Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (837)

Search Parameters:
Keywords = β-lactam resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3784 KB  
Review
Natural Products as Potentiators of β-Lactam Antibiotics: A Review of Mechanisms, Advances, and Future Directions
by Wenjie Yang, Shuocheng Fan, Jie Luo, Yichu Zhou, Xingyang Dai, Jinhu Huang, Liping Wang and Xiaoming Wang
Antioxidants 2026, 15(2), 154; https://doi.org/10.3390/antiox15020154 - 23 Jan 2026
Abstract
This review focuses on the research progress on natural products as β-lactam antibiotic adjuvants, aiming to address the escalating challenge of antibiotic resistance, particularly the inactivation of antibiotics caused by β-lactamases. The article provides an in-depth analysis of the mechanisms by which plant-derived [...] Read more.
This review focuses on the research progress on natural products as β-lactam antibiotic adjuvants, aiming to address the escalating challenge of antibiotic resistance, particularly the inactivation of antibiotics caused by β-lactamases. The article provides an in-depth analysis of the mechanisms by which plant-derived (e.g., flavonoids, tannins, phenolics, terpenoids, and alkaloids) and microbial-derived (e.g., clavulanic acid, fungal metabolites, bacteriophages) natural products enhance antimicrobial efficacy. Key potentiation strategies discussed include efflux pump inhibition, membrane permeability alteration, biofilm disruption, PBP2a inhibition, and direct β-lactamase inhibition. Additionally, the review outlines in vitro methods (e.g., dilution and checkerboard assays) and in vivo models (e.g., mouse infection models) used to assess synergistic effects. It also addresses major challenges in identifying active compounds, elucidating mechanisms of action, and pharmacokinetic characterization. Looking forward, the article highlights the potential of multi-omics approaches, artificial intelligence, and nanotechnology to overcome existing bottlenecks, providing novel strategies for the development of effective and safe antibiotic adjuvants. These advances are expected to provide both theoretical insights and practical guidance for combating antibiotic-resistant bacterial infections. Full article
(This article belongs to the Topic Recent Advances in Veterinary Pharmacology and Toxicology)
Show Figures

Figure 1

20 pages, 9065 KB  
Article
Tracking Antimicrobial Resistance in Salmonella via Poultry Supply Chains, Human Clinical Samples, and Environmental Reservoirs
by Diana M. Álvarez-Espejo, Diego Fredes-García, Constanza Díaz-Gavidia, Sebastián Gutiérrez, Rocio Barron-Montenegro, Francisca P. Álvarez, Rodrigo Constenla-Albornoz, Vivien Cadet-Arenas, Angélica Reyes-Jara, Jorge Olivares-Pacheco, Elton Burnett, Rebecca L. Bell, Magaly Toro, Jianghong Meng, Patricia García and Andrea I. Moreno-Switt
Foods 2026, 15(3), 410; https://doi.org/10.3390/foods15030410 (registering DOI) - 23 Jan 2026
Abstract
The global dissemination of multidrug-resistant (MDR) Salmonella through the international food trade poses a major One Health concern. We used whole-genome sequencing to characterize Salmonella isolates from poultry meat sold in Chile, including domestic and imported products from Brazil and Argentina. Sixty-one Salmonella [...] Read more.
The global dissemination of multidrug-resistant (MDR) Salmonella through the international food trade poses a major One Health concern. We used whole-genome sequencing to characterize Salmonella isolates from poultry meat sold in Chile, including domestic and imported products from Brazil and Argentina. Sixty-one Salmonella isolates were recovered from poultry meat; S. Infantis predominated (59%), followed by S. Heidelberg. Among S. Heidelberg from imported-meat poultry, 92% carried the blaCMY-2 gene, conferring resistance to β-lactams. Given the predominance of S. Infantis in poultry meat, we performed an additional in-depth genomic analysis of 73 S. Infantis isolates obtained from poultry meat (n = 32), surface water (n = 30), and human clinical cases (n = 11). Across sources, phenotypic resistance to ciprofloxacin and third-generation cephalosporins reached 93% and 70%, respectively, and MDR (≥3 antimicrobial classes) occurred in 71% of isolates, largely associated with blaCTX-M-65 and gyrA mutations. The pESI (plasmid of emerging S. Infantis)-like plasmid, harboring antimicrobial resistance and virulence genes, appeared in 94% of isolates. Phylogenetic analyses showed close genetic relationships among food, environmental, and clinical isolates, suggesting potential transmission through contaminated poultry meat or water. These findings emphasize the emergence of MDR S. Infantis in Chile and underscore the need for integrated One Health surveillance and prudent antimicrobial use to mitigate foodborne AMR risks. Full article
Show Figures

Figure 1

14 pages, 1400 KB  
Article
Molecular Epidemiology of Carbapenem-Resistant Pseudomonas aeruginosa Before the COVID-19 Pandemic: Resistance Profiles and Clonality in a Tertiary-Care Hospital
by Raúl Eduardo Loredo-Puerta, Perla Niño-Moreno, Raúl Alejandro Atriano-Briano, Katy Lizbeth Martínez-Alaniz, Nubia Baltazar-Benitez, Luis Fernando Pérez-González, Mónica Lucía Acebo-Martínez, Adriana Berenice Rousset-Román and Edgar A. Turrubiartes-Martínez
Antibiotics 2026, 15(1), 102; https://doi.org/10.3390/antibiotics15010102 - 20 Jan 2026
Abstract
Background/Objectives: Pseudomonas aeruginosa is an opportunistic pathogen frequently implicated in healthcare-associated infections, particularly ventilator-associated pneumonia and other device-related infections. The global emergence of carbapenem-resistant P. aeruginosa (CRPA) represents a major clinical challenge due to its limited therapeutic options and high mortality rates. [...] Read more.
Background/Objectives: Pseudomonas aeruginosa is an opportunistic pathogen frequently implicated in healthcare-associated infections, particularly ventilator-associated pneumonia and other device-related infections. The global emergence of carbapenem-resistant P. aeruginosa (CRPA) represents a major clinical challenge due to its limited therapeutic options and high mortality rates. Methods: Relevant clinical data were obtained from medical records. Isolates were identified via 16S PCR, and antimicrobial susceptibility testing was performed using the Vitek2 Compact system following CLSI guidelines. Carbapenemase genes (blaGES, blaKPC, blaIMP, blaNDM, blaVIM) were detected via PCR. Clonal relationships were determined via RAPD-PCR, and some sequence types were assigned according to the global P. aeruginosa MLST database. Results: In this study, 40 non-duplicate CRPA isolates were collected from 35 patients in a tertiary-care hospital in Mexico. Most isolates originated from adult patients, predominantly from tracheal aspirates (32.5%) and urine cultures (25.0%). Mechanical ventilation was the most common invasive device associated with infection, and the overall mortality rate reached 14.3%. Antimicrobial susceptibility testing showed that 95% of isolates exhibited a multidrug-resistant phenotype, with high resistance rates to ciprofloxacin (70.0%) and β-lactams. Carbapenemase genes were detected in 55% of isolates, mainly blaIMP, blaGES, and blaVIM, either alone or in combination. Notably, this is the first report of ST309 (blaIMP), ST411 (blaGES + blaIMP), and ST167 (blaGESblaVIM) carrying carbapenemase genes in Mexico. Conclusions: These findings highlight the persistence and genetic diversity of CRPA circulating in hospital settings and emphasize the urgent need for strengthened genomic surveillance and infection control programs to prevent the spread of these high-risk multidrug-resistant clones. Full article
Show Figures

Figure 1

12 pages, 1058 KB  
Article
Environmental Dissemination of Antimicrobial Resistance: A Resistome-Based Comparison of Hospital and Community Wastewater Sources
by Taito Kitano, Nobuaki Matsunaga, Takayuki Akiyama, Takashi Azuma, Naoki Fujii, Ai Tsukada, Hiromi Hibino, Makoto Kuroda and Norio Ohmagari
Antibiotics 2026, 15(1), 99; https://doi.org/10.3390/antibiotics15010099 - 19 Jan 2026
Viewed by 52
Abstract
Background/Objectives: Comparative analysis of antimicrobial resistomes in hospital and community wastewater can provide valuable insights into the diversity and distribution of antimicrobial resistance genes (ARGs), contributing to the advancement of the One Health approach. This study aimed to characterize and compare the resistome [...] Read more.
Background/Objectives: Comparative analysis of antimicrobial resistomes in hospital and community wastewater can provide valuable insights into the diversity and distribution of antimicrobial resistance genes (ARGs), contributing to the advancement of the One Health approach. This study aimed to characterize and compare the resistome profiles of wastewater sources from a hospital and community. Methods: Longitudinal metagenomic analysis was conducted on wastewater samples collected from the National Center for Global Health and Medicine (hospital) and a shopping mall (community) in Tokyo, Japan, between December 2019 and September 2023. ARG abundance was quantified using reads per kilobase per million mapped reads (RPKM) values, and comparative analyses were performed to identify the significantly enriched ARGs in the two sources. Results: A total of 46 monthly wastewater samples from the hospital yielded 825 unique ARGs, with a mean RPKM of 2.5 across all detected genes. In contrast, 333 ARGs were identified in the three shopping mall wastewater samples, with a mean RPKM of 2.1. Among the ARGs significantly enriched in the hospital samples, 23, including genes conferring resistance to aminoglycosides (nine groups) and β-lactam antibiotics (eight groups), exhibited significantly high RPKM values. No ARGs were found to be significantly enriched in the community wastewater samples. Conclusions: This study highlights the higher diversity and abundance of ARGs, particularly those conferring resistance to aminoglycosides and β-lactam antibiotics including carbapenems, in hospital wastewater than in community wastewater. These findings underscore the importance of continuous resistome monitoring of hospital wastewater as part of the integrated One Health surveillance strategy. Full article
(This article belongs to the Special Issue Antibiotic Resistance in Wastewater Treatment Plants)
Show Figures

Figure 1

33 pages, 4734 KB  
Review
Targeting Bacterial Cell Wall Synthesis: Structural Insights and Emerging Therapeutic Strategies
by Bharat Kumar Reddy Sanapalli, Christopher R. Jones and Vidyasrilekha Sanapalli
Pharmaceutics 2026, 18(1), 106; https://doi.org/10.3390/pharmaceutics18010106 - 13 Jan 2026
Viewed by 257
Abstract
The emergence of multidrug-resistant (MDR) bacterial pathogens has heightened the urgency for novel antibacterial agents. The bacterial cell wall usually comprises peptidoglycan, which presents a prime target for antibacterial drug development due to its indispensable role in maintaining cellular integrity. Conventional antibiotics such [...] Read more.
The emergence of multidrug-resistant (MDR) bacterial pathogens has heightened the urgency for novel antibacterial agents. The bacterial cell wall usually comprises peptidoglycan, which presents a prime target for antibacterial drug development due to its indispensable role in maintaining cellular integrity. Conventional antibiotics such as β-lactams and glycopeptides hinder peptidoglycan synthesis through competitive binding of penicillin-binding proteins (PBPs) and sequestration of lipid-linked precursor molecules. Nevertheless, prevalent resistance mechanisms including target modification, β-lactamase hydrolysis, and multi-drug efflux pumps have limited their clinical utility. This comprehensive analysis explicates the molecular machinery underlying bacterial cell wall assembly, evaluates both explored and unexplored enzymatic nodes within this pathway, and highlights the transformative impact of high-resolution structural elucidation in accelerating structure-guided drug discovery. Novel targets such as GlmS, GlmM, GlmU, Mur ligases, D,L-transpeptidases are assessed for their inclusiveness for the discovery of next-generation antibiotics. Additionally, cell wall inhibitors are also examined for their mechanisms of action and evolutionary constraints on MDR development. High-resolution crystallographic data provide valuable insights into molecular blueprints for structure-guided optimization of pharmacophores, enhancing binding affinity and circumventing resistance determinants. This review proposes a roadmap for future innovation, advocating for the convergence of computational biology platforms, machine learning-driven compound screening, and nanoscale delivery systems to improve therapeutic efficacy and pharmacokinetics. The synergy of structural insights and cutting-edge technologies offers a multidisciplinary framework for revitalizing the antibacterial arsenal and combating MDR infections efficiently. Full article
(This article belongs to the Special Issue New Era in Antimicrobial Strategies)
Show Figures

Figure 1

18 pages, 1961 KB  
Article
Multitarget Mechanisms of (‒)‒Epigallocatechin-3-Gallate Against MRSA: From SraP L-Lectin Targeting to Synergistic Antibiotic Effects
by Ping Zheng, Peihua Zhang, Yuan Li, Jinzhao Long, Fang Liu and Haiyan Yang
Pathogens 2026, 15(1), 90; https://doi.org/10.3390/pathogens15010090 - 13 Jan 2026
Viewed by 151
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a major global public health threat due to its broad resistance, urgently requires the development of new antibiotic alternatives. (‒)‒Epigallocatechin-3-gallate (EGCG) is considered a natural bioactive compound with anti-MRSA properties. The L-Lectin module of serine-rich adhesin for platelets (SraP) [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA), a major global public health threat due to its broad resistance, urgently requires the development of new antibiotic alternatives. (‒)‒Epigallocatechin-3-gallate (EGCG) is considered a natural bioactive compound with anti-MRSA properties. The L-Lectin module of serine-rich adhesin for platelets (SraP) is considered an important target for blocking MRSA-infected hosts. This study aims to investigate the mechanism of action of EGCG against MRSA. Surface plasmon resonance (SPR), cell adhesion and invasion, biofilm formation, checkerboard assays, RNA sequencing (RNA-seq) and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. The results showed that EGCG bound to SraP L Lectin with high affinity and effectively inhibited MRSA colonization. Additionally, EGCG significantly suppressed pyrimidine metabolism and downregulated related genes, thereby potentially inhibiting bacterial growth. It also markedly reduced the expression of multiple genes associated with β-lactam resistance and inhibited biofilm formation. A strong synergistic effect was observed between EGCG and the bactericidal agent ceftriaxone (CRO). When combined with 10 μg/mL EGCG, CRO required 75% less dosage and exhibited a prolonged antimicrobial effect. In conclusion, EGCG exerts anti-MRSA effects through multiple pathways and represents a promising candidate as an alternative therapeutic agent against MRSA infections. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

14 pages, 1746 KB  
Article
Resistance Patterns in Gram-Negative Bacilli Isolated in a Secondary Care Hospital: A Therapeutic Challenge in Western Mexico
by César Ricardo Cortez-Álvarez, Benjamín de Jesús Gutiérrez-García, Pablo Ulises Romero-Mendoza, María del Rosario Cabral-Medina, Monserratt Abud-Gonzalez, Susana Olivia Guerra-Martínez, Livier Amalia Gutiérrez-Morales, María Luisa Muñoz-Almaguer, Santiago José Guevara-Martínez, Daniel Osmar Suárez-Rico, Marco Pérez-Cisneros and Martin Zermeño-Ruiz
Microbiol. Res. 2026, 17(1), 17; https://doi.org/10.3390/microbiolres17010017 - 10 Jan 2026
Viewed by 166
Abstract
Antimicrobial resistance (AMR) continues to represent a significant global public health concern. Gram-negative bacilli (GNB) are the primary causative agents of severe nosocomial infections and possess a notable capacity to develop resistance mechanisms that restrict therapeutic options. The objective of this study was [...] Read more.
Antimicrobial resistance (AMR) continues to represent a significant global public health concern. Gram-negative bacilli (GNB) are the primary causative agents of severe nosocomial infections and possess a notable capacity to develop resistance mechanisms that restrict therapeutic options. The objective of this study was to characterize the antimicrobial susceptibility profiles of GNB isolated at a secondary-level hospital in Guadalajara, Mexico, with the aim of identifying predominant resistance patterns and the most effective therapeutic alternatives. A descriptive, retrospective, cross-sectional study was conducted using clinical isolates of Acinetobacter spp., Pseudomonas spp., Escherichia coli, Klebsiella spp., Morganella morganii, Proteus spp., and Enterobacter spp. collected during 2024. The identification and susceptibility testing were carried out using the VITEK® 2 automated system, and the results were interpreted in accordance with CLSI guidelines. High resistance rates were observed in Acinetobacter spp. and Pseudomonas spp., particularly to carbapenems (>50% and >40%, respectively). Escherichia coli and Klebsiella spp. demonstrated resistance to third-generation cephalosporins and trimethoprim/sulfamethoxazole, exhibiting high susceptibility to amikacin and carbapenems (>90%). New-generation β-lactam/β-lactamase inhibitor combinations, such as ceftazidime/avibactam and ceftolozane/tazobactam, have demonstrated high efficacy against resistant strains. Overall, GNB isolates in this secondary-level hospital demonstrated elevated resistance levels, particularly to β-lactams and carbapenems, which pose a significant therapeutic challenge. Nevertheless, amikacin, carbapenems, and new-generation β-lactams persist as valuable therapeutic options. In order to contain the spread of multidrug-resistant organisms, it is imperative to strengthen local surveillance, optimize antibiotic stewardship, and reinforce infection control measures. Full article
Show Figures

Figure 1

20 pages, 1021 KB  
Article
Two Comprehensive Liquid Chromatography High-Resolution Mass Spectrometry (UPLC-MS/MS) Multi-Methods for Real-Time Therapeutic Drug Monitoring (TDM) of Five Novel Beta-Lactams and of Fosfomycin Administered by Continuous Infusion
by Ilaria Trozzi, Beatrice Giorgi, Riccardo De Paola, Milo Gatti and Federico Pea
Pharmaceutics 2026, 18(1), 91; https://doi.org/10.3390/pharmaceutics18010091 - 10 Jan 2026
Viewed by 250
Abstract
Background/Objectives: Therapeutic drug monitoring (TDM) of β-lactams (BL), BL/β-lactamase inhibitor (BLI) combinations (BL/BLIc), and of fosfomycin may play a key role in optimizing antimicrobial therapy and in preventing resistance development, especially when used by continuous infusion in critically ill or immunocompromised patients. [...] Read more.
Background/Objectives: Therapeutic drug monitoring (TDM) of β-lactams (BL), BL/β-lactamase inhibitor (BLI) combinations (BL/BLIc), and of fosfomycin may play a key role in optimizing antimicrobial therapy and in preventing resistance development, especially when used by continuous infusion in critically ill or immunocompromised patients. Unfortunately, analytical methods for simultaneously quantifying multiple BL/BLIc in plasma are still lacking. Methods: The aim of this study was to develop and validate two rapid, sensitive, and accurate UPLC–qTOF–MS/MS methods for the simultaneous quantification of five novel β-lactam or β-lactam/β-lactamase inhibitor combinations (ceftolozane/tazobactam, ceftazidime/avibactam, meropenem/vaborbactam, cefiderocol, and ceftobiprole) along with fosfomycin. Methods: Human plasma samples were prepared by protein precipitation using methanol containing isotopically labeled internal standards. Chromatographic separation was achieved within 10–12 min using two Agilent Poroshell columns (EC-C18 and PFP) under positive and negative electrospray ionization modes. The method was validated according to the EMA guidelines by assessing selectivity, linearity, precision, accuracy, matrix effects, extraction recovery, and stability. Results: The methods exhibited excellent linearity (R2 ≥ 0.998) across the calibration ranges for all of the analytes (1.56–500 µg/mL), with limits of quantification ranging from 1.56 to 15.62 µg/mL. Intra- and inter-day precision and accuracy were always within ±15%. Extraction recovery always exceeded 92%, and the matrix effects were effectively corrected through isotopic internal standards. No carry-over or isobaric interferences were observed. All the analytes were stable for up to five days at 4 °C, but the BL and BL/BLIc stability was affected by multiple freeze–thaw cycles. Conclusions: These UPLC-qTOF-MS/MS multi-analyte methods enabled a simultaneous, reliable quantification in plasma of five novel beta-lactams and of fosfomycin. Robustness, high throughput, and sensitivity make these multi-methods feasible for real-time TDM, supporting personalized antimicrobial dosing and improved therapeutic outcomes in patients with severe or multidrug-resistant infections. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

14 pages, 680 KB  
Article
Antimicrobial Resistance Profile of Urinary Bacterial Isolates from Hospitalized Companion Dogs Reveals a Potential Public Health Risk in South Korea
by Seoyoon Park, Changseok Han, Su-Man Kim, Joong-Hyun Song and Tae-Hwan Kim
Vet. Sci. 2026, 13(1), 70; https://doi.org/10.3390/vetsci13010070 - 10 Jan 2026
Viewed by 209
Abstract
Emerging antimicrobial resistance (AMR) in companion animals represents a global health concern as they serve as potential reservoirs for multidrug-resistant (MDR) bacteria, which can be transmitted to humans. Herein, we provide comprehensive surveillance data on resistance patterns in veterinary hospital settings, focusing on [...] Read more.
Emerging antimicrobial resistance (AMR) in companion animals represents a global health concern as they serve as potential reservoirs for multidrug-resistant (MDR) bacteria, which can be transmitted to humans. Herein, we provide comprehensive surveillance data on resistance patterns in veterinary hospital settings, focusing on urinary tract infection. A total of 23 bacterial strains were isolated from urine specimens of hospitalized companion animals suspected of urinary tract infections (UTIs) between 2022 and 2024. 16S rRNA sequencing analysis revealed that Escherichia coli (47.8%), Klebsiella pneumoniae (21.7%), and Pseudomonas aeruginosa (8.7%) were predominant uropathogens. Minimum inhibitory concentration and minimum bactericidal concentration tests were employed to analyze AMR patterns across different classes of antibiotics. Moreover, antimicrobial susceptibility test exhibited 73.91% MDR according to the standard definition given by the Clinical and Laboratory Standards Institute (CLSI) M100 guidelines. Most Gram-negative bacteria have been shown to be resistant to beta-lactam antibiotics, especially carbapenems. Notably, an E. coli strain was confirmed to possess the blaNDM-1 gene encoding the carbapenemase New Delhi metallo-β-lactamase. These findings support the implementation of targeted infection control measures and evidence-based treatment protocols to preserve antimicrobial efficacy in companion animal medicine to minimize potential public health risks through the One Health approach. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

17 pages, 608 KB  
Review
Epidemiology of ESBL-Producing, Carbapenem-Resistant, and Carbapenemase-Producing Enterobacterales in Southern Africa
by Pearl Ntshonga, Giacomo Maria Paganotti and Paolo Gaibani
Antibiotics 2026, 15(1), 69; https://doi.org/10.3390/antibiotics15010069 - 8 Jan 2026
Viewed by 236
Abstract
Background/Objectives: Antimicrobial resistance (AMR) among Enterobacterales poses a major threat to public health in Southern Africa and has led to limited treatment options and increased mortality. Despite Africa bearing the brunt, there is limited data on the epidemiology and molecular epidemiology of [...] Read more.
Background/Objectives: Antimicrobial resistance (AMR) among Enterobacterales poses a major threat to public health in Southern Africa and has led to limited treatment options and increased mortality. Despite Africa bearing the brunt, there is limited data on the epidemiology and molecular epidemiology of the genetic determinants of β-lactam and/or carbapenem resistance. This narrative literature review summarizes the epidemiology and molecular characteristics of extended-spectrum β-lactamase-producing Enterobacterales (ESBL-PE), carbapenem-resistant Enterobacterales (CRE), and carbapenemase-producing Enterobacterales (CPE) in Southern Africa, while identifying data gaps and surveillance challenges. Methods: A comprehensive literature review was conducted using peer-reviewed articles from ten Southern African countries, including South Africa, Lesotho, Eswatini, Botswana, Namibia, Angola, Zambia, Zimbabwe, Mozambique, and Malawi, reporting the epidemiology and/or molecular characterization of ESBL-PE, CRE, and CPE. Results: ESBL-PE, CRE, and CPE pose an increasing healthcare threat in Southern Africa, with prevalence varying widely by source. Klebsiella pneumoniae and E. coli are the predominant ESBL-PE, CRE, and CPE species. The most frequent resistance genes are blaCTX-M among ESBLs and blaNDM and blaOXA among carbapenemases, reflecting global patterns. However, molecular characterization across the region remains limited, with countries such as Botswana, Lesotho, Eswatini, Zambia, and Zimbabwe lacking sufficient data on the prevalence and diversity of these resistance determinants. Conclusions: Despite the paucity of genomic and epidemiological data, Southern Africa faces an urgent AMR challenge. Strengthening laboratory infrastructure, genomic surveillance, and regional coordination is crucial to mitigate AMR and guide antibiotic stewardship policies. Full article
Show Figures

Figure 1

16 pages, 449 KB  
Article
Diet-Driven Modulation of Antibiotic Resistance Genes and Microbial Risk During the Bioconversion of Agro-Industrial Residues by Hermetia illucens
by Vesna Milanović, Andrea Marcelli, Alessio Ilari, Giorgia Rampanti, Kofi Armah Boakye-Yiadom, Federica Cardinali, Andrea Osimani, Cristiana Garofalo, Ester Foppa Pedretti and Lucia Aquilanti
Sci 2026, 8(1), 11; https://doi.org/10.3390/sci8010011 - 8 Jan 2026
Viewed by 143
Abstract
Background: Hermetia illucens larvae provide a sustainable bioconversion pathway that transforms agro-industrial residues into protein- and nutrient-dense biomass and frass, suitable for animal feed and soil amendment, respectively. Nevertheless, the potential spread of antibiotic resistance (AR) genes and pathogenic microorganisms poses biosafety [...] Read more.
Background: Hermetia illucens larvae provide a sustainable bioconversion pathway that transforms agro-industrial residues into protein- and nutrient-dense biomass and frass, suitable for animal feed and soil amendment, respectively. Nevertheless, the potential spread of antibiotic resistance (AR) genes and pathogenic microorganisms poses biosafety concerns. This study examined the impact of four residue-based diet formulations; peas and chickpea (D1), peas and wheat (D2), onion and wheat (D3), and wheat with digestate (D4), on microbial safety during the bioconversion process. Methods: Enterococcus spp. (viable counts), Salmonella spp. (presence/absence), and 13 AR genes associated with resistance to tetracyclines, macrolide-lincosamide-streptogramin B, β-lactams, vancomycin, and aminoglycosides were quantified in single substrates, diets, larvae, and frass using qPCR. Results: Principal component analysis revealed diet-driven AR gene profiles. D1 lowered the levels of the greatest number of tested AR genes, particularly erm(B), tetracycline, and β-lactam genes in frass, as well as tet(O) and vanB in mature larvae. In contrast, D2 increased the AR gene levels in frass. All diets except D4 eliminated Salmonella spp. Enterococcus spp. loads varied by diet and larval stage, with D2 reducing counts in frass. Conclusions: Diet composition directly shapes microbial dynamics and AR gene dissemination, indicating that legume-based substrates may enhance biosafety in bioconversion systems. Full article
Show Figures

Figure 1

23 pages, 1405 KB  
Article
A Pilot Study of Klebsiella pneumoniae in Community-Acquired Pneumonia: Comparative Insights from Culture and Targeted Next-Generation Sequencing
by Vyacheslav Beloussov, Vitaliy Strochkov, Nurlan Sandybayev, Alyona Lavrinenko and Maxim Solomadin
Diagnostics 2026, 16(1), 154; https://doi.org/10.3390/diagnostics16010154 - 4 Jan 2026
Viewed by 407
Abstract
Background/Objectives: Klebsiella pneumoniae is a major Gram-negative pathogen associated with community-acquired pneumonia (CAP) and a critical contributor to antimicrobial resistance (AMR). Culture-based diagnostics remain the clinical standard but may underestimate microbial diversity and resistance gene profiles. This pilot study compared pathogen detection [...] Read more.
Background/Objectives: Klebsiella pneumoniae is a major Gram-negative pathogen associated with community-acquired pneumonia (CAP) and a critical contributor to antimicrobial resistance (AMR). Culture-based diagnostics remain the clinical standard but may underestimate microbial diversity and resistance gene profiles. This pilot study compared pathogen detection and antimicrobial resistance gene (ARG) repertoires in matched K. pneumoniae pure cultures and primary sputum samples using targeted next-generation sequencing (tNGS). Methods: We analyzed 153 sputum samples from patients with CAP. Among 48 culture-positive cases, 22 (14% overall; 54% culture-positive) yielded K. pneumoniae. MALDI-TOF MS, phenotypic drug susceptibility testing, and tNGS were conducted on both culture isolates and matched sputum specimens. Microbial composition, ARG diversity, and method concordance were evaluated, with focused analysis of discordant and fatal cases. Results: K. pneumoniae was detected in 14.4% of all CAP cases and accounted for 54.2% of culture-positive samples. Identification rates differed across methods: 35% by MALDI-TOF MS, 45% by culture tNGS, and 29% by sputum tNGS. Sputum tNGS revealed substantially higher microbial diversity than cultures (3.04 vs. 1.42 species per sample) and detected more than sixfold unique ARGs (38 vs. 7), including clinically relevant determinants that were absent from culture isolates. Concordance was high between MALDI-TOF MS and culture tNGS (κ = 0.712), but low between sputum and culture tNGS (κ = 0.279). Among twelve K. pneumoniae isolates included in AMR analysis, all showed resistance to β-lactams, and two-thirds exhibited MDR/XDR phenotypes. Genotypic screening identified seven ARGs, but major ESBL and carbapenemase genes were not detected, suggesting the presence of alternative resistance mechanisms. Overall, sputum tNGS provided additional etiological and resistome information not captured by cultivation and complemented classical diagnostics in CAP involving K. pneumoniae. Conclusions: Culture-based diagnostics and tNGS provide complementary insights into the detection and resistance profiling of K. pneumoniae in CAP, with sputum tNGS revealing broader microbial and resistome information than pure cultures, while classical methods remain essential for species confirmation and phenotypic AST. An integrated diagnostic approach combining both methodologies may improve pathogen detection, guide antimicrobial therapy, and enhance AMR surveillance in K. pneumoniae-associated CAP. Full article
Show Figures

Figure 1

11 pages, 2256 KB  
Case Report
Cardiac Implantable Electronic Device-Related Infective Endocarditis Caused by Bacillus cereus: A Case Report
by Denis Swolana, Danuta Łoboda, Beata Sarecka-Hujar, Rafał Sznajder, Anna Szajerska-Kurasiewicz, Tadeusz Zębik, Krzysztof S. Gołba and Robert D. Wojtyczka
J. Clin. Med. 2026, 15(1), 344; https://doi.org/10.3390/jcm15010344 - 2 Jan 2026
Viewed by 241
Abstract
Background: Globalization, increased mobility, changes in dietary habits, and a growing number of immunocompromised patients have heightened exposure to rare or opportunistic pathogens. Here, we present a case of cardiac implantable electronic device-related infective endocarditis (CIED-IE) caused by Bacillus cereus bacteremia originating in [...] Read more.
Background: Globalization, increased mobility, changes in dietary habits, and a growing number of immunocompromised patients have heightened exposure to rare or opportunistic pathogens. Here, we present a case of cardiac implantable electronic device-related infective endocarditis (CIED-IE) caused by Bacillus cereus bacteremia originating in the gastrointestinal tract. Case presentation: A 66-year-old female, who had a cardiac resynchronization pacemaker (CRT-P) implanted in 2017 due to second-degree atrioventricular block and left bundle branch block, had undergone device replacement due to battery depletion 4 months earlier and was scheduled for transvenous lead extraction (TLE) due to generator pocket infection. During the TLE procedure, transoesophageal echocardiography revealed vegetations on the leads and in the right atrium. Standard empirical therapy covering methicillin-resistant Staphylococci and Gram-negative bacteria was administered, including oritavancin and gentamicin. Surprisingly, intraoperative samples cultured B. cereus, a Gram-positive, spore-forming rod that usually causes food poisoning through contamination of rice and other starchy foods. B. cereus is generally resistant to β-lactam antibiotics except for carbapenems but is susceptible to glycopeptides. The oritavancin treatment was extended to four fractionated doses (1200, 800, 800, and 800 mg) administered at 7-day intervals. To eradicate bacteria in the gastrointestinal tract, oral vancomycin (125 mg 4 times a day) was added. After 4 weeks of effective antibiotic therapy, a CRT-P with a left bundle branch area pacing lead was reimplanted on the right subclavian area, with no recurrence of infection during the 3-month follow-up. Clinical discussion: In the patient, a diet high in rice and improper storage of rice dishes, together with habitual constipation, were identified as risk factors for the development of invasive Bacillus cereus infection. However, the long half-life lipoglycopeptide antibiotic, oritavancin, administered weekly, proved effective in treating CIED-IE. Conclusions: Infection with rare or opportunistic microorganisms may require extended microbiological diagnostics and non-standard antibiotic therapy; therefore, the medical history should consider risk factors for such infections. Full article
(This article belongs to the Special Issue Diagnostic and Therapeutic Challenges in Infective Endocarditis)
Show Figures

Figure 1

27 pages, 2341 KB  
Review
Molecular Basis of Persister Awakening and Lag-Phase Recovery in Escherichia coli After Antibiotic Exposure
by Karolina Stojowska-Swędrzyńska, Ewa Laskowska and Dorota Kuczyńska-Wiśnik
Int. J. Mol. Sci. 2026, 27(1), 467; https://doi.org/10.3390/ijms27010467 - 1 Jan 2026
Viewed by 449
Abstract
Antibiotic persistence is a transient phenotype in which a subset of genetically susceptible bacteria survives lethal antibiotic exposure without acquiring resistance. However, survival alone does not define a persister cell—only cells that successfully recover, resume growth, and produce viable progeny complete the persister [...] Read more.
Antibiotic persistence is a transient phenotype in which a subset of genetically susceptible bacteria survives lethal antibiotic exposure without acquiring resistance. However, survival alone does not define a persister cell—only cells that successfully recover, resume growth, and produce viable progeny complete the persister cycle. Recent studies in Escherichia coli show that persister awakening is a multistage process shaped by dormancy depth, metabolic state, and antibiotic-induced damage. Upstream induction mechanisms, including stringent-response signaling and toxin–antitoxin–mediated growth arrest, primarily determine dormancy depth but do not directly control awakening kinetics. During the lag phase, persister cells undergo coordinated recovery involving detoxification of residual antibiotics, ATP restoration, dissolution of protein aggregates, and ribosome reactivation. After exposure to fluoroquinolones, awakening additionally requires SOS-driven DNA repair via homologous recombination or transcription-coupled repair. In contrast, β-lactam–exposed persister cells rely mainly on efflux-mediated detoxification and asymmetric damage partitioning. Failure to restore proteostasis or resolve damage results in abortive recovery or cell death. Only after damage processing and metabolic reactivation can persister cells resume division and generate viable progeny. This review integrates current molecular insights into persister cell recovery in E. coli, highlighting the lag phase as the critical barrier between survival and true persistence. Full article
(This article belongs to the Special Issue Research Advances in Antibiotic Resistance)
Show Figures

Figure 1

17 pages, 700 KB  
Article
Clinical Outcomes and Predictors of Mortality in Patients with Difficult-to-Treat Resistant Pseudomonas aeruginosa Infections: A Retrospective Cohort Study
by Alberto Enrico Maraolo, Antonella Gallicchio, Vincenzo Fotticchia, Maria Rosaria Catania, Riccardo Scotto and Ivan Gentile
Antibiotics 2026, 15(1), 33; https://doi.org/10.3390/antibiotics15010033 - 1 Jan 2026
Viewed by 374
Abstract
Background: Difficult-to-treat resistant Pseudomonas aeruginosa (DTR-PA) infections are associated with high morbidity and mortality, but data on prognostic factors remain limited. Given the limited real-world data on outcomes of DTR-PA infections, we aimed to identify clinical predictors of mortality and response to therapy [...] Read more.
Background: Difficult-to-treat resistant Pseudomonas aeruginosa (DTR-PA) infections are associated with high morbidity and mortality, but data on prognostic factors remain limited. Given the limited real-world data on outcomes of DTR-PA infections, we aimed to identify clinical predictors of mortality and response to therapy in this setting. Methods: We conducted a single-center retrospective cohort study of 51 patients with DTR-PA infections. The primary endpoint was 30-day all-cause mortality; secondary endpoints were clinical and microbiological cure at end of therapy. An exploratory analysis evaluated 30-day infection-related mortality. Logistic regression models (univariable, multivariable and Firth bias-reduced) were used to identify independent predictors. Results: Median age was 64 years (IQR 22); 63% were male and 71% were in the ICU at infection onset. Sepsis occurred in 80% and septic shock in 45%. Thirty-day all-cause mortality was 49% (25/51). According to multivariable analysis, septic shock was an independent predictor of mortality (aOR 5.52, 95% CI 1.04–29.27; p = 0.045) as younger age (aOR 1.06, 95% CI 1.00–1.12; p = 0.052), whereas targeted therapy with ceftazidime/avibactam or ceftolozane/tazobactam is a protective factor (aOR 0.15, 95% CI 0.02–1.17; p = 0.070) did not reach significance in the final model. Clinical cure occurred in 33% (17/51) and was negatively associated with device burden and bloodstream infection, whereas microbiological cure (45%, 23/51) was more likely with targeted therapy and absence of sepsis. The exploratory analysis of infection-related mortality (35%) showed similar predictors. Conclusions: DTR-PA infections are associated with high mortality. Septic shock and older age predict death, while the use of novel β-lactam/β-lactamase inhibitors is associated with improved outcomes. Early recognition of severe illness and timely administration of active therapy may improve survival in these infections. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
Show Figures

Graphical abstract

Back to TopTop