Genomic Insights into Antimicrobial Biosynthetic Potential of Bacillus velezensis Isolated from Traditional Peruvian Tocosh
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Isolation
2.2. DNA Extraction and Whole-Genome Sequencing
2.3. Assembly and Genome Annotation
2.4. Taxonomic Identification and Comparative Genomics Analysis
2.5. Antagonism Assay
2.6. RNA Isolation and RT-qPCR
2.7. Statistical Analyses
3. Results
3.1. Microbial Isolation and Antagonism Assay
3.2. Whole Genome Assembly and Annotation
3.3. Taxonomic Identification
3.4. Comparative Genomics
3.5. Secondary Metabolite Biosynthetic Gene Cluster Identification
3.6. Gene Expression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health Benefits of Fermented Foods: Microbiota and Beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef]
- Şanlier, N.; Gökcen, B.B.; Sezgin, A.C. Health Benefits of Fermented Foods. Crit. Rev. Food Sci. Nutr. 2019, 59, 506–527. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, M.E.; O’Donovan, C.M.; de Ullivarri, M.F.; Cotter, P.D. Microorganisms Present in Artisanal Fermented Food from South America. Front. Microbiol. 2022, 13, 941866. [Google Scholar] [CrossRef] [PubMed]
- Velasco-Chong, J.R.; Herrera-Calderón, O.; Rojas-Armas, J.P.; Hañari-Quispe, R.D.; Figueroa-Salvador, L.; Peña-Rojas, G.; Andía-Ayme, V.; Yuli-Posadas, R.Á.; Yepes-Perez, A.F.; Aguilar, C. TOCOSH FLOUR (Solanum tuberosum L.): A Toxicological Assessment of Traditional Peruvian Fermented Potatoes. Foods 2020, 9, 719. [Google Scholar] [CrossRef] [PubMed]
- Escandón, K.; Gonzalez-Rojas, J.C.; Carrera Flores, M.J.; Felix, D.G.; Lazo-Vélez, M.A. In Vitro Digestibility and Physico-Chemical Properties of Potato (Solanum tuberosum) Fermented by Traditional and Alternative Processes. ACS Food Sci. Technol. 2023, 3, 465–469. [Google Scholar] [CrossRef]
- Bellumori, M.; Silva, N.A.C.; Vilca, L.; Andrenelli, L.; Cecchi, L.; Innocenti, M.; Balli, D.; Mulinacci, N. A Study on the Biodiversity of Pigmented Andean Potatoes: Nutritional Profile and Phenolic Composition. Molecules 2020, 25, 3169. [Google Scholar] [CrossRef]
- Jiménez, E.; Yépez, A.; Pérez-Cataluña, A.; Ramos Vásquez, E.; Zúñiga Dávila, D.; Vignolo, G.; Aznar, R. Exploring Diversity and Biotechnological Potential of Lactic Acid Bacteria from Tocosh-traditional Peruvian fermented potatoes-by High Throughput Sequencing (HTS) and Culturing. LWT 2018, 87, 567–574. [Google Scholar] [CrossRef]
- Valentino, V.; Magliulo, R.; Farsi, D.; Cotter, P.D.; O’Sullivan, O.; Ercolini, D.; De Filippis, F. Fermented Foods, Their Microbiome and Its Potential in Boosting Human Health. Microb. Biotechnol. 2024, 17, e14428. [Google Scholar] [CrossRef]
- Amenu, D.; Bacha, K. Probiotic Potential and Safety Analysis of Lactic Acid Bacteria Isolated from Ethiopian Traditional Fermented Foods and beverages. Ann. Microbiol. 2023, 73, 37. [Google Scholar] [CrossRef]
- Ricci, A.; Bertani, G.; Maoloni, A.; Bernini, V.; Levante, A.; Neviani, E.; Lazzi, C. Antimicrobial Activity of Fermented Vegetable Byproduct Extracts for Food Applications. Foods 2021, 10, 1092. [Google Scholar] [CrossRef]
- Bodor, A.; Bounedjoum, N.; Vincze, G.E.; Erdeiné Kis, Á.; Laczi, K.; Bende, G.; Szilágyi, Á.; Kovács, T.; Perei, K.; Rákhely, G. Challenges of Unculturable Bacteria: Environmental Perspectives. Rev. Environ. Sci. Biotechnol. 2020, 19, 1–22. [Google Scholar] [CrossRef]
- Austin, B. The Value of Cultures to Modern Microbiology. Antonie Van Leeuwenhoek 2017, 110, 1247–1256. [Google Scholar] [CrossRef]
- Zimmerman, N.; Izard, J.; Klatt, C.; Zhou, J.; Aronson, E. The Unseen World: Environmental Microbial Sequencing and Identification Methods for Ecologists. Front. Ecol. Environ. 2014, 12, 224–231. [Google Scholar] [CrossRef]
- Rani, A.; Saini, K.C.; Bast, F.; Varjani, S.; Mehariya, S.; Bhatia, S.K.; Sharma, N.; Funk, C. A Review on Microbial Products and Their Perspective Application as Antimicrobial Agents. Biomolecules 2021, 11, 1860. [Google Scholar] [CrossRef]
- Dini, I.; De Biasi, M.G.; Mancusi, A. An Overview of the Potentialities of Antimicrobial Peptides Derived from Natural Sources. Antibiotics 2022, 11, 1483. [Google Scholar] [CrossRef] [PubMed]
- López-García, G.; Dublan-García, O.; Arizmendi-Cotero, D.; Oliván, L.M.G. Antioxidant and Antimicrobial Peptides Derived from Food Proteins. Molecules 2022, 27, 1343. [Google Scholar] [CrossRef] [PubMed]
- Ueda, K.; Beppu, T. Antibiotics in Microbial Coculture. J. Antibiot. 2017, 70, 361–365. [Google Scholar] [CrossRef]
- Tran, C.; Cock, I.E.; Chen, X.; Feng, Y. Antimicrobial Bacillus: Metabolites and Their Mode of Action. Antibiotics 2022, 11, 88. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, S.; Wang, C.; Wang, Z.; Luo, G.; Li, J.; Zhan, Y.; Cai, D.; Chen, S. Microbial Synthesis of Bacitracin: Recent Progress, Challenges, and Prospects. Synth. Syst. Biotechnol. 2023, 8, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Adeniji, A.A.; Loots, D.T.; Babalola, O.O. Bacillus velezensis: Phylogeny, Useful Applications, and Avenues for Exploitation. Appl. Microbiol. Biotechnol. 2019, 103, 3669–3682. [Google Scholar] [CrossRef]
- Monzón-Atienza, L.; Bravo, J.; Torrecillas, S.; Montero, D.; Canales, A.F.G.d.; de la Banda, I.G.; Galindo-Villegas, J.; Ramos-Vivas, J.; Acosta, F. Isolation and Characterization of a Bacillus velezensis D-18 Strain, as a Potential Probiotic in European Seabass Aquaculture. Probiotics Antimicrob. Proteins 2021, 13, 1404–1412. [Google Scholar] [CrossRef]
- Tsai, C.F.; Lin, L.J.; Wang, C.H.; Tsai, C.S.; Chang, S.C.; Lee, T.T. Effects of Fermented Soybean Meal with Bacillus velezensis, Lactobacillus spp. or Their Combination on Broiler Performance, Gut Antioxidant Activity and Microflora. Anim. Biosci. 2022, 35, 1892–1903. [Google Scholar] [CrossRef]
- EFSA Panel (BIOHAZ); Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; de Cesare, A.; Hilbert, F.; Lindqvist, R.; et al. Update of the List of Qualified Presumption of Safety (QPS) Recommended Microorganisms Intentionally Added to Food or Feed as Notified to EFSA. EFSA J. 2023, 21, 7747. [Google Scholar] [CrossRef]
- Stincone, P.; Veras, F.F.; Pereira, J.Q.; Mayer, F.Q.; Varela, A.P.M.; Brandelli, A. Diversity of Cyclic Antimicrobial Lipopeptides from Bacillus P34 Revealed by Functional Annotation and Comparative Genome Analysis. Microbiol. Res. 2020, 238, 126515. [Google Scholar] [CrossRef] [PubMed]
- Bach, E.; Ritter, A.C.; Silveira, R.D.; de Souza, M.Á.; Passaglia, L.M.P.; Welke, J.E.; Brandelli, A. Pangenome Analysis of Bacillus velezensis Exploring the Probiotic Potential and Plant Growth Promotion Traits of Strains Isolated from Fish Intestines. Mol. Genet. Genom. 2025, 300, 20. [Google Scholar] [CrossRef]
- De Coster, W.; Rademakers, R. NanoPack2: Population-Scale Evaluation of Long-Read Sequencing Data. Bioinformatics 2023, 39, btad311. [Google Scholar] [CrossRef] [PubMed]
- De Coster, W.; D’hert, S.; Schultz, D.T.; Cruts, M.; van Broeckhoven, C. NanoPack: Visualizing and Processing Long-Read Sequencing Data. Bioinformatics 2018, 34, 2666–2669. [Google Scholar] [CrossRef]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and Accurate Long-Read Assembly via Adaptive k-mer Weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality Assessment Tool for Genome Assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Tegenfeldt, F.; Kuznetsov, D.; Manni, M.; Berkeley, M.; Zdobnov, E.M.; Kriventseva, E.V. OrthoDB and BUSCO update: Annotation of orthologs with wider sampling of genomes. Nucleic Acids Res. 2025, 53, D516–D522. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the Quality of Microbial Genomes Recovered from Isolates, Single Cells, and Metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded Curation, Support for Machine Learning, and Resistome Prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and Model-Centric Curation of the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and Refined Dataset for Big Data Analysis—10 Years on. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef] [PubMed]
- Medema, M.H.; Blin, K.; Cimermancic, P.; de Jager, V.; Zakrzewski, P.; Fischbach, M.A.; Weber, T.; Takano, E.; Breitling, R. antiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011, 39, W339–W346. [Google Scholar] [CrossRef]
- Tonkin-Hill, G.; MacAlasdair, N.; Ruis, C.; Weimann, A.; Horesh, G.; Lees, J.A.; Gladstone, R.A.; Lo, S.; Beaudoin, C.; Floto, R.A.; et al. Producing Polished Prokaryotic Pangenomes with the Panaroo Pipeline. Genome Biol. 2020, 21, 180. [Google Scholar] [CrossRef]
- Croucher, N.J.; Page, A.J.; Connor, T.R.; Delaney, A.J.; Keane, J.A.; Bentley, S.D.; Parkhill, J.; Harris, S.R. Rapid Phylogenetic Analysis of Large Samples of Recombinant Bacterial Whole Genome Sequences Using Gubbins. Nucleic Acids Res. 2015, 43, e15. [Google Scholar] [CrossRef] [PubMed]
- Page, A.J.; Taylor, B.; Delaney, A.J.; Soares, J.; Seemann, T.; Keane, J.A.; Harris, S.R. SNP-sites: Rapid Efficient Extraction of SNPs from Multi-FASTA Alignments. Microb. Genom. 2016, 2, e000056. [Google Scholar] [CrossRef]
- Wong, T.K.; Ly-Trong, N.; Ren, H.; Baños, H.; Roger, A.J.; Susko, E.; Bielow, C.; de Maio, N.; Goldman, N.; Hahn, M.W.; et al. IQ-TREE 3: Phylogenomic Inference Software using Complex Evolutionary Models. Mol. Biol. Evol. 2025, 42, msad215. [Google Scholar] [CrossRef]
- Sun, J.; Lu, F.; Luo, Y.; Bie, L.; Xu, L.; Wang, Y. OrthoVenn3: An integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res. 2023, 51, W397–W403. [Google Scholar] [CrossRef]
- Cantalapiedra, C.P.; Hern Andez-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
- Lederberg, J.; Lederberg, E.M. Replica plating and indirect selection of bacterial mutants. J. Bacteriol. 1952, 63, 399–406. [Google Scholar] [CrossRef]
- Osterblad, M.; Leistevuo, T.; Huovinen, P. Screening for antimicrobial resistance in fecal samples by the replica plating method. J. Clin. Microbiol. 1995, 33, 3146–3149. [Google Scholar] [CrossRef]
- Kirk, A.; Stavrinides, J. A replica plating method for efficient, high-throughput screening of antibiotic gene clusters in bacteria uncovers a holomycin-like cluster in the clinical isolate, Pantoea agglomerans 20KB447973. J. Microbiol. Methods 2023, 214, 106822. [Google Scholar] [CrossRef]
- Ezraty, B.; Henry, C.; Hérisse, M.; Denamur, E.; Barras, F. Commercial Lysogeny Broth Culture Media and Oxidative Stress: A Cautious Tale. Free Radic. Biol. Med. 2014, 74, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Perea-Molina, P.A.; Pedraza-Herrera, L.A.; Beauregard, P.B.; Uribe-Vélez, D. A Biocontrol Bacillus velezensis Strain Decreases Pathogen Burkholderia glumae Population and occupies a similar niche in rice plants. Biol. Control 2022, 76, 105067. [Google Scholar] [CrossRef]
- Mullins, A.J.; Li, Y.; Qin, L.; Hu, X.; Xie, L.; Gu, C.; Mahenthiralingam, E.; Liao, X.; Webster, G. Reclassification of the Biocontrol Agents Bacillus subtilis BY-2 and Tu-100 as Bacillus velezensis and insights into the genomic and specialized metabolite diversity of the species. Microbiology 2020, 166, 1121–1133. [Google Scholar] [CrossRef]
- Blaznik, M.; Volk, M.; Kraigher, B.; Calonge-Sanz, A.; Barco-García, G.; Stopar, D.; Dogsa, I. Biofilm structure as a key factor in antibiotic tolerance: Insights from Bacillus subtilis model systems. npj Biofilms Microbiomes 2025, 11, 34. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, T.; Wang, Z.; Wang, X.; Wang, H.; Li, Y.; Zheng, W.; Wei, S.; Leng, Y.; Li, J.; et al. Whole-Genome Sequencing and Secondary Metabolite Exploration of the Novel Bacillus velezensis BN with broad-spectrum antagonistic activity against fungal plant pathogens. Front. Microbiol. 2025, 15, 1498653. [Google Scholar] [CrossRef] [PubMed]
- Borriss, R.; Chen, X.H.; Rueckert, C.; Blom, J.; Becker, A.; Baumgarth, B.; Fan, B.; Henne, R.; Kernine, M.; Leifert, C. Comparative Analysis of the Complete Genome Sequence of the Plant Growth-Promoting Bacterium Bacillus amyloliquefaciens FZB42. J. Biotechnol. 2011, 151, 73–90. [Google Scholar] [CrossRef]
- Ge, Z.; Kuang, Z.; Chen, J.; Chen, J.; Liu, T.; She, Z.; Lu, Y. Comparative Genomics Analysis of Bacillus velezensis LOH112 Isolated from a Nonagenarian. Genomics 2023, 115, 110626. [Google Scholar] [CrossRef]
- Hansen, L.H.; Planellas, M.H.; Long, K.S.; Vester, B. The order Bacillales hosts functional homologs of the worrisome cfr antibiotic resistance gene. Antimicrob. Agents Chemother. 2012, 56, 3563–3567. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lai, Q.; Göker, M.; Meier-Kolthoff, J.P.; Wang, M.; Sun, Y.; Wang, L.; Shao, Z. Genomic insights into the taxonomic status of the Bacillus cereus group. Sci. Rep. 2015, 5, 14082. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, N.; Bi, X.; Bi, T.; Baloch, F.B.; Miao, J.; Zeng, N.; Li, B.; An, Y. Growth Promotion on Maize and Whole-Genome Sequence Analysis of Bacillus velezensis D103. Microbiol. Spectr. 2024, 12, e01147-24. [Google Scholar] [CrossRef]
- Shen, Y.; Shi, Z.; Zhao, J.; Li, M.; Tang, J.; Wang, N.; Mo, Y.; Yang, T.; Zhou, X.; Chen, Q.; et al. Whole Genome Sequencing Provides Evidence for Bacillus velezensis SH-1471 as a Beneficial Rhizosphere Bacterium in plants. Sci. Rep. 2023, 13, 16259. [Google Scholar] [CrossRef] [PubMed]
- Bini, F.; Soffritti, I.; D’Accolti, M.; Mazziga, E.; Caballero, J.D.; David, S.; Argimon, S.; Aanensen, D.M.; Volta, A.; Bisi, M.; et al. Profiling the Resistome and Virulome of Bacillus Strains Used for Probiotic-Based Sanitation: A Multicenter WGS Analysis. BMC Genom. 2025, 26, 382. [Google Scholar] [CrossRef]
- Piewngam, P.; Zheng, Y.; Nguyen #1, T.H.; Dickey, S.W.; Joo, H.-S.; Villaruz, A.E.; Glose, K.A.; Fisher, E.L.; Hunt, R.L.; Li, B.; et al. Pathogen elimination by probiotic Bacillus via signalling interference. Nature 2018, 562, 532–537. [Google Scholar] [CrossRef]
- Xu, C.; Xia, B.; Zhang, Z.; Lin, Y.; Li, C.; Lin, L. Research Progress in Steroidal Saponins from the Genus Polygonatum: Chemical Components, Biosynthetic Pathways and Pharmacological Effects. Phytochemistry 2023, 213, 113731. [Google Scholar] [CrossRef] [PubMed]
- Belbahri, L.; Bouket, A.C.; Rekik, I.; Alenezi, F.N.; Vallat, A.; Luptakova, L.; Petrovova, E.; Oszako, T.; Cherrad, S.; Vacher, S.; et al. Comparative Genomics of Bacillus amyloliquefaciens Strains Reveals a Core Genome with Traits for Habitat Adaptation and a Secondary Metabolites Rich Accessory Genome. Front. Microbiol. 2017, 8, 1438. [Google Scholar] [CrossRef]
- Zhang, F.; Shi, X.; Xu, J.; Yuan, W.; Li, Z. Tandem gene duplication selected by activation of horizontally transferred gene in bacteria. Appl. Microbiol. Biotechnol. 2024, 108, 340. [Google Scholar] [CrossRef]
- Vasu, K.; Nagaraja, V. Diverse Functions of Restriction-Modification Systems in Addition to Cellular Defense. Microbiol. Mol. Biol. Rev. 2013, 77, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, K.; Roman, M.; Fenical, W. The Macrolactins, a Novel Class of Antiviral and Cytotoxic Macrolides from a Deep-Sea Marine Bacterium. J. Am. Chem. Soc. 1989, 111, 7519–7524. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, M.; Shi, X.; Jin, L.; Hou, X.; Yu, Y.; Liu, B.; Cao, J.; Quan, C. Macrolactin Metabolite Production by Bacillus sp. ZJ318 Isolated from Marine Sediment. Appl. Biochem. Biotechnol. 2022, 194, 2581–2593. [Google Scholar] [CrossRef]
- Nagao, T.; Adachi, K.; Sakai, M.; Nishijima, M.; Sanoll, H. Novel macrolactins as antibiotic lactones from a marine bacterium. J. Antibiot. 2001, 54, 333–339. [Google Scholar] [CrossRef]
- Mayerl, F.; Fisher, S.; Pirnik, D.; Aklonis, C.; Dean, L.; Meyers, E.; Fernandes, P. Bacillaene, a Novel Inhibitor of Procaryotic Protein Synthesis Produced by Bacillus subtilis: Production, Taxonomy, Isolation, Physico-Chemical Characterization and Biological Activity. J. Antibiot. 1995, 48, 997–1003. [Google Scholar] [CrossRef]
- Miao, S.; Liang, J.; Xu, Y.; Yu, G.; Shao, M. Bacillaene: Sharp Objects Consist in the Arsenal of Antibiotics Produced by Bacillus. J. Cell. Physiol. 2024, 239, e30974, Erratum in J. Cell. Physiol. 2024, 239, e31228. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Cheng, X.; Wang, Y.; Yin, X.; Li, Z.; Liu, R.; Liu, G.; Wang, Y.; Xu, Y. Genome-Wide Analysis of Glyoxalase-Like Gene Families in Grape (Vitis vinifera L.) and Their Expression Profiling in Response to Downy Mildew Infection. BMC Genom. 2019, 20, 5733. [Google Scholar] [CrossRef]
- Fan, B.; Li, Y.; Li, L.; Peng, X.; Bu, C.; Wu, X. Malonylome Analysis of Rhizobacterium Bacillus amyloliquefaciens FZB42 Reveals Involvement of Lysine Malonylation in Polyketide Synthesis and Plant-Bacteria Interactions. J. Proteom. 2017, 154, 1–12. [Google Scholar] [CrossRef]
- Erega, A.; Stefanie, P.; Dogsa, I.; Danevčič, T.; Simunovic, K.; Klančnik, A.; Možina, S.S.; Mulec, I.M. Bacillaene Mediates the Inhibitory Effect of Bacillus subtilis on Campylobacter jejuni Biofilms. Appl. Environ. Microbiol. 2021, 87, e02955-20. [Google Scholar] [CrossRef]
- Podnar, E.; Erega, A.; Danevčič, T.; Kovačec, E.; Lories, B.; Steenackers, H.; Mandic-Mulec, I. Nutrient Availability and Biofilm Polysaccharide Shape the Bacillaene-Dependent Antagonism of Bacillus subtilis Against Salmonella Typhimurium. Microbiol. Spectr. 2022, 10, e01836-22. [Google Scholar] [CrossRef]
- Müller, S.; Strack, S.N.; Hoefler, B.C.; Straight, P.D.; Kearns, D.B.; Kirby, J.R. Bacillaene and Sporulation Protect Bacillus subtilis from Predation by Myxococcus xanthus. Appl. Environ. Microbiol. 2014, 80, 5603–5610. [Google Scholar] [CrossRef]
- Arguelles-Arias, A.; Ongena, M.; Halimi, B.; Lara, Y.; Brans, A.; Joris, B.; Fickers, P. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb. Cell Factories 2009, 8, 63. [Google Scholar] [CrossRef]
- Han, X.; Shen, D.; Xiong, Q.; Bao, B.; Zhang, W.; Dai, T.; Zhao, Y.; Borriss, R.; Fan, B. The Plant-Beneficial Rhizobacterium Bacillus velezensis FZB42 Controls the Soybean Pathogen Phytophthora sojae. Appl. Environ. Microbiol. 2021, 87, e01601-21. [Google Scholar] [CrossRef]
- Im, S.M.; Yu, N.H.; Joen, H.W.; Kim, S.O.; Park, H.W.; Park, A.R.; Kim, J.C. Biological control of tomato bacterial wilt by oxydifficidin and difficidin-producing Bacillus methylotrophicus DR-08. Pestic. Biochem. Physiol. 2020, 163, 170–178. [Google Scholar] [CrossRef]
- Rajavel, M.; Mitra, A.; Gopal, B. Role of Bacillus subtilis BacB in the synthesis of bacilysin. J. Biol. Chem. 2009, 284, 31882–31892. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sun, C. Fengycins from Marine Bacillus subtilis Strains Kill the Plant-Pathogenic Fungus Magnaporthe grisea by Inducing Reactive Oxygen Species Production and Chromatin Condensation. Appl. Environ. Microbiol. 2018, 84, e00445-18. [Google Scholar] [CrossRef]
- Molohon, K.J.; Blair, P.M.; Park, S.; Doroghazi, J.R.; Maxson, T.; Hershfield, J.R.; Flatt, K.M.; Schroeder, N.E.; Ha, T.; Mitchell, D.A. Plantazolicin is an ultranarrow-spectrum antibiotic that targets the Bacillus anthracis membrane. ACS Infect. Dis. 2015, 2, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.H.; Koumoutsi, A.; Scholz, R.; Schneider, K.; Vater, J.; Süssmuth, R.; Piel, J.; Borriss, R. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J. Biotechnol. 2009, 140, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Mandic-Mulec, I.; Zhang, H.; Liu, Y.; Sun, X. Antibiotic Bacillomycin D Affects Iron Acquisition and Biofilm Formation in Bacillus velezensis Through a Btr-Mediated FeuABC-Dependent Pathway. Cell Rep. 2019, 29, 1192–1202. [Google Scholar] [CrossRef]
- Zhang, A.; Yang, B.; Ma, Y.; Li, R.; Zhou, Z.; Luo, C.; Zhang, Y.; Zhang, Y.; Dan, Y.; Sun, Q. Improving the bacillomycin L production in Bacillus amyloliquefaciens by atmospheric and room-temperature plasma combined with Box-Behnken design. Microb. Cell Factories 2025, 24, 144. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.; Alam, S.T.; Kang, K.; Choi, J.; Seo, M.H. Anti-staphylococcal activity of a cyclic lipopeptide, C15-bacillomycin D, produced by Bacillus velezensis NST6. J. Appl. Microbiol. 2021, 131, 93–104. [Google Scholar] [CrossRef] [PubMed]







| Strain | Genome Size (bp) | GC% | CDS | BGC |
|---|---|---|---|---|
| TCSH0001 | 4,282,411 | 45.7 | 4246 | 8 |
| FZB42 | 3,918,596 | 46.5 | 3724 | 9 |
| IBUN2755 | 4,027,139 | 46.4 | 3877 | 8 |
| Region | Most Similar Known Cluster | Type | Similarity |
|---|---|---|---|
| Region 01 | fengycin | NRPS Type I | 100% |
| Region 02 | bacillomycin D | NRPS Type I | 100% |
| Region 03 | bacillaene | NRPS Ttype I | 100% |
| Region 04 | macrolactin H | transAT-PKS | 100% |
| Region 05 | plantazolicin | RiPP:LAPP | 91% |
| Region 06 | surfactin | NRPS Type I | 91% |
| Region 07 | bacilysin | Other | 100% |
| Region 08 | bacillibactin | NRPS Type I | 100% |
| Region 09 | difficidin | transAT-PKS | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bayona, D.E.; Barreto Pinilla, C.M.; Flores, J.G.; Salazar, B.M.; Navarro, J.V.; Trelles, J.R.; Jiménez, K.F.; Ruiz, J.; Alcántara, R.; Escudero, F.G. Genomic Insights into Antimicrobial Biosynthetic Potential of Bacillus velezensis Isolated from Traditional Peruvian Tocosh. Microorganisms 2026, 14, 287. https://doi.org/10.3390/microorganisms14020287
Bayona DE, Barreto Pinilla CM, Flores JG, Salazar BM, Navarro JV, Trelles JR, Jiménez KF, Ruiz J, Alcántara R, Escudero FG. Genomic Insights into Antimicrobial Biosynthetic Potential of Bacillus velezensis Isolated from Traditional Peruvian Tocosh. Microorganisms. 2026; 14(2):287. https://doi.org/10.3390/microorganisms14020287
Chicago/Turabian StyleBayona, Dámaris Esquén, Cristian Mauricio Barreto Pinilla, Jimena Giraldo Flores, Belkys Medrano Salazar, Jesús Valencia Navarro, Joaquin Rodriguez Trelles, Kiara Flores Jiménez, Joaquim Ruiz, Roberto Alcántara, and Frank Guzman Escudero. 2026. "Genomic Insights into Antimicrobial Biosynthetic Potential of Bacillus velezensis Isolated from Traditional Peruvian Tocosh" Microorganisms 14, no. 2: 287. https://doi.org/10.3390/microorganisms14020287
APA StyleBayona, D. E., Barreto Pinilla, C. M., Flores, J. G., Salazar, B. M., Navarro, J. V., Trelles, J. R., Jiménez, K. F., Ruiz, J., Alcántara, R., & Escudero, F. G. (2026). Genomic Insights into Antimicrobial Biosynthetic Potential of Bacillus velezensis Isolated from Traditional Peruvian Tocosh. Microorganisms, 14(2), 287. https://doi.org/10.3390/microorganisms14020287

