed by 193
Abstract
(1) Background: The synthetic eleven-amino acid peptide P11-4, derived from DMP-1, self-assembles into β-sheet tapes, ribbons, fibrils, and fibers that form a 3D matrix enriched with calcium-binding sites. This study investigated whether P11-4 modulates gene and protein expression or [...] Read more.
(1) Background: The synthetic eleven-amino acid peptide P11-4, derived from DMP-1, self-assembles into β-sheet tapes, ribbons, fibrils, and fibers that form a 3D matrix enriched with calcium-binding sites. This study investigated whether P11-4 modulates gene and protein expression or induces adverse metabolic alterations in odontoblast-like cells. (2) Methods: MDPC-23 cells were cultured under standard conditions and stimulated with different concentrations of P11-4, followed by assessments of cell viability using the MTT assay, proliferation and migration, cytoplasmic calcium kinetics, reactive oxygen species (ROS) production, osteogenic differentiation-related gene expression via PCR array, and expression of the pro-inflammatory cytokine interleukin-6 (IL-6) using confocal microscopy and flow cytometry. (3) Results: The MTT assay showed that P11-4 at 6.3, 12.6, and 25.2 µmol/L was non-cytotoxic and did not alter MDPC-23 cell proliferation or migration. Only the 25.2 µmol/L concentration induced a detectable Ca2+ influx and a slight increase in ROS. Among the 84 genes examined, P11-4 at 6.3 µmol/L upregulated 79 genes, including transcription factors, signaling molecules, and extracellular matrix-related proteins. Furthermore, P11-4 did not increase IL-6 expression under any condition tested. (4) Conclusion: P11-4 markedly modulates mineralization-associated gene regulation without causing metabolic damage in odontoblast-like cells. Full article
(This article belongs to the Special Issue Biomaterials in Restorative Dentistry and Endodontics (2nd Edition))
Show Figures

Figure 1

20 pages, 5273 KB  
Article
Investigation of the Vertical Microphysical Characteristics of Rainfall in Guangzhou Based on Phased-Array Radar
by Jingxuan Zhu, Jun Zhang, Duanyang Ji, Qiang Dai and Changjun Liu
Remote Sens. 2026, 18(2), 322; https://doi.org/10.3390/rs18020322 - 18 Jan 2026
Viewed by 203
Abstract
The accurate retrieval of the raindrop size distribution (DSD) is a longstanding objective in meteorology because it underpins reliable quantitative precipitation estimation. Among remote sensors, weather radars are the primary tool for mapping DSD over wide areas, and phased-array systems in particular have [...] Read more.
The accurate retrieval of the raindrop size distribution (DSD) is a longstanding objective in meteorology because it underpins reliable quantitative precipitation estimation. Among remote sensors, weather radars are the primary tool for mapping DSD over wide areas, and phased-array systems in particular have demonstrated unique advantages owing to their high temporal and spatial resolution together with agile beam steering. Exploiting the underused high-resolution capability of an X-band phased-array radar, this study induced a Rainfall Regression Model (RRM). The RRM assumes a normalized gamma DSD model and retrieves its three parameters. It was then applied to a rain event influenced by the remnant circulation of Typhoon Haikui that affected Guangzhou on 8 September 2023. First, collocated disdrometer observations and T-matrix scattering simulations are used to build polynomial regressions between DSD parameters (D0, Nw, μ) and the polarimetric variables. Validation against independent disdrometer samples yields Nash–Sutcliffe efficiencies of 0.93 for D0 and 0.91 for log10Nw. The RRM is then applied to the full volumetric radar data. Horizontal maps reveal that the surface elevation angle consistently exhibited the largest standard deviation for all three parameters. A vertical profile analysis shows that large-drop cores (D0 > 2 mm) can reside above 2 km and that iso-value contours tilt rather than align vertically, implying an appreciable horizontal drift of raindrops within the complex remnant typhoon–monsoon wind field. By demonstrating the ability of X-band phased-array radar to resolve the three-dimensional microphysical structure of remnant typhoon precipitation, this study advances our understanding of the vertical characteristics of raindrops and provides high-resolution DSD information that can be directly ingested into severe weather monitoring and nowcasting systems. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

20 pages, 2489 KB  
Article
Modelling, Optimisation, and Construction of a High-Temperature Superconducting Maglev Demonstrator
by Chenxuan Zhang, Qian Dong, Hongye Zhang and Markus Mueller
Machines 2026, 14(1), 108; https://doi.org/10.3390/machines14010108 - 16 Jan 2026
Viewed by 185
Abstract
To achieve global carbon-neutrality goals, magnetic levitation (maglev) technologies offer a promising pathway toward sustainable, energy-efficient transportation systems. In this study, a comprehensive methodology was developed to analyse and optimise the levitation performance of high-temperature superconducting (HTS) maglev systems. Several permanent magnet guideway [...] Read more.
To achieve global carbon-neutrality goals, magnetic levitation (maglev) technologies offer a promising pathway toward sustainable, energy-efficient transportation systems. In this study, a comprehensive methodology was developed to analyse and optimise the levitation performance of high-temperature superconducting (HTS) maglev systems. Several permanent magnet guideway (PMG) configurations were compared, and an optimised PMG Halbach array design was identified that enhances flux concentration and significantly improves levitation performance. To accurately model the electromagnetic interaction between the HTS bulk and the external magnetic field, finite element models based on the H-formulation were established in both two dimensions (2D) and three dimensions (3D). An HTS maglev demonstrator was built using YBCO bulks, and an experimental platform was constructed to measure levitation force. While the 2D model offers fast computation, it shows deviations from the measurements due to geometric simplifications, whereas the 3D model predicts levitation forces for the cylindrical bulk with much higher accuracy, with errors remaining below 10%. The strong agreement between experimental measurements and the 3D simulation across the entire force–height cycle confirms that the proposed model reliably reproduces the electromagnetic coupling and resulting levitation forces in HTS maglev systems. The paper provides a practical and systematic reference for the optimal design and experimental validation of HTS bulk-based maglev systems. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

Back to TopTop