Design of Circularly Polarized VCSEL Based on Cascaded Chiral GaAs Metasurface
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. The Design of Linear Polarizers
3.2. The Reflectivity of Double-Layer Metasurfaces
3.3. Analysis of Ultra-High Reflectivity Close to 100%
3.4. Analysis of Giant Circular Dichroism
3.5. Analysis of Potential Errors
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chase, C.; Rao, Y.; Hofmann, W.; Chang-Hasnain, C.J. 1550 nm high contrast grating VCSEL. Opt. Express 2010, 18, 15461–15466. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, N.; Caneau, C.; Hall, B.; Guryanov, G.; Hu, M.H.; Liu, X.S.; Li, M.J.; Bhat, R.; Zah, C.E. Long-Wavelength Vertical-Cavity Surface-Emitting Lasers on InP with Lattice Matched AlGaInAs–InP DBR Grown by MOCVD. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 990–998. [Google Scholar] [CrossRef]
- Baba, T.; Hamano, T.; Koyama, F.; Iga, K. Spontaneous emission factor of a microcavity DBR surface-emitting laser. IEEE J. Quantum Electron. 2002, 27, 1347–1358. [Google Scholar] [CrossRef]
- Cook, K.T.; Qi, J.; Wang, J.; Cabello, N.; Chang-Hasnain, C.J. Novel Oxide Spacer High-Contrast Grating VCSELs. In Proceedings of the CLEO: Science and Innovations, San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Fleury, R.; Sounas, D.L.; Alù, A. Negative Refraction and Planar Focusing Based on Parity-Time Symmetric Metasurfaces. Phys. Rev. Lett. 2014, 113, 023903. [Google Scholar] [CrossRef]
- Guo, J.; Jin, R.; Fu, Z.; Zhang, Y.; Yu, F.; Chen, J.; Wang, X.; Huang, L.; Zhou, C.; Chen, X. Topologically Engineered High-Q Quasi-BIC Metasurfaces for Enhanced Near-Infrared Emission in PbS Quantum Dots. Nano Letters 2025, 25, 2357–2365. [Google Scholar] [CrossRef]
- Xu, Z.; Bao, S.; Liu, J.; Chang, J.; Kong, X.; Galdi, V.; Cui, T.J. Observation of Analog Flatland Cherenkov Radiations on Metasurfaces. Laser Photonics Rev. 2024, 18, 2300763. [Google Scholar] [CrossRef]
- Ji, J.; Li, J.; Wang, Z.; Li, X.; Sun, J.; Wang, J.; Fang, B.; Chen, C.; Ye, X.; Zhu, S. On-chip multifunctional metasurfaces with full-parametric multiplexed Jones matrix. Nat. Commun. 2024, 15, 8271. [Google Scholar] [CrossRef]
- Jia, X.; Kapraun, J.; Wang, J.; Qi, J.; Ji, Y.; Chang-Hasnain, C. Metasurface reflector enables room-temperature circularly polarized emission from VCSEL. Optica 2023, 10, 1093–1099. [Google Scholar] [CrossRef]
- Cheng, B.; Zou, Y.; Song, G. Ultrahigh-reflectivity chiral mirrors based on the metasurface of the quarter-waveplate. Heliyon 2024, 10, e40143. [Google Scholar] [CrossRef]
- Wang, C.; Wang, R.; Cheng, X.; Hu, X.; Wang, C. Passively Broadband Tunable Dual Circular Dichroism via Bound States in the Continuum in Topological Chiral Metasurface. ACS Nano 2024, 18, 18922–18932. [Google Scholar] [CrossRef]
- Shi, T.; Deng, Z.-L.; Geng, G.; Zeng, X.; Zeng, Y.; Hu, G.; Overvig, A.; Li, J.; Qiu, C.-W.; Alù, A.; et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum. Nat. Commun. 2022, 13, 4111. [Google Scholar] [CrossRef]
- Xie, Y.; Tao, L.; Yang, T.S.; Zhao, K.X.; Hu, P.; Wang, B.Q.; Zhao, K.Q.; Bai, X.Y. Cholesteric liquid crystals based on triphenylene bridged binaphthyl derivatives: Mesomorphism, optical properties and circular polarization luminescence properties. J. Mol. Struct. 2025, 1329, 141449. [Google Scholar] [CrossRef]
- Li, Y.C.; Huang, Y.M.; Wang, C.T. Electrically reflectance-tunable circular polarization reflector based on thin polymer-stabilized cholesteric liquid crystals. Opt. Laser Technol. 2025, 180, 111530. [Google Scholar] [CrossRef]
- Wei, W.; Farooq, M.A.; Xiong, H. Cholesteric Liquid Crystalline Polyether with Broad Tunable Circularly Polarized Luminescence. Langmuir 2021, 37, 11922–11930. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Zou, Y.; Shao, H.; Li, T.; Song, G. Full-Stokes imaging polarimetry based on a metallic metasurface. Opt. Express 2020, 28, 27324–27336. [Google Scholar] [CrossRef]
- Basiri, A.; Chen, X.; Bai, J.; Amrollahi, P.; Carpenter, J.; Holman, Z.; Wang, C.; Yao, Y. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light Sci. Appl. 2019, 8, 78. [Google Scholar] [CrossRef]
- Bai, J.; Wang, C.; Chen, X.; Basiri, A.; Wang, C.; Yao, Y. Chip-integrated plasmonic flat optics for mid-infrared full-Stokes polarization detection. Photon. Res. 2019, 7, 1051–1060. [Google Scholar] [CrossRef]
- Zuo, J.; Bai, J.; Choi, S.; Basiri, A.; Chen, X.; Wang, C.; Yao, Y. Chip-integrated metasurface full-Stokes polarimetric imaging sensor. Light Sci. Appl. 2023, 12, 218. [Google Scholar] [CrossRef]
- Zhu, A.Y.; Chen, W.T.; Zaidi, A.; Huang, Y.-W.; Khorasaninejad, M.; Sanjeev, V.; Qiu, C.-W.; Capasso, F. Giant intrinsic chiro-optical activity in planar dielectric nanostructures. Light Sci. Appl. 2018, 7, 17158. [Google Scholar] [CrossRef]
- Chen, Y.; Deng, H.; Sha, X.; Chen, W.; Wang, R.; Chen, Y.-H.; Wu, D.; Chu, J.; Kivshar, Y.S.; Xiao, S.; et al. Observation of intrinsic chiral bound states in the continuum. Nature 2023, 613, 474–478. [Google Scholar] [CrossRef]
- Deng, Q.-M.; Li, X.; Hu, M.-X.; Li, F.-J.; Li, X.; Deng, Z.-L. Advances on broadband and resonant chiral metasurfaces. npj Nanophotonics 2024, 1, 20. [Google Scholar] [CrossRef]
- Gansel, J.K.; Thiel, M.; Rill, M.S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M. Gold Helix Photonic Metamaterial as Broadband Circular Polarizer. Science 2009, 325, 1513–1515. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.; Wang, S.-W.; Liu, X.; Guo, H.; Lu, W. Hybrid Helix Metamaterials for Giant and Ultrawide Circular Dichroism. ACS Photonics 2016, 3, 2368–2374. [Google Scholar] [CrossRef]
- Fan, W.; Wang, Y.; Zheng, R.; Liu, D.; Shi, J. Broadband high efficiency asymmetric transmission of achiral metamaterials. Optics Express 2015, 23, 19535–19541. [Google Scholar] [CrossRef]
- Rao, R.; Shi, Y.; Wang, Z.; Wan, S.; Li, Z. On-Chip Cascaded Metasurfaces for Visible Wavelength Division Multiplexing and Color-Routing Meta-Display. Nano Letters 2025, 25, 2452–2458. [Google Scholar] [CrossRef]
- Wu, X.; Pan, K.; Wu, X.; Fan, X.; Zhou, L.; Zhao, C.; Wen, D.; Liu, S.; Gan, X.; Li, P. Wavelength-insensitive snapshot Stokes polarimetric imaging based on cascaded metasurfaces. Adv. Photonics 2025, 7, 11. [Google Scholar] [CrossRef]
- Torrelli, V.; D’Alessandro, M.; Elser, W.; Debernardi, P. On-demand polarization by a vertical-cavity surface-emitting laser with two tilted sub-wavelength gratings. Opt. Lett. 2024, 49, 4. [Google Scholar] [CrossRef]
- Torrelli, V.; Miri, L.; D’Alessandro, M.; Gullino, A.; Zimmer, M.; Dahler, K.; Jetter, M.; Michler, P.; Elsäßer, W.; Bertazzi, F.; et al. Elliptical polarization in VCSELs via joint interaction of a tilted sub-wavelength grating and intrinsic semiconductor anisotropies. Opt. Lett. 2025, 50, 3082–3085. [Google Scholar] [CrossRef]
- Ahmed, M.; Yamada, M. Influence of Instantaneous Mode Competition on the Dynamics of Semiconductor Lasers. IEEE J. Quantum Electron. 2002, 38, 682–693. [Google Scholar] [CrossRef]
- Ren, M.; Gu, X.; Liang, Y.; Kong, W.; Zeng, H. Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector. Opt. Express 2011, 19, 13497–13502. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, X.; Klar, P.J. Waveguide Fabry-Pérot microcavity arrays. Appl. Phys. Lett. 2011, 99, 2985. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, S.; Zeng, J.; Fang, Y. Study on the Transmission and the Field Enhancement of Bi-Rhombic Aperture Arrays Structure. IEEE Photonics J. 2023, 15, 2200806. [Google Scholar] [CrossRef]
- Selinger, J.V.; Wang, Z.G.; Bruinsma, R.F.; Knobler, C.M. Chiral symmetry breaking in Langmuir monolayers and smectic films. Phys. Rev. Lett. 1993, 70, 1139–1142. [Google Scholar] [CrossRef]
- Ginsparg, P.H.; Wilson, K.G. A remnant of chiral symmetry on the lattice. Phys. Rev. D 1982, 25, 2649–2657. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Torok, P. Efficient calculation of electromagnetic diffraction in optical systems using a multipole expansion. Opt. Acta Int. J. Opt. 1997, 44, 803–818. [Google Scholar] [CrossRef]
- Johnson; B., R. Calculation of light scattering from a spherical particle on a surface by the multipole expansion method. J. Opt. Soc. Am. A 1996, 13, 326–337. [Google Scholar] [CrossRef]
- Ribeiro Filho, M.; Pinho, J.T.; Silva, J.P.; Nobrega, K.Z.; Hernandez-Figueroa, H.E. A FEM mesh generator for large size aspect ratio problems with applications in optoelectronics. In Proceedings of the International Microwave & Optoelectronics Conference, Foz do Iguacu, Brazil, 20–23 September 2003. [Google Scholar]
- Jin, J.M. The Finite Element Method in Electromagnetics; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Cheng, B.; Jiang, B.; Zou, Y.; Song, G. Ultrahigh-Reflectivity Circularly Polarized Mirrors Based on the High-Contrast Subwavelength Chiral Metasurface. Photonics 2024, 11, 923. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, P.; Xu, Z.; Zhao, T. Chiral metasurface absorber with near-infrared excitation-induced dual circular dichroism. Opt. Laser Technol. 2024, 175, 110826. [Google Scholar] [CrossRef]






| Structure | Publication | Wavelength (μm) | CD | Efficiency |
|---|---|---|---|---|
| Hybrid meta [17] | 2019 | ~1.5 | 0.8 | 0.8 |
| Scythe- shaped [12] | 2022 | ~1.5 | / | 0.96 |
| Gammadion-shaped [9] | 2023 | 0.94 | 0.002 | 0.984 |
| Z-shaped [40] | 2024 | 0.98 | 0.021 | ~0.99 |
| π-shaped [41] | 2024 | 1.55 | 0.7 | 0.83 |
| π-shaped [41] | 2024 | 2.55 | 0.75 | ~0.81 |
| This work | 1.55 | 0.67 | 0.9999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, X.; Cheng, B.; Zou, Y.; Song, G.; Zhai, K.; Sun, F. Design of Circularly Polarized VCSEL Based on Cascaded Chiral GaAs Metasurface. Photonics 2026, 13, 87. https://doi.org/10.3390/photonics13010087
Wang X, Cheng B, Zou Y, Song G, Zhai K, Sun F. Design of Circularly Polarized VCSEL Based on Cascaded Chiral GaAs Metasurface. Photonics. 2026; 13(1):87. https://doi.org/10.3390/photonics13010087
Chicago/Turabian StyleWang, Xiaoming, Bo Cheng, Yuxiao Zou, Guofeng Song, Kunpeng Zhai, and Fuchun Sun. 2026. "Design of Circularly Polarized VCSEL Based on Cascaded Chiral GaAs Metasurface" Photonics 13, no. 1: 87. https://doi.org/10.3390/photonics13010087
APA StyleWang, X., Cheng, B., Zou, Y., Song, G., Zhai, K., & Sun, F. (2026). Design of Circularly Polarized VCSEL Based on Cascaded Chiral GaAs Metasurface. Photonics, 13(1), 87. https://doi.org/10.3390/photonics13010087

