Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (764)

Search Parameters:
Keywords = π···π Stacking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4011 KiB  
Article
Multitarget Design of Steroidal Inhibitors Against Hormone-Dependent Breast Cancer: An Integrated In Silico Approach
by Juan Rodríguez-Macías, Oscar Saurith-Coronell, Carlos Vargas-Echeverria, Daniel Insuasty Delgado, Edgar A. Márquez Brazón, Ricardo Gutiérrez De Aguas, José R. Mora, José L. Paz and Yovanni Marrero-Ponce
Int. J. Mol. Sci. 2025, 26(15), 7477; https://doi.org/10.3390/ijms26157477 - 2 Aug 2025
Viewed by 254
Abstract
Hormone-dependent breast cancer, particularly in its treatment-resistant forms, remains a significant therapeutic challenge. In this study, we applied a fully computational strategy to design steroid-based compounds capable of simultaneously targeting three key receptors involved in disease progression: progesterone receptor (PR), estrogen receptor alpha [...] Read more.
Hormone-dependent breast cancer, particularly in its treatment-resistant forms, remains a significant therapeutic challenge. In this study, we applied a fully computational strategy to design steroid-based compounds capable of simultaneously targeting three key receptors involved in disease progression: progesterone receptor (PR), estrogen receptor alpha (ER-α), and HER2. Using a robust 3D-QSAR model (R2 = 0.86; Q2_LOO = 0.86) built from 52 steroidal structures, we identified molecular features associated with high anticancer potential, specifically increased polarizability and reduced electronegativity. From a virtual library of 271 DFT-optimized analogs, 31 compounds were selected based on predicted potency (pIC50 > 7.0) and screened via molecular docking against PR (PDB 2W8Y), HER2 (PDB 7JXH), and ER-α (PDB 6VJD). Seven candidates showed strong binding affinities (ΔG ≤ −9 kcal/mol for at least two targets), with Estero-255 emerging as the most promising. This compound demonstrated excellent conformational stability, a robust hydrogen-bonding network, and consistent multitarget engagement. Molecular dynamics simulations over 100 nanoseconds confirmed the structural integrity of the top ligands, with low RMSD values, compact radii of gyration, and stable binding energy profiles. Key interactions included hydrophobic contacts, π–π stacking, halogen–π interactions, and classical hydrogen bonds with conserved residues across all three targets. These findings highlight Estero-255, alongside Estero-261 and Estero-264, as strong multitarget candidates for further development. By potentially disrupting the PI3K/AKT/mTOR signaling pathway, these compounds offer a promising strategy for overcoming resistance in hormone-driven breast cancer. Experimental validation, including cytotoxicity assays and ADME/Tox profiling, is recommended to confirm their therapeutic potential. Full article
Show Figures

Graphical abstract

14 pages, 1605 KiB  
Article
Supramolecular Switching by Substituent Tuning: A Crystal Engineering Study of 2-Amino- and 2,3-Diamino-5-Halogenopyridines
by Irina S. Konovalova and Guido J. Reiss
Crystals 2025, 15(8), 700; https://doi.org/10.3390/cryst15080700 - 31 Jul 2025
Viewed by 205
Abstract
The crystal structures of the 2-amino-5-halogenopyridines (halogen = Cl (1), Br (2)) and 2,3-diamino-5-halogenopyridines (halogen = Cl (3), Br (4)) were compared with respect to their intermolecular interactions. An ab-initio-based method for evaluating the interaction [...] Read more.
The crystal structures of the 2-amino-5-halogenopyridines (halogen = Cl (1), Br (2)) and 2,3-diamino-5-halogenopyridines (halogen = Cl (3), Br (4)) were compared with respect to their intermolecular interactions. An ab-initio-based method for evaluating the interaction energies between molecules was employed to estimate the driving forces of crystal formation. As a result, regularities in crystal structure organization were identified. For compounds 1 and 2, a dimeric building unit is formed by two N–H…Npyr hydrogen bonds. These dimers are further connected to neighboring units by C–H…π, C–H…N, N…X (X = Cl, Br), and non-specific interactions. The aforementioned intermolecular interactions give rise to layered structures that are similar but not isotypical. No significant contributions from π–π or N–H…N(H2) interactions are observed in 1 and 2. The structures of 3 and 4 are isotypical and crystallize in the non-centrosymmetric space group P212121. The most important intermolecular interactions are N–H…Npyr, N–H…N(H2), and stacking interactions. These interactions lead to identical columnar-layered structures in both 3 and 4. No significant contributions from halogen bonds of the type N…X (X = Cl, Br) are found in 3 and 4. Full article
(This article belongs to the Special Issue Analysis of Halogen and Other σ-Hole Bonds in Crystals (2nd Edition))
Show Figures

Figure 1

17 pages, 1594 KiB  
Article
Molecular-Level Insights into Meta-Phenylenediamine and Sulfonated Zinc Phthalocyanine Interactions for Enhanced Polyamide Membranes: A DFT and TD-DFT Study
by Ameni Gargouri and Bassem Jamoussi
Polymers 2025, 17(15), 2019; https://doi.org/10.3390/polym17152019 - 24 Jul 2025
Viewed by 291
Abstract
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such [...] Read more.
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such as fouling and low hydrophilicity. This study investigated the interaction between MPD and sulfonated zinc phthalocyanine, Zn(SO2)4Pc, as a potential strategy for enhancing membrane properties. Using Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT), we analyzed the optimized geometries, electronic structures, UV–Vis absorption spectra, FT-IR vibrational spectra, and molecular electrostatic potentials of MPD, Zn(SO2)4Pc, and their complexes. The results show that MPD/Zn(SO2)4Pc exhibits reduced HOMO-LUMO energy gaps and enhanced charge delocalization, particularly in aqueous environments, indicating improved stability and reactivity. Spectroscopic features confirmed strong interactions via hydrogen bonding and π–π stacking, suggesting that Zn(SO2)4Pc can act as a co-monomer or additive during IPol to improve polyamide membrane functionality. A conformational analysis of MPD/Zn(SO2)4Pc was conducted using density functional theory (DFT) to evaluate the impact of dihedral rotation on molecular stability. The 120° conformation was identified as the most stable, due to favorable π–π interactions and intramolecular hydrogen bonding. These findings offer computational evidence for the design of high-performance membranes with enhanced antifouling, selectivity, and structural integrity for sustainable water treatment applications. Full article
(This article belongs to the Special Issue Nanocomposite Polymer Membranes for Advanced Water Treatment)
Show Figures

Figure 1

17 pages, 1633 KiB  
Article
Iodinated Salicylhydrazone Derivatives as Potent α-Glucosidase Inhibitors: Synthesis, Enzymatic Activity, Molecular Modeling, and ADMET Profiling
by Seema K. Bhagwat, Fabiola Hernandez-Rosas, Abraham Vidal-Limon, J. Oscar C. Jimenez-Halla, Balasaheb K. Ghotekar, Vivek D. Bobade, Enrique Delgado-Alvarado, Sachin V. Patil and Tushar Janardan Pawar
Chemistry 2025, 7(4), 117; https://doi.org/10.3390/chemistry7040117 - 23 Jul 2025
Viewed by 304
Abstract
Type 2 diabetes mellitus (T2DM) demands safer and more effective therapies to control postprandial hyperglycemia. Here, we report the synthesis and in vitro evaluation of ten salicylic acid-derived Schiff base derivatives (4a4j) as α-glucosidase inhibitors. Compounds 4e, 4g [...] Read more.
Type 2 diabetes mellitus (T2DM) demands safer and more effective therapies to control postprandial hyperglycemia. Here, we report the synthesis and in vitro evaluation of ten salicylic acid-derived Schiff base derivatives (4a4j) as α-glucosidase inhibitors. Compounds 4e, 4g, 4i, and 4j exhibited potent enzyme inhibition, with IC50 values ranging from 14.86 to 18.05 µM—substantially better than acarbose (IC50 = 45.78 µM). Molecular docking and 500 ns molecular dynamics simulations revealed stable enzyme–ligand complexes driven by π–π stacking, halogen bonding, and hydrophobic interactions. Density Functional Theory (DFT) calculations and molecular electrostatic potential (MEP) maps highlighted key electronic factors, while ADMET analysis confirmed favorable drug-like properties and reduced nephrotoxicity. Structure–activity relationship (SAR) analysis emphasized the importance of halogenation and aromaticity in enhancing bioactivity. Full article
Show Figures

Graphical abstract

26 pages, 24382 KiB  
Article
Carboxylated Mesoporous Carbon Nanoparticles as Bicalutamide Carriers with Improved Biopharmaceutical and Chemo-Photothermal Characteristics
by Teodora Popova, Borislav Tzankov, Marta Slavkova, Yordan Yordanov, Denitsa Stefanova, Virginia Tzankova, Diana Tzankova, Ivanka Spassova, Daniela Kovacheva and Christina Voycheva
Molecules 2025, 30(15), 3055; https://doi.org/10.3390/molecules30153055 - 22 Jul 2025
Viewed by 319
Abstract
Prostate cancer is a serious, life-threatening condition among men, usually requiring long-term chemotherapy. Due to its high efficacy, bicalutamide, a non-steroidal anti-androgen, has widespread use. However, its poor water solubility, low oral bioavailability, and nonspecific systemic exposure limit its application. To overcome these [...] Read more.
Prostate cancer is a serious, life-threatening condition among men, usually requiring long-term chemotherapy. Due to its high efficacy, bicalutamide, a non-steroidal anti-androgen, has widespread use. However, its poor water solubility, low oral bioavailability, and nonspecific systemic exposure limit its application. To overcome these obstacles, our study explored the potential of non-carboxylated and carboxylated mesoporous carbon nanoparticles (MCN) as advanced drug carriers for bicalutamide (MCN/B and MCN-COOH/B). The physicochemical properties and release behaviour were thoroughly characterized. Functionalization with carboxylic groups significantly improved wettability, dispersion stability, as well as loading efficiency due to enhanced hydrogen bonding and π–π stacking interactions. Moreover, all systems exhibited sustained and near-infrared (NIR) triggered drug release with reduced burst-effect, compared to the release of free bicalutamide. Higher particle size and stronger drug–carrier interactions determined a zero-order kinetics and notably slower release rate of MCN-COOH/B compared to non-functionalized MCN. Cytotoxicity assays on LNCaP prostate cancer cells demonstrated that both MCN/B and MCN-COOH/B possessed comparable antiproliferative activity as free bicalutamide, where MCN-COOH/B exhibited superior efficacy, especially under NIR exposure. These findings suggest that MCN-COOH nanoparticles could be considered as a prospective platform for controlled, NIR-accelerated delivery of bicalutamide in prostate cancer treatment. Full article
Show Figures

Graphical abstract

21 pages, 4597 KiB  
Article
Preparation of Non-Covalent BPTCD/g-C3N4 Heterojunction Photocatalysts and Photodegradation of Organic Dyes Under Solar Irradiation
by Xing Wei, Gaopeng Jia, Ru Chen and Yalong Zhang
Nanomaterials 2025, 15(14), 1131; https://doi.org/10.3390/nano15141131 - 21 Jul 2025
Viewed by 304
Abstract
In this study, the BPTCD/g-C3N4 heterojunction photocatalyst was successfully prepared by the hydrothermal method. BPTCD (3,3′,4,4′-benzophenone tetracarboxylic dianhydride) is immobilised on the surface of g-C3N4 by non-covalent π-π stacking. The BPTCD/g-C3N4 heterojunction photocatalyst is [...] Read more.
In this study, the BPTCD/g-C3N4 heterojunction photocatalyst was successfully prepared by the hydrothermal method. BPTCD (3,3′,4,4′-benzophenone tetracarboxylic dianhydride) is immobilised on the surface of g-C3N4 by non-covalent π-π stacking. The BPTCD/g-C3N4 heterojunction photocatalyst is an all-organic photocatalyst with significantly improved photocatalytic performance compared with g-C3N4. BPTCD/g-C3N4-60% was able to effectively degrade MO solution (10 mg/L) to 99.9% and 82.8% in 60 min under full spectrum and visible light. The TOC measurement results indicate that MO can ultimately be decomposed into H2O and CO2 through photocatalytic action. The photodegradation of methyl orange by BPTCD/g-C3N4 composite materials under sunlight is mainly attributed to the successful construction of the heterojunction structure and its excellent π-π stacking effect. Superoxide radicals (O2) were found to be the main active species, while OH and h+ played a secondary role. The synthesised BPTCD/g-C3N4 also showed excellent stability in the activity of photodegradation of MO in wastewater, with the performance remaining above 90% after three cycles. The mechanism of the photocatalytic removal of MO dyes was also investigated by the trap agent experiments. Additionally, BPTCD/g-C3N4-60% demonstrated exceptional photodegradation performance in the degradation of methylene blue (MB). BPTCD/g-C3N4 heterojunctions have great potential to degrade organic pollutants in wastewater under solar irradiation conditions. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

16 pages, 3231 KiB  
Article
Aptamer-Conjugated Magnetic Nanoparticles Integrated with SERS for Multiplex Salmonella Detection
by Fan Sun, Kun Pang, Keke Yang, Li Zheng, Mengmeng Wang, Yufeng Wang, Qiang Chen, Zihong Ye, Pei Liang and Xiaoping Yu
Biosensors 2025, 15(7), 464; https://doi.org/10.3390/bios15070464 - 19 Jul 2025
Viewed by 516
Abstract
Salmonella is a rapidly spreading and widespread zoonotic infectious disease that poses a serious threat to the safety of both poultry and human lives. Therefore, the timely detection of Salmonella in foods and animals has become an urgent need for food safety. This [...] Read more.
Salmonella is a rapidly spreading and widespread zoonotic infectious disease that poses a serious threat to the safety of both poultry and human lives. Therefore, the timely detection of Salmonella in foods and animals has become an urgent need for food safety. This work describes the construction of an aptamer-based sensor for Salmonella detection, using Fe3O4 magnetic beads and Ag@Au core–shell nanoparticles-embedded 4-mercaptobenzoic acid (4MBA). Leveraging the high affinity between biotin and streptavidin, aptamers were conjugated to Fe3O4 magnetic beads. These beads were then combined with Ag@4MBA@Au nanoparticles functionalized with complementary aptamers through hydrogen bonding and π-π stacking interactions, yielding a SERS-based aptamer sensor with optimized Raman signals from 4MBA. When target bacteria are present, aptamer-conjugated magnetic beads exhibit preferential binding to the bacteria, leading to a decrease in the surface-enhanced Raman scattering (SERS) signal. And it was used for the detection of five different serotypes of Salmonella, respectively, and the results showed that the aptamer sensor exhibited a good linear relationship between the concentration range of 102–108 CFU/mL and LOD is 35.51 CFU/mL. The SERS aptasensor was utilized for the detection of spiked authentic samples with recoveries between 94.0 and 100.4%, which proved the usability of the method and helped to achieve food safety detection. Full article
(This article belongs to the Special Issue Aptamer-Based Sensing: Designs and Applications)
Show Figures

Figure 1

21 pages, 4054 KiB  
Article
Benzo[c]cinnolinium Trifluoromethanesulfonate Architectures Induced by Organotin(IV) Complexes
by Hélène Cattey and Laurent Plasseraud
Crystals 2025, 15(7), 655; https://doi.org/10.3390/cryst15070655 - 17 Jul 2025
Viewed by 357
Abstract
Four novel crystalline architectures based on benzo[c]cinnolininium trifluoromethanesulonate salts, [C12H9N2]+[CF3SO3], have been isolated as single-crystals, and their structures have been determined by X-ray diffraction analysis. The formation [...] Read more.
Four novel crystalline architectures based on benzo[c]cinnolininium trifluoromethanesulonate salts, [C12H9N2]+[CF3SO3], have been isolated as single-crystals, and their structures have been determined by X-ray diffraction analysis. The formation of the new salts results from reactions involving the dimeric hydroxo di-n-butylstannane trifluoromethanesulfonato complex [n-Bu2Sn(OH)(H2O)(CF3SO3)]2 (1) and benzo[c]cinnoline (C12H8N2, BCC). Organic salts I, II, III, and IV were crystallized through slow evaporation at room temperature from a mixture of toluene/dichloromethane. The cystallographic structures of I, II, and IV exhibit the presence of monoprotonated benzo[c]cinnolinium cations in interactions with a free benzo[c]cinnoline molecule through N–H···N hydrogen bonding, while for salt III, the monoprotonated cation directly interacts with the CF3SO3 anion via an N–H···O interaction. For all four salts, aromatic π-π interactions involving rings of various components (free benzo[c]cinnoline molecule, benzo[c]cinnolinium cation, toluene molecule), combined with weak C–H···O and C–H···F interactions implying the trifluoromethanesulfonate anion, promote the solid-state self-assembly of supramolecular stacks. In parallel to the formation of benzo[c]cinnolinium based-salts, organotin(IV) 1 was converted into a distannoxane compound, 2{[n-Bu2(μ-OH)SnOSn(μ-η2-O3SCF3)n-Bu2]2[n-Bu2(η1-O3SCF3)SnOSn(μ-OH)n-Bu2]2} (3), which was also isolated as a single crystal and whose crystallographic structure was previously established by us. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

19 pages, 2355 KiB  
Article
Multistage Molecular Simulations, Design, Synthesis, and Anticonvulsant Evaluation of 2-(Isoindolin-2-yl) Esters of Aromatic Amino Acids Targeting GABAA Receptors via π-π Stacking
by Santiago González-Periañez, Fabiola Hernández-Rosas, Carlos Alberto López-Rosas, Fernando Rafael Ramos-Morales, Jorge Iván Zurutuza-Lorméndez, Rosa Virginia García-Rodríguez, José Luís Olivares-Romero, Rodrigo Rafael Ramos-Hernández, Ivette Bravo-Espinoza, Abraham Vidal-Limon and Tushar Janardan Pawar
Int. J. Mol. Sci. 2025, 26(14), 6780; https://doi.org/10.3390/ijms26146780 - 15 Jul 2025
Viewed by 461
Abstract
Epilepsy remains a widespread neurological disorder, with approximately 30% of patients showing resistance to current antiepileptic therapies. To address this unmet need, a series of 2-(isoindolin-2-yl) esters derived from natural amino acids were designed and evaluated for their potential interaction with the GABA [...] Read more.
Epilepsy remains a widespread neurological disorder, with approximately 30% of patients showing resistance to current antiepileptic therapies. To address this unmet need, a series of 2-(isoindolin-2-yl) esters derived from natural amino acids were designed and evaluated for their potential interaction with the GABAA receptor. Sixteen derivatives were subjected to in silico assessments, including physicochemical and ADMET profiling, virtual screening–ensemble docking, and enhanced sampling molecular dynamics simulations (metadynamics calculations). Among these, compounds derived from the aromatic amino acids, phenylalanine, tyrosine, tryptophan, and histidine, exhibited superior predicted affinity, attributed to π–π stacking interactions at the benzodiazepine binding site of the GABAA receptor. Based on computational performance, the tyrosine and tryptophan derivatives were synthesized and further assessed in vivo using the pentylenetetrazole-induced seizure model in zebrafish (Danio rerio). The tryptophan derivative produced comparable behavioral seizure reduction to the reference drug diazepam at the tested concentrations. The results implies that aromatic amino acid-derived isoindoline esters are promising anticonvulsant candidates and support the hypothesis that π–π interactions may play a critical role in modulating GABAA receptor binding affinity. Full article
(This article belongs to the Special Issue Computational Studies in Drug Design and Discovery)
Show Figures

Graphical abstract

22 pages, 3003 KiB  
Article
Engineering Fe-Modified Zeolitic Imidazolate Frameworks (Fe-ZIF-8 and Fe-ZIF-67) via In Situ Thermal Synthesis for Enhanced Adsorption of Malachite Green from Aqueous Solutions: A Comprehensive Study of Isotherms, Kinetics, and Thermodynamics
by Alireza Pourvahabi Anbari, Shima Rahmdel Delcheh, Muhammad Kashif, Alireza Ranjbari, Mohammad Karbalaei Akbari, Serge Zhuiykov, Philippe M. Heynderickx and Francis Verpoort
Nanomaterials 2025, 15(14), 1097; https://doi.org/10.3390/nano15141097 - 15 Jul 2025
Viewed by 481
Abstract
Given the adverse effects of organic dyes from aqueous solutions on human physiology and the ecological system, establishing an effective system for their elimination is imperative. This study employs the in situ thermal (IST) method to synthesize nanocomposites comprising zeolitic imidazole frameworks, specifically [...] Read more.
Given the adverse effects of organic dyes from aqueous solutions on human physiology and the ecological system, establishing an effective system for their elimination is imperative. This study employs the in situ thermal (IST) method to synthesize nanocomposites comprising zeolitic imidazole frameworks, specifically Fe-ZIF-8 and Fe-ZIF-67. The investigation offers a comprehensive evaluation of the properties of these nano-adsorbents for the removal of malachite green (MG). The results indicate a significantly increased adsorption capacity of up to 495 and 552 mg g−1 for Fe-ZIF-8 and Fe-ZIF-67, respectively. Furthermore, they demonstrate removal efficiencies of up to 90% and 95% for MG, respectively. Parameters associated with the adsorption process are derived from isotherms and removal kinetics, specifically the Freundlich model and the pseudo-second-order kinetics model, respectively. The enhanced adsorption capacity observed in Fe-ZIF-8 and Fe-ZIF-67 can be attributed to π–π stacking interactions, hydrogen bonding, and electrostatic attraction. After undergoing three cycles, both adsorbents consistently exhibit a high removal efficiency of approximately 85%, indicating notable structural integrity and outstanding potential for repeated use. The examined adsorbents display exceptional efficacy, favorable stability, and substantial specific surface area, underscoring their remarkable adsorption capabilities. The nanocomposites comprising Fe-ZIF-8 and Fe-ZIF-67 demonstrate considerable potential as highly favorable options for the elimination of MG and other cationic organic dyes from aqueous environments. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Graphical abstract

22 pages, 4077 KiB  
Article
Strong Amphoteric Adsorption of Reactive Red-141 onto Modified Orange Peel Derivatives: Optimization, Characterization, and Mechanism
by Behlul Koc-Bilican, Ismail Bilican and Hakan Çelebi
Polymers 2025, 17(13), 1875; https://doi.org/10.3390/polym17131875 - 4 Jul 2025
Viewed by 522
Abstract
This study investigates the adsorption performance of Reactive Red-141 (ReR-141) using three modified orange peel derivatives: raw orange peel (ROP), oil-free orange peel (NOOP), and cellulose extract (CE). The adsorbents were prepared through sequential treatments and characterized by scanning electron microscopy, energy-dispersive X-ray [...] Read more.
This study investigates the adsorption performance of Reactive Red-141 (ReR-141) using three modified orange peel derivatives: raw orange peel (ROP), oil-free orange peel (NOOP), and cellulose extract (CE). The adsorbents were prepared through sequential treatments and characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy to investigate their surface morphology and functional groups. Batch adsorption experiments were conducted under varying conditions of pH, temperature, time, and adsorbent amount. NOOP displayed the highest adsorption capacity (99.72% removal efficiency), followed by CE (86.99%) and ROP (77.55%), under optimal conditions. The adsorption kinetics followed a PSO model, while the equilibrium data were best described by Langmuir, indicating monolayer adsorption. Thermodynamic factors confirmed that the process was self-generated and primarily determined by physisorption. Desorption studies using 0.2 M NaOH demonstrated that NOOP retained 98.16% efficiency after three cycles, indicating its strong reusability. The adsorption mechanism is determined by different interactions, such as electrostatic forces, H-bonding, and π–π stacking. These findings suggest that orange peel derivatives, particularly NOOP, serve as optimal and environmentally sustainable adsorbents for the yield of ReR-141 from synthetic aqueous media. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

21 pages, 3506 KiB  
Article
Biofunctional Magnetic Carbon Nanohybrid for Fast Removal of Methyl Blue from Synthetic Laboratory Effluent
by Juan A. Ramos-Guivar, Melissa-Alisson Mejía-Barraza, Renzo Rueda-Vellasmin and Edson C. Passamani
Materials 2025, 18(13), 3168; https://doi.org/10.3390/ma18133168 - 3 Jul 2025
Viewed by 468
Abstract
The contamination of aquatic systems by industrial dyes, particularly methylene blue (MB), presents a significant environmental challenge due to their chemical stability and toxicity. In this study, the development and application of a novel magnetic nanohybrid comprising multiwall carbon nanotubes (MWCNTs) functionalized with [...] Read more.
The contamination of aquatic systems by industrial dyes, particularly methylene blue (MB), presents a significant environmental challenge due to their chemical stability and toxicity. In this study, the development and application of a novel magnetic nanohybrid comprising multiwall carbon nanotubes (MWCNTs) functionalized with maghemite (γ-Fe2O3) nanoparticles biosynthesized using Eucalyptus globulus extract (denoted MWNT-NPE) is reported. The material was thoroughly characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), Vibrating Sample Magnetometer (VSM), and Fourier-Transform Infrared (FTIR) techniques, revealing high crystallinity, mesoporosity, and superparamagnetic behavior. The MWNT-NPE exhibited exceptional MB adsorption performance under optimized conditions (pH 6, 0.8 g L−1 dose, 40 min equilibrium), achieving a maximum adsorption capacity of 92.9 mg g−1. Kinetic analysis indicated chemisorption and physisorption regimes depending on MB concentration, with the pseudo-second-order and Freundlich isotherm models providing the best fits of experimental data. FTIR spectroscopy demonstrated that the removal mechanism involves π–π stacking, hydrogen bonding, and electrostatic interactions between MB molecules and the composite’s surface functional groups. Notably, the magnetic nanohybrid retained over 98% removal efficiency across five regeneration cycles and successfully removed MB from synthetic effluents with efficiencies exceeding 91%. These findings highlight the synergistic adsorption and magnetic recovery capabilities of the bio-functionalized hybrid system, presenting a sustainable, reusable, and scalable solution for industrial dye remediation. Full article
Show Figures

Figure 1

14 pages, 3148 KiB  
Article
Polymorphic Control in Pharmaceutical Gel-Mediated Crystallization: Exploiting Solvent–Gelator Synergy in FmocFF Organogels
by Dong Chen, Koen Robeyns, Tom Leyssens, Basanta Saikia and Stijn Van Cleuvenbergen
Gels 2025, 11(7), 509; https://doi.org/10.3390/gels11070509 - 1 Jul 2025
Viewed by 395
Abstract
FmocFF is a highly versatile gelator whose π–π-stacking fluorenyl group and hydrogen-bonded peptide backbone permit gelation in a wide spectrum of solvents, providing a rich scaffold for crystal engineering. This study explores the synergistic effects of FmocFF organogels and solvent selection on controlling [...] Read more.
FmocFF is a highly versatile gelator whose π–π-stacking fluorenyl group and hydrogen-bonded peptide backbone permit gelation in a wide spectrum of solvents, providing a rich scaffold for crystal engineering. This study explores the synergistic effects of FmocFF organogels and solvent selection on controlling the polymorphic outcomes of nilutamide, a nonsteroidal antiandrogen drug with complex polymorphism. By systematically varying process parameters such as solvent type and concentration, we demonstrate remarkable control over crystal nucleation and growth pathways. Most significantly, we report the first ambient-temperature isolation of pure nilutamide Form II through acetonitrile-based FmocFF organogel, highlighting the unique interplay between solvent properties and gel fiber networks. Thermal analysis reveals that the organogel not only selectively templates Form II but also affects its thermal pathway. We also present compelling evidence for a new polymorph exhibiting second-harmonic generation (SHG) activity. This would represent the first non-centrosymmetric nilutamide form discovered, suggesting the gel matrix induces symmetry breaking during crystallization. We also characterize a previously unreported nilutamide–chloroform solvate through multiple analytical techniques including PXRD, DSC, FTIR, SXRD, and SHG microscopy. Our findings demonstrate that solvent-specific molecular recognition within gel matrices enables access to entirely new regions of polymorphic space, establishing gel-mediated crystallization as a broadly applicable platform technology for pharmaceutical solid form discovery under mild conditions. Full article
(This article belongs to the Special Issue Advanced Hydrogels for Biomedical Applications)
Show Figures

Graphical abstract

22 pages, 8657 KiB  
Article
Synergistic Enhancement of Rhodamine B Adsorption by Coffee Shell Biochar Through High-Temperature Pyrolysis and Water Washing
by Xurundong Kan, Yao Suo, Bingfei Shi, Yan Zheng, Zaiqiong Liu, Wenhui Ma, Xianghong Li and Jianqiang Zhang
Molecules 2025, 30(13), 2769; https://doi.org/10.3390/molecules30132769 - 27 Jun 2025
Cited by 1 | Viewed by 420
Abstract
Biochar-based adsorbents synthesized from agricultural wastes have emerged as economical and environmentally sustainable materials for water purification. In this study, coffee shell-derived biochars were synthesized via pyrolysis at 500 and 700 °C, with and without water washing, and comprehensively characterized to evaluate their [...] Read more.
Biochar-based adsorbents synthesized from agricultural wastes have emerged as economical and environmentally sustainable materials for water purification. In this study, coffee shell-derived biochars were synthesized via pyrolysis at 500 and 700 °C, with and without water washing, and comprehensively characterized to evaluate their potential for removing Rhodamine B (RhB) from aqueous solution. Structural and surface analyses indicated that a higher pyrolysis temperature enhanced pore development and aromaticity, whereas water washing effectively removed inorganic ash, thereby exposing additional active sites. Among all samples, water-washed biochar pyrolyzed at 700 °C (WCB700) exhibited the highest surface area (273.6 m2/g) and adsorption capacity (193.5 mg/g). The adsorption kinetics conformed to a pseudo-second-order model, indicating chemisorption, and the equilibrium data fit the Langmuir model, suggesting monolayer coverage. Mechanism analysis highlighted the roles of π–π stacking, hydrogen bonding, electrostatic interaction, and pore filling. Additionally, WCB700 retained more than 85% of its original capacity after five regeneration cycles, demonstrating excellent stability and reusability. This study presents an economical approach to valorizing coffee waste as well as provides mechanistic insights into optimizing biochar surface chemistry for enhanced dye removal. These findings support the application of engineered biochar in scalable and sustainable wastewater treatment technologies. Full article
(This article belongs to the Special Issue Emerging Multifunctional Materials for Next-Generation Energy Systems)
Show Figures

Figure 1

18 pages, 6292 KiB  
Article
The Structural Basis of Binding Stability and Selectivity of Sarolaner Enantiomers for Ctenocephalides felis RDL Receptors
by Xiaojiao Zheng, Xin Wang, Xiulian Ju, Zhichao Ma and Genyan Liu
Molecules 2025, 30(13), 2756; https://doi.org/10.3390/molecules30132756 - 26 Jun 2025
Viewed by 300
Abstract
The ionotropic γ-aminobutyric acid (GABA) receptor (GABAR) is a key target for the development of antiparasitic agents, particularly against ectoparasites, such as fleas and ticks. Binding stability and selectivity of sarolaner enantiomers for Ctenocephalides felis RDL receptors (RDLR) were investigated in the current [...] Read more.
The ionotropic γ-aminobutyric acid (GABA) receptor (GABAR) is a key target for the development of antiparasitic agents, particularly against ectoparasites, such as fleas and ticks. Binding stability and selectivity of sarolaner enantiomers for Ctenocephalides felis RDL receptors (RDLR) were investigated in the current study. Wild-type (WT) C. felis RDLR and its A285S mutant were constructed using homology-based, fragment-based threading and AI-driven approaches, of which, SWISS-MODEL generated the most reliable structures. Molecular docking showed that the sarolaner S-enantiomer had higher binding affinity for both receptors than the R-enantiomer, primarily due to hydrogen bonding with Ile256, π–π stacking with Phe326, and hydrophobic interactions with Ile267 and Ile268. Molecular dynamics simulations confirmed the binding stability of the S-enantiomer-receptor complex in which key residues maintained interactions throughout the trajectories. Binding free energy analysis supported these results and highlighted the role of nonpolar interactions in binding stability. The A285S mutation had minimal impact on the binding pocket, and the S-enantiomer remained selective for and bound to the mutant receptor. Insights into the insecticidal mechanism of sarolaner enantiomers are given, and the current findings may inform the development of veterinary drugs from novel isoxazoline-based NAMs targeting insect GABARs. Full article
Show Figures

Figure 1

Back to TopTop