Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = 0.1 μV resolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1480 KB  
Article
c-Jun N-Terminal Kinase (JNK) Inhibitor IQ-1S as a Suppressor of Tumor Spheroid Growth
by Elena Afrimzon, Mordechai Deutsch, Maria Sobolev, Naomi Zurgil, Andrei I. Khlebnikov, Mikhail A. Buldakov and Igor A. Schepetkin
Molecules 2025, 30(21), 4278; https://doi.org/10.3390/molecules30214278 - 3 Nov 2025
Viewed by 624
Abstract
c-Jun N-terminal kinase (JNK) activation has been shown to play a crucial role in the development of various types of cancer. IQ-1S is a JNK inhibitor based on the 11H-indeno[1,2-b]quinoxalin-11-one scaffold. The aim of this study was to investigate [...] Read more.
c-Jun N-terminal kinase (JNK) activation has been shown to play a crucial role in the development of various types of cancer. IQ-1S is a JNK inhibitor based on the 11H-indeno[1,2-b]quinoxalin-11-one scaffold. The aim of this study was to investigate the antiproliferative effect of IQ-1S on MCF7 breast cancer cells in both two-dimensional (2D) monolayer and 3D multicellular spheroid test-systems. Non-adherent, non-tethered 3D objects were generated from single MCF7 breast cancer cells in a hydrogel array. IQ-1S was added directly to the cells seeded in the hydrogel array. MCF7 spheroids were grown for 7 days. Spheroid size, growth rate, and morphology were assessed at single-object resolution. The study revealed significant differences in the size, morphology and some vital characteristics of breast cancer 3D objects when treated with the JNK inhibitor compared to vehicle (dimethyl sulfoxide)-treated controls. Spheroids treated with IQ-1S (20 μM) after 7 days are significantly smaller than the control objects. This difference was not attributable to variations in the initial number of cells seeding for the spheroid formation. Morphological examinations showed that 3D multicellular objects grown from IQ-1S-treated cells lose their regular, round morphology, in contrast to control spheroids. Furthermore, cell proliferation measured using a label-free impedance monitoring platform was reduced in monolayer (2D) culture of MCF7 cells in the presence of 10 and 20 μM IQ-1S. MCF7 cells in 2D culture treated with IQ-1S (20 μM) for 72 and 153 h showed a significant increase in apoptosis as assessed by flow cytometry with annexin V/propidium iodide staining. An in silico evaluation showed that compound IQ-1S has generally satisfactory ADME (absorption, distribution, metabolism, and excretion) properties and high bioavailability. We conclude that IQ-1S effectively inhibits the growth of 3D spheroids and MCF7 cells in 2D culture and has a high potential for use in preclinical tumor growth models. Full article
(This article belongs to the Special Issue The Anticancer Drugs: A New Perspective)
Show Figures

Graphical abstract

24 pages, 6687 KB  
Article
A Large-Scale Neuromodulation System-on-Chip Integrating 128-Channel Neural Recording and 32-Channel Programmable Stimulation for Neuroscientific Applications
by Gunwook Park, Joongyu Kim, Minjae Kim, Minsung Kim, Byeongwoo Yoo, Jeongho Choi, Daehong Kim and Sung-Yun Park
Electronics 2025, 14(20), 4057; https://doi.org/10.3390/electronics14204057 - 15 Oct 2025
Viewed by 938
Abstract
We present a large-scale neuromodulation system-on-chip (SoC) that integrates a 128-channel neural recording and 32-channel stimulation ASIC designed for a wide range of neuroscientific applications. Each recording channel achieves low-noise performance (~4 μVrms) with a configurable bandwidth of 0.05 Hz–7.5 kHz [...] Read more.
We present a large-scale neuromodulation system-on-chip (SoC) that integrates a 128-channel neural recording and 32-channel stimulation ASIC designed for a wide range of neuroscientific applications. Each recording channel achieves low-noise performance (~4 μVrms) with a configurable bandwidth of 0.05 Hz–7.5 kHz and supports 16-bit digitization with scalable sampling rates up to 30 kS/s. To enhance signal quality, the ASIC includes an adjustable digital high-pass filter and a fast-settling function for rapid recovery from stimulation artifacts. SoC also incorporates on-chip electrode-impedance measurements as a built-in safety feature by reusing the recording channels. The stimulation subsystem generates current-controlled monopolar biphasic pulses with a high compliance voltage of ±6 V using standard low-voltage (1.8 V/3.3 V) CMOS devices. Each of the 32 stimulation channels provides arbitrary 9-bit programmable waveforms and dual current modes (4 μA/bit and 8 μA/bit), supporting both fine-resolution microstimulation and high-current applications such as spinal-cord and deep-brain stimulation. On-chip charge-balancing switches in each channel further ensure safe and reliable stimulation delivery. The SoC supports digital communication via a standard SPI with both 3.3 V CMOS and low-voltage differential signaling options and integrates all required analog references and low-dropout regulators. The prototype was fabricated in a standard 180 nm CMOS process, occupying 31.92 mm2 (equivalently, 0.2 mm2 per recording-and-stimulation channel), and was fully validated through benchtop measurements and in vitro experiments. Full article
(This article belongs to the Section Bioelectronics)
Show Figures

Figure 1

16 pages, 3430 KB  
Article
Rigid-Flexible Neural Optrode with Anti-Bending Waveguides and Locally Soft Microelectrodes for Multifunctional Biocompatible Neural Regulation
by Minghao Wang, Chaojie Zhou, Siyan Shang, Hao Jiang, Wenhao Wang, Xinhua Zhou, Wenbin Zhang, Xinyi Wang, Minyi Jin, Tiling Hu, Longchun Wang and Bowen Ji
Micromachines 2025, 16(9), 983; https://doi.org/10.3390/mi16090983 - 27 Aug 2025
Viewed by 4106
Abstract
This study proposes a rigid-flexible neural optrode integrated with anti-bending SU-8 optical waveguides and locally soft peptide-functionalized microelectrodes to address the challenges of precise implantation and long-term biocompatibility in traditional neural interfaces. Fabricated via microelectromechanical systems (MEMS) technology, the optrode features a PBK/PPS/(PHE) [...] Read more.
This study proposes a rigid-flexible neural optrode integrated with anti-bending SU-8 optical waveguides and locally soft peptide-functionalized microelectrodes to address the challenges of precise implantation and long-term biocompatibility in traditional neural interfaces. Fabricated via microelectromechanical systems (MEMS) technology, the optrode features a PBK/PPS/(PHE)2 trilayer electrochemical modification that suppresses photoelectrochemical (PEC) noise by 63% and enhances charge storage capacity by 51 times. A polyethylene glycol (PEG)-enabled temporary rigid layer ensures precise implantation while allowing post-implantation restoration of flexibility and enabling positioning adjustment. In vitro tests demonstrate efficient light transmission through SU-8 waveguides in agar gel and a 63% reduction in PEC noise peaks. Biocompatibility analysis reveals that peptide-coated PI substrates improve cell viability by 32.5–37.1% compared to rigid silicon controls. In vivo validation in crucian carp midbrain successfully records local field potential (LFP) signals (60–80 μV), thereby confirming the optrode’s sensitivity and stability. This design provides a low-damage and high-resolution tool for neural circuit analysis. It also lays a technical foundation for future applications in monitoring neuronal activity and researching neurodegenerative diseases with high spatiotemporal resolution. Full article
Show Figures

Figure 1

24 pages, 2159 KB  
Article
Cross-Domain Transfer Learning Architecture for Microcalcification Cluster Detection Using the MEXBreast Multiresolution Mammography Dataset
by Ricardo Salvador Luna Lozoya, Humberto de Jesús Ochoa Domínguez, Juan Humberto Sossa Azuela, Vianey Guadalupe Cruz Sánchez, Osslan Osiris Vergara Villegas and Karina Núñez Barragán
Mathematics 2025, 13(15), 2422; https://doi.org/10.3390/math13152422 - 28 Jul 2025
Cited by 1 | Viewed by 1022
Abstract
Microcalcification clusters (MCCs) are key indicators of breast cancer, with studies showing that approximately 50% of mammograms with MCCs confirm a cancer diagnosis. Early detection is critical, as it ensures a five-year survival rate of up to 99%. However, MCC detection remains challenging [...] Read more.
Microcalcification clusters (MCCs) are key indicators of breast cancer, with studies showing that approximately 50% of mammograms with MCCs confirm a cancer diagnosis. Early detection is critical, as it ensures a five-year survival rate of up to 99%. However, MCC detection remains challenging due to their features, such as small size, texture, shape, and impalpability. Convolutional neural networks (CNNs) offer a solution for MCC detection. Nevertheless, CNNs are typically trained on single-resolution images, limiting their generalizability across different image resolutions. We propose a CNN trained on digital mammograms with three common resolutions: 50, 70, and 100 μm. The architecture processes individual 1 cm2 patches extracted from the mammograms as input samples and includes a MobileNetV2 backbone, followed by a flattening layer, a dense layer, and a sigmoid activation function. This architecture was trained to detect MCCs using patches extracted from the INbreast database, which has a resolution of 70 μm, and achieved an accuracy of 99.84%. We applied transfer learning (TL) and trained on 50, 70, and 100 μm resolution patches from the MEXBreast database, achieving accuracies of 98.32%, 99.27%, and 89.17%, respectively. For comparison purposes, models trained from scratch, without leveraging knowledge from the pretrained model, achieved 96.07%, 99.20%, and 83.59% accuracy for 50, 70, and 100 μm, respectively. Results demonstrate that TL improves MCC detection across resolutions by reusing pretrained knowledge. Full article
(This article belongs to the Special Issue Mathematical Methods in Artificial Intelligence for Image Processing)
Show Figures

Figure 1

14 pages, 3205 KB  
Article
A 209 ps Shutter-Time CMOS Image Sensor for Ultra-Fast Diagnosis
by Houzhi Cai, Zhaoyang Xie, Youlin Ma and Lijuan Xiang
Sensors 2025, 25(12), 3835; https://doi.org/10.3390/s25123835 - 19 Jun 2025
Cited by 1 | Viewed by 1128
Abstract
A conventional microchannel plate framing camera is typically utilized for inertial confinement fusion diagnosis. However, as a vacuum electronic device, it has inherent limitations, such as a complex structure and the inability to achieve single-line-of-sight imaging. To address these challenges, a CMOS image [...] Read more.
A conventional microchannel plate framing camera is typically utilized for inertial confinement fusion diagnosis. However, as a vacuum electronic device, it has inherent limitations, such as a complex structure and the inability to achieve single-line-of-sight imaging. To address these challenges, a CMOS image sensor that can be seamlessly integrated with an electronic pulse broadening system can provide a viable alternative to the microchannel plate detector. This paper introduces the design of an 8 × 8 pixel-array ultrashort shutter-time single-framing CMOS image sensor, which leverages silicon epitaxial processing and a 0.18 μm standard CMOS process. The focus of this study is on the photodiode and the readout pixel-array circuit. The photodiode, designed using the silicon epitaxial process, achieves a quantum efficiency exceeding 30% in the visible light band at a bias voltage of 1.8 V, with a temporal resolution greater than 200 ps for visible light. The readout pixel-array circuit, which is based on the 0.18 μm standard CMOS process, incorporates 5T structure pixel units, voltage-controlled delayers, clock trees, and row-column decoding and scanning circuits. Simulations of the pixel circuit demonstrate an optimal temporal resolution of 60 ps. Under the shutter condition with the best temporal resolution, the maximum output swing of the pixel circuit is 448 mV, and the output noise is 77.47 μV, resulting in a dynamic range of 75.2 dB for the pixel circuit; the small-signal responsivity is 1.93 × 10−7 V/e, and the full-well capacity is 2.3 Me. The maximum power consumption of the 8 × 8 pixel-array and its control circuits is 0.35 mW. Considering both the photodiode and the pixel circuit, the proposed CMOS image sensor achieves a temporal resolution better than 209 ps. Full article
(This article belongs to the Special Issue Ultrafast Optoelectronic Sensing and Imaging)
Show Figures

Figure 1

7 pages, 1181 KB  
Communication
The Enigmatic, Highly Variable, High-Mass Young Stellar Object Mol 12: A New Extreme Herbig Be (Proto)star
by Mauricio Tapia, Paolo Persi, Jesús Hernández and Nuria Calvet
Galaxies 2025, 13(3), 70; https://doi.org/10.3390/galaxies13030070 - 13 Jun 2025
Viewed by 938
Abstract
We report new medium-resolution spectroscopy covering the wavelength range from 0.6 to 2.4 μm, as well as multi-epoch, multi-wavelength photometry, of the Class I high-mass embedded young stellar object Mol 12 (IRAS 05373+2349). It is embedded (AV12) [...] Read more.
We report new medium-resolution spectroscopy covering the wavelength range from 0.6 to 2.4 μm, as well as multi-epoch, multi-wavelength photometry, of the Class I high-mass embedded young stellar object Mol 12 (IRAS 05373+2349). It is embedded (AV12) in the centre of a dense core at a distance of 1.59 kpc from the Sun and has a total luminosity of 1.74×103L. The spectra show a large number of permitted atomic emission lines, mostly for Fe, H, C, N, and Ca, that originate in the inner zones of a very active protoplanetary disc and no photospheric absorption lines. Conspicuously, the He I line at 1.0830 μm displays a complex P-Cygni profile. Also, the first overtone CO emission band-heads at 2.3 μm are seen in emission. From the strengths of the principal emission lines, we determined the accretion rate and luminosity to be M˙105M y−1 and Lacc103L, respectively. Decade-long light curves show a series of irregular brightness dips of more than four magnitudes in r, becoming shallower as the wavelength increases and disappearing at λ>3μm. The colour–magnitude diagrams suggest the occurrence of a series of eclipses caused by the passage of small dust cloudlets in front of the star, producing more than 10 magnitudes of extra extinction. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

15 pages, 3935 KB  
Article
A 55 V, Six-Channel Chopper and Auto-Zeroing Amplifier with 6.2 nV/Hz Noise and −128 dB Total Harmonic Distortion
by Guolong Li, Guoqing Weng, Zhifeng Chen, Chenying Zhang, Shifan Wu and Chengying Chen
Eng 2025, 6(6), 126; https://doi.org/10.3390/eng6060126 - 11 Jun 2025
Cited by 1 | Viewed by 1215
Abstract
In this paper, a high-voltage chopper and ping-pong auto-zeroing operational amplifier was designed for industrial and automotive applications. Based on chopper stabilization, the proposed circuit introduces a novel chopper switch control signal that varies with the input common-mode voltage. This scheme effectively suppresses [...] Read more.
In this paper, a high-voltage chopper and ping-pong auto-zeroing operational amplifier was designed for industrial and automotive applications. Based on chopper stabilization, the proposed circuit introduces a novel chopper switch control signal that varies with the input common-mode voltage. This scheme effectively suppresses the reference offset caused by the chopper switches and prevents transistor breakdown under high-voltage conditions. Additionally, the ping-pong auto-zero structure was optimized by employing a six-channel parallel first-stage amplifier, which further reduced the charge injection and ripple introduced by the chopper switches. The amplifier was implemented using an SMIC (Semiconductor Manufacturing International Corporation) 180 nm 1P5M BCD (Bipolar-CMOS-DMOS) process with a chip area of 4.211 mm2. The post-layout simulation results show that, under a 55 V supply, the amplifier achieves an input-referred noise Power Spectral Density (PSD) of 6.2 nV/Hz and an input offset voltage of 32 μV, while the output voltage swings from 0.2 V to 53.4 V with a unity gain bandwidth of 3.2 MHz, which meets the requirements for high-voltage, high-resolution signal processing. Full article
(This article belongs to the Topic Advanced Integrated Circuit Design and Application)
Show Figures

Figure 1

20 pages, 4435 KB  
Article
89Zr-Radiolabelling of p-NCS-Bz-DFO-Anti-HER2 Affibody Immunoconjugate: Characterization and Assessment of In Vitro Potential in HER2-Positive Breast Cancer Imaging
by Maria-Roxana Tudoroiu-Cornoiu, Radu Marian Șerban, Diana Cocioabă, Dragoș Andrei Niculae, Doina Drăgănescu, Radu Leonte, Alina Catrinel Ion and Dana Niculae
Pharmaceutics 2025, 17(6), 739; https://doi.org/10.3390/pharmaceutics17060739 - 4 Jun 2025
Cited by 1 | Viewed by 1375
Abstract
Background: The 89Zr radioisotope is increasingly vital in positron emission tomography (PET), especially immuno-PET, due to its long half-life of 78.4 h, allowing extended tracking of biological processes. This makes it particularly suitable for researching medicines with slow pharmacokinetics and enhances the [...] Read more.
Background: The 89Zr radioisotope is increasingly vital in positron emission tomography (PET), especially immuno-PET, due to its long half-life of 78.4 h, allowing extended tracking of biological processes. This makes it particularly suitable for researching medicines with slow pharmacokinetics and enhances the precision of molecular imaging, especially in oncology. Despite zirconium’s potential for skeletal accumulation, effective chelation with agents like deferoxamine (DFO) enables high-resolution imaging of antigen-specific tumours, such as HER2-positive breast cancer, offering insights into tumour biology and treatment response. Methods: 89Zr was produced at the ACSI TR-19 cyclotron via 89Y(p,n)89Zr reaction. Natural yttrium foils (250 μm) were irradiated with 12.9 MeV protons on target, with 100 μA·h. An HER2-targeting affibody was synthesized and conjugated with p-NCS-Bz-DFO (1:4 mass ratio) at 37 °C for 60 min (pH 9.2 ± 0.2), then purified on a PD-10 column. Radiolabelling was performed with [89Zr]Zr-oxalate at pH ranging from 7.0 to 9.0, with concentrations from 110 to 460 MBq/mL. Results: Final activity reached 2.95 ± 0.31 GBq/batch (EOB corrected), with ≥ 99.9% radionuclide and ≥95% radiochemical purities. The anti-HER2 affibody was successfully radiolabelled with 89Zr, resulting in a radiochemical purity of over 85% with molar activity of 26.5 ± 4.4 and 11.45 MBq/nmol at pH 7.0–7.5. In vitro tests on BT-474 and MCF-7 cell lines confirmed high uptake in HER2-positive cells, validating specificity and stability. Conclusions: The successful synthesis and labelling of the [89Zr]Zr-p-NCS-Bz-DFO-anti-HER2 affibody are promising achievements for its further application in targeted immuno-PET imaging for HER2-positive malignancies. Further in vivo studies are needed to support its clinical translation. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

18 pages, 7054 KB  
Article
A 13.44-Bit Low-Power SAR ADC for Brain–Computer Interface Applications
by Hongyuan Yang, Jiahao Cheong and Cheng Liu
Appl. Sci. 2025, 15(10), 5494; https://doi.org/10.3390/app15105494 - 14 May 2025
Cited by 1 | Viewed by 1822
Abstract
This paper presents a successive approximation register analog-to-digital converter (SAR ADC) specifically optimized for brain–computer interface (BCI) applications. Designed and post-layout-simulated using 180 nm CMOS technology, the proposed SAR ADC achieves a 13.44-bit effective number of bits (ENOB) and 27.9 μW of power [...] Read more.
This paper presents a successive approximation register analog-to-digital converter (SAR ADC) specifically optimized for brain–computer interface (BCI) applications. Designed and post-layout-simulated using 180 nm CMOS technology, the proposed SAR ADC achieves a 13.44-bit effective number of bits (ENOB) and 27.9 μW of power consumption at a supply voltage of 1.8 V, enabled by a piecewise monotonic switching scheme and dynamic logic architecture. The ADC supports a high input range of ±500 mV, making it suitable for neural signal acquisition. Through an optimized capacitive digital-to-analog converter (CDAC) array and a high-speed dynamic comparator, the ADC demonstrates a signal-to-noise-and-distortion ratio (SINAD) of 81.94 dB and a spurious-free dynamic range (SFDR) of 91.69 dBc at a sampling rate of 320 kS/s. Experimental results validate the design’s superior performance in terms of low-power operation, high resolution, and moderate sampling rate, positioning it as a competitive solution for high-density integration and precision neural signal processing in next-generation BCI systems. Full article
(This article belongs to the Special Issue Low-Power Integrated Circuit Design and Application)
Show Figures

Figure 1

15 pages, 7430 KB  
Article
High-Precision Transdermal Drug Delivery Device with Piezoelectric Mechanism
by Shengyu Liu, Junming Liu, Conghui Wang and Yang Zhan
Actuators 2025, 14(5), 212; https://doi.org/10.3390/act14050212 - 25 Apr 2025
Viewed by 1329
Abstract
Piezoelectric (PE) micropumps are distinguished by their high precision, absence of electromagnetic radiation, and straightforward construction principles, making them vital in biomedicine and drug delivery. Integrating PE micropumps with microneedles creates a stable, accurate transdermal drug delivery device capable of finely tuning dosage, [...] Read more.
Piezoelectric (PE) micropumps are distinguished by their high precision, absence of electromagnetic radiation, and straightforward construction principles, making them vital in biomedicine and drug delivery. Integrating PE micropumps with microneedles creates a stable, accurate transdermal drug delivery device capable of finely tuning dosage, rate, and targeting. This paper proposes such a device, combining a PE micropump with a microneedle array. Initially, the internal flow dynamics of the PE micropump and the microneedle forces were analyzed through simulations. Subsequently, the optimal size for the PE micropump was established via parameter optimization experiments. Comprehensive tests were conducted to assess the device’s output performance, including frequency response, voltage characteristics, and flow resistance properties. Key performance indicators evaluated were output flow, pressure, and resolution. Experimental findings revealed that with a constant driving voltage, the PE micropump’s output flow and pressure initially increase and then decrease as the operating frequency rises. Conversely, with a fixed operating frequency, output flow and pressure positively correlate with the driving voltage, showing a near-linear relationship. Under stable working conditions, output pressure and flow are inversely proportional. The PE micropump achieves an output flow of 4.0 mL/min and a pressure of 35.7 kPa at 70 V and 80 Hz. The output flow rate and pressure of the device with the integrated microneedle array are 3.5 mL/min and 30 kPa, the minimum flow resolution is 0.28 μL, exemplifying the potential applications of PE micropumps and microneedles in the field of biomedicine. Full article
(This article belongs to the Section Precision Actuators)
Show Figures

Figure 1

14 pages, 1944 KB  
Article
A Noise-Shaping SAR-Based Capacitance-to-Digital Converter for Sensing Applications
by Ahmad F. Allam, Hesham A. Omran and Ayman H. Ismail
Electronics 2025, 14(7), 1386; https://doi.org/10.3390/electronics14071386 - 30 Mar 2025
Viewed by 2528
Abstract
In this work, an energy-efficient noise-shaping (NS) successive-approximation (SAR) capacitance-to-digital converter (CDC) is proposed. The interface is based on a direct-comparison technique, in which the sensor capacitance is compared directly to an on-chip binary weighted capacitive digital-to-analog converter (DAC). To implement NS, a [...] Read more.
In this work, an energy-efficient noise-shaping (NS) successive-approximation (SAR) capacitance-to-digital converter (CDC) is proposed. The interface is based on a direct-comparison technique, in which the sensor capacitance is compared directly to an on-chip binary weighted capacitive digital-to-analog converter (DAC). To implement NS, a 2nd order feed-forward loop filter processes the extracted residue at the end of each conversion cycle. Employing NS to achieve the target resolution leads to a small capacitive DAC and hence a small Si-area compared to the conventional SAR approach that would require a capacitive DAC with the same resolution as the overall CDC resolution. The proposed capacitive NS SAR sensor interface is designed and implemented in 130 nm CMOS technology for a 4 pF dynamic range and achieves an effective number of bits (ENOB) of 12.0 bits with a measurement time of 2.5 ms. The CDC dissipates 1.0 μA from a 0.8 V supply resulting in a figure of merit (FoM) of 488 fJ/conversion-step. Full article
Show Figures

Figure 1

14 pages, 10545 KB  
Article
High-Precision Low-Power Interface Circuit for Two-Dimensional Integrated Magnetic Switches
by Yongkang Xu, Qiming Zhao, Yao Li and Yiqiang Zhao
Electronics 2025, 14(7), 1299; https://doi.org/10.3390/electronics14071299 - 26 Mar 2025
Viewed by 581
Abstract
This paper proposes a high-precision low-power interface circuit for two-dimensional (2D) integrated magnetic switches that can detect 2D magnetic fields and output 5 V CMOS digital signals. The interface circuit combines chopper stabilization and output offset storage technology to effectively suppress the offset [...] Read more.
This paper proposes a high-precision low-power interface circuit for two-dimensional (2D) integrated magnetic switches that can detect 2D magnetic fields and output 5 V CMOS digital signals. The interface circuit combines chopper stabilization and output offset storage technology to effectively suppress the offset of the entire signal chain and significantly improve detection accuracy. Additionally, an architecture-level signal processing algorithm is proposed, which not only realizes full polarity detection of the magnetic field at a low cost but also realizes switch detection of multi-dimensional magnetic fields in the interface circuit without additional processing. Furthermore, the circuit provides flexible adjustment of both switch trip thresholds and hysteresis windows through 4-bit off-chip trimming codes, which greatly enhances the universality of the interface circuit. This chip is implemented using 180 nm BCD technology with a chip area of 1.18 mm2. The measurement results show that the interface circuit can simultaneously process 2D input signals with a resolution of less than 85 μV. In addition, through a 4-bit trim code, the interface circuit can adjust the switch trip threshold in the range of 0–13.52 mV and the hysteresis interval in the range of 0–7.32 mV. The average current consumption of the chip is 6.757 μA. Full article
Show Figures

Figure 1

10 pages, 551 KB  
Article
AS 314: A Massive Dusty Hypergiant or a Low-Mass Post-Asymptotic Giant Branch Object?
by Aigerim Bakhytkyzy, Anatoly S. Miroshnichenko, Valentina G. Klochkova, Vladimir E. Panchuk, Sergey V. Zharikov, Laurent Mahy, Hans Van Winckel, Aldiyar T. Agishev and Serik A. Khokhlov
Galaxies 2025, 13(2), 17; https://doi.org/10.3390/galaxies13020017 - 28 Feb 2025
Viewed by 1147
Abstract
AS 314 (V452 Sct) is a poorly studied early-type emission-line star, which exhibits an infrared excess at wavelengths longer than 10 μm. Its earlier studies have been limited to small amounts of observational data and led to controversial conclusions about its fundamental [...] Read more.
AS 314 (V452 Sct) is a poorly studied early-type emission-line star, which exhibits an infrared excess at wavelengths longer than 10 μm. Its earlier studies have been limited to small amounts of observational data and led to controversial conclusions about its fundamental parameters and evolutionary status. Comparison of high-resolution spectra of AS 314 taken over 20 years ago with those of Luminous Blue Variables and other high-luminosity objects suggested its observed properties can be explained by a strong stellar wind from a distant (D∼10 kpc) massive star, possibly in a binary system. However, a recent assessment of its low-resolution spectrum along with a new distance from a Gaia parallax (∼1.6 kpc) resulted in an alternative hypothesis that AS 314 is a low-mass post-asymptotic giant branch (post-AGB) star. The latter hypothesis ignored the high-resolution data, which gave rise to the former explanation. We collected over 30 mostly high-resolution spectra taken in 1997–2023, supplemented them with results of long-term photometric surveys, compared the spectra and the spectral energy distribution with those of post-AGB objects and B/A supergiants, and concluded that the observed properties AS 314 are more consistent with those of the latter. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

21 pages, 3887 KB  
Article
Analyzing Structural Optical and Phonon Characteristics of Plasma-Assisted Molecular-Beam Epitaxy-Grown InN/Al2O3 Epifilms
by Devki N. Talwar, Li Chyong Chen, Kuei Hsien Chen and Zhe Chuan Feng
Nanomaterials 2025, 15(4), 291; https://doi.org/10.3390/nano15040291 - 14 Feb 2025
Cited by 1 | Viewed by 1375
Abstract
The narrow bandgap InN material, with exceptional physical properties, has recently gained considerable attention, encouraging many scientists/engineers to design infrared photodetectors, light-emitting diodes, laser diodes, solar cells, and high-power electronic devices. The InN/Sapphire samples of different film thicknesses that we have used in [...] Read more.
The narrow bandgap InN material, with exceptional physical properties, has recently gained considerable attention, encouraging many scientists/engineers to design infrared photodetectors, light-emitting diodes, laser diodes, solar cells, and high-power electronic devices. The InN/Sapphire samples of different film thicknesses that we have used in our methodical experimental and theoretical studies are grown by plasma-assisted molecular-beam epitaxy. Hall effect measurements on these samples have revealed high-electron-charge carrier concentration, η. The preparation of InN epifilms is quite sensitive to the growth temperature T, plasma power, N/In ratio, and pressure, P. Due to the reduced distance between N atoms at a higher P, one expects the N-flow kinetics, diffusion, surface components, and scattering rates to change in the growth chamber which might impact the quality of InN films. We believe that the ionized N, rather than molecular, or neutral species are responsible for controlling the growth of InN/Sapphire epifilms. Temperature- and power-dependent photoluminescence measurements are performed, validating the bandgap variation (~0.60–0.80 eV) of all the samples. High-resolution X-ray diffraction studies have indicated that the increase in growth temperature caused the perceived narrow peaks in the X-ray-rocking curves, leading to better-quality films with well-ordered crystalline structures. Careful simulations of the infrared reflectivity spectra provided values of η and mobility μ, in good accordance with the Hall measurements. Our first-order Raman scattering spectroscopy study has not only identified the accurate phonon values of InN samples but also revealed the low-frequency longitudinal optical phonon plasmon-coupled mode in excellent agreement with theoretical calculations. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

15 pages, 17109 KB  
Article
Investigations on the Performance of a 5 mm CdTe Timepix3 Detector for Compton Imaging Applications
by Juan S. Useche Parra, Gerardo Roque, Michael K. Schütz, Michael Fiederle and Simon Procz
Sensors 2024, 24(24), 7974; https://doi.org/10.3390/s24247974 - 13 Dec 2024
Cited by 1 | Viewed by 1901
Abstract
Nuclear power plant decommissioning requires the rapid and accurate classification of radioactive waste in narrow spaces and under time constraints. Photon-counting detector technology offers an effective solution for the quick classification and detection of radioactive hotspots in a decommissioning environment. This paper characterizes [...] Read more.
Nuclear power plant decommissioning requires the rapid and accurate classification of radioactive waste in narrow spaces and under time constraints. Photon-counting detector technology offers an effective solution for the quick classification and detection of radioactive hotspots in a decommissioning environment. This paper characterizes a 5 mm CdTe Timepix3 detector and evaluates its feasibility as a single-layer Compton camera. The sensor’s electron mobility–lifetime product and resistivity are studied across bias voltages ranging from −100 V to −3000 V, obtaining values of μeτe = (1.2 ± 0.1) × 10−3 cm2V−1, and two linear regions with resistivities of ρI=(5.8±0.2) GΩ cm and ρII=(4.1±0.1) GΩ cm. Additionally, two calibration methodologies are assessed to determine the most suitable for Compton applications, achieving an energy resolution of 16.3 keV for the 137Cs photopeak. The electron’s drift time in the sensor is estimated to be (122.3 ± 7.4) ns using cosmic muons. Finally, a Compton reconstruction of two simultaneous point-like sources is performed, demonstrating the detector’s capability to accurately locate radiation hotspots with a ∼51 cm resolution. Full article
(This article belongs to the Special Issue Recent Advances in X-Ray Sensing and Imaging)
Show Figures

Figure 1

Back to TopTop