Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = α-tertiary amine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4225 KiB  
Article
Comparative Nitrene-Transfer Chemistry to Olefins Mediated by First-Row Transition Metal Catalysts Supported by a Pyridinophane Macrocycle with N4 Ligation
by Himanshu Bhatia, Lillian P. Adams, Ingrid Cordsiemon, Suraj Kumar Sahoo, Amitava Choudhury, Thomas R. Cundari and Pericles Stavropoulos
Molecules 2025, 30(15), 3097; https://doi.org/10.3390/molecules30153097 - 24 Jul 2025
Viewed by 410
Abstract
A 12-membered pyridinophane scaffold containing two pyridine and two tertiary amine residues is examined as a prototype ligand (tBuN4) for supporting nitrene transfer to olefins. The known [(tBuN4)MII(MeCN)2]2+ (M = Mn, Fe, Co, and [...] Read more.
A 12-membered pyridinophane scaffold containing two pyridine and two tertiary amine residues is examined as a prototype ligand (tBuN4) for supporting nitrene transfer to olefins. The known [(tBuN4)MII(MeCN)2]2+ (M = Mn, Fe, Co, and Ni) and [(tBuN4)CuI(MeCN)]+ cations are synthesized with the hexafluorophosphate counteranion. The aziridination of para-substituted styrenes with PhI=NTs (Ts = tosyl) in various solvents proved to be high yielding for the Cu(I) and Cu(II) reagents, in contrast to the modest efficacy of all other metals. For α-substituted styrenes, aziridination is accompanied by products of aziridine ring opening, especially in chlorinated solvents. Bulkier β-substituted styrenes reduce product yields, largely for the Cu(II) reagent. Aromatic olefins are more reactive than aliphatic congeners by a significant margin. Mechanistic studies (Hammett plots, KIE, and stereochemical scrambling) suggest that both copper reagents operate via sequential formation of two N–C bonds during the aziridination of styrene, but with differential mechanistic parameters, pointing towards two distinct catalytic manifolds. Computational studies indicate that the putative copper nitrenes derived from Cu(I) and Cu(II) are each associated with closely spaced dual spin states, featuring high spin densities on the nitrene N atom. The computed electrophilicity of the Cu(I)-derived nitrene reflects the faster operation of the Cu(I) manifold. Full article
Show Figures

Graphical abstract

32 pages, 4374 KiB  
Article
Predictive and Prognostic Relevance of ABC Transporters for Resistance to Anthracycline Derivatives
by Rümeysa Yücer, Rossana Piccinno, Ednah Ooko, Mona Dawood, Gerhard Bringmann and Thomas Efferth
Biomolecules 2025, 15(7), 971; https://doi.org/10.3390/biom15070971 - 6 Jul 2025
Viewed by 605
Abstract
Anthracyclines have been clinically well established in cancer chemotherapy for decades. The main limitations of this drug class are the development of resistance and severe side effects. In the present investigation, we analyzed 30 anthracyclines in a panel of 59 cell lines of [...] Read more.
Anthracyclines have been clinically well established in cancer chemotherapy for decades. The main limitations of this drug class are the development of resistance and severe side effects. In the present investigation, we analyzed 30 anthracyclines in a panel of 59 cell lines of the National Cancer Institute, USA. The log10IC50 values varied from −10.49 M (3′-deamino-3′-(4″-(3″-cyano)morpholinyl)-doxorubicin, 1) to −4.93 M (N,N-dibenzyldaunorubicin hydrochloride, 30). Multidrug-resistant NCI-ADR-Res ovarian cancer cells revealed a high degree of resistance to established anthracyclines (between 18-fold to idarubicin (4) and 166-fold to doxorubicin (13) compared to parental, drug-sensitive OVCAR8 cells). The resistant cells displayed only low degrees of resistance (1- to 5-fold) to four other anthracyclines (7, 18, 28, 30) and were even hypersensitive (collaterally sensitive) to two compounds (1, 26). Live cell time-lapse microscopy proved the cross-resistance of the three chosen anthracyclines (4, 7, 9) on sensitive CCRF/CEM and multidrug-resistant CEM/ADR5000 cells. Structure–activity relationships showed that the presence of tertiary amino functions is helpful in avoiding resistance, while primary amines rather increased resistance development. An α-aminonitrile function as in compound 1 was favorable. Investigating the mRNA expression of 49 ATP-binding cassette (ABC) transporter genes showed that ABCB1/MDR1 encoding P-glycoprotein was the most important one for acquired and inherent resistance to anthracyclines. Molecular docking demonstrated that all anthracyclines bound to the same binding domain at the inner efflux channel side of P-glycoprotein with high binding affinities. Kaplan–Meier statistics of RNA sequencing data of more than 8000 tumor biopsies of TCGA database revealed that out of 23 tumor entities high ABCB1 expression was significantly correlated with worse survival times for acute myeloid leukemia, multiple myeloma, and hepatocellular carcinoma patients. This indicates that ABCB1 may serve as a prognostic marker in anthracycline-based chemotherapy regimens in these tumor types and a target for the development of novel anthracycline derivatives. Full article
(This article belongs to the Special Issue Current Advances in ABC Transporters in Physiology and Disease)
Show Figures

Graphical abstract

36 pages, 10506 KiB  
Review
HOF•CH3CN—The Most Potent Oxygen Transfer Agent for a Large Variety of Organic Molecules
by Shlomo Rozen
Molecules 2025, 30(6), 1248; https://doi.org/10.3390/molecules30061248 - 11 Mar 2025
Viewed by 1366
Abstract
The complex of hypofluorous acid with acetonitrile—HOF•CH3CN—is the only substance possessing a truly electrophilic oxygen. This fact makes it the only tool suitable for transferring oxygen atoms to sites that are not accessible to this vital element. We will review here [...] Read more.
The complex of hypofluorous acid with acetonitrile—HOF•CH3CN—is the only substance possessing a truly electrophilic oxygen. This fact makes it the only tool suitable for transferring oxygen atoms to sites that are not accessible to this vital element. We will review here most of the known organic reactions with this complex, which is easily made by bubbling dilute fluorine through aqueous acetonitrile. The reactions of HOF•CH3CN with double bonds produce epoxides in a matter of minutes at room temperature, even when the olefin is electron-depleted and cannot be epoxidized by any other means. The electrophilic oxygen can also substitute deactivated tertiary C-H bonds via electrophilic substitution, proceeding with full retention of configuration. Using this complex enables transferring oxygen atoms to a carbonyl and oxidizing alcohols and ethers to ketones. The latter could be oxidized to esters via the Baeyer–Villiger reaction, proving once again the validity of the original Baeyer mechanism. Azines are usually avoided as protecting groups for carbonyl since their removal is problematic. HOF•CH3CN solves this problem, as it is very effective in recreating carbonyls from the respective azines. A bonus of the last reaction is the ability to replace the common 16O isotope of the carbonyl with the heavier 17O or 18O in the simplest and cheapest possible way. The reagent can transfer oxygen to most nitrogen-containing molecules. Thus, it turns practically any azide or amine into nitro compounds, including amino acids. This helps to produce novel α-alkylamino acids. It also attaches oxygen atoms to most tertiary nitrogen atoms, including certain aromatic ones, which could not be obtained before. HOF•CH3CN was also used to make five-member cyclic poly-NO derivatives, many of them intended to be highly energetic materials. The nucleophilic sulfur atom also reacts very smoothly with the reagent in a wide range of compounds to form sulfone derivatives. While common sulfides are easily converted to sulfones by many orthodox reagents, electron-depleted ones, such as Rf-S-Ar, can be oxidized to Rf-SO2-Ar only with this reagent. The mild reaction conditions also make it possible to synthesize a whole range of novel episulfones and offer, as a bonus, a very easy way to make SxO2, x being any isotope variation of oxygen. These mild conditions also helped to oxidize thiophene to thiophen-S,S-dioxide without the Diels–Alder dimerizations, which usually follow such dioxide formation. The latter reaction was a prelude to a series of preparations of [all]-S,S-dioxo-oligothiophenes, which are important for the efficient preparation of active layers in field-effect transistors (FETs), as such oligomers are considered to be important for organic semiconductors for light-emitting diodes (LEDs). Several types of these oligothiophenes were prepared, including partly or fully oxygenated ones, star-oligothiophenes, and fused ones. Several [all]-S,S-dioxo-oligo-thienylenevinylenes were also successfully prepared despite the fact that they also possess carbon–carbon p centers in their molecules. All oxygenated derivatives have been prepared for the first time and have lower HOMO-LUMO gaps compared to their parent compounds. HOF•CH3CN was also used to oxidize the surface of the nanoparticles of oligothiophenes, leaving the core of the nanoparticle unchanged. Several highly interesting features have been detected, including their ability to photostimulate the retinal neurons, especially the inner retinal ones. HOF•CH3CN was also used on elements other than carbon, such as selenium and phosphor. Various selenides were oxidized to the respective selenodioxide derivatives (not a trivial task), while various phosphines were converted efficiently to the corresponding phosphine oxides. Full article
(This article belongs to the Special Issue Featured Reviews in Organic Chemistry 2025)
Show Figures

Graphical abstract

25 pages, 6323 KiB  
Review
Neuropharmacological Potential of Diterpenoid Alkaloids
by Arash Salehi, Mustafa Ghanadian, Behzad Zolfaghari, Amir Reza Jassbi, Maryam Fattahian, Parham Reisi, Dezső Csupor, Ikhlas A. Khan and Zulfiqar Ali
Pharmaceuticals 2023, 16(5), 747; https://doi.org/10.3390/ph16050747 - 14 May 2023
Cited by 15 | Viewed by 3953
Abstract
This study provides a narrative review of diterpenoid alkaloids (DAs), a family of extremely important natural products found predominantly in some species of Aconitum and Delphinium (Ranunculaceae). DAs have long been a focus of research attention due to their numerous intricate structures and [...] Read more.
This study provides a narrative review of diterpenoid alkaloids (DAs), a family of extremely important natural products found predominantly in some species of Aconitum and Delphinium (Ranunculaceae). DAs have long been a focus of research attention due to their numerous intricate structures and diverse biological activities, especially in the central nervous system (CNS). These alkaloids originate through the amination reaction of tetra or pentacyclic diterpenoids, which are classified into three categories and 46 types based on the number of carbon atoms in the backbone structure and structural differences. The main chemical characteristics of DAs are their heterocyclic systems containing β-aminoethanol, methylamine, or ethylamine functionality. Although the role of tertiary nitrogen in ring A and the polycyclic complex structure are of great importance in drug-receptor affinity, in silico studies have emphasized the role of certain sidechains in C13, C14, and C8. DAs showed antiepileptic effects in preclinical studies mostly through Na+ channels. Aconitine (1) and 3-acetyl aconitine (2) can desensitize Na+ channels after persistent activation. Lappaconitine (3), N-deacetyllapaconitine (4), 6-benzoylheteratisine (5), and 1-benzoylnapelline (6) deactivate these channels. Methyllycaconitine (16), mainly found in Delphinium species, possesses an extreme affinity for the binding sites of α7 nicotinic acetylcholine receptors (nAChR) and contributes to a wide range of neurologic functions and the release of neurotransmitters. Several DAs such as bulleyaconitine A (17), (3), and mesaconitine (8) from Aconitum species have a drastic analgesic effect. Among them, compound 17 has been used in China for decades. Their effect is explained by increasing the release of dynorphin A, activating the inhibitory noradrenergic neurons in the β-adrenergic system, and preventing the transmission of pain messages by inactivating the Na+ channels that have been stressed. Acetylcholinesterase inhibitory, neuroprotective, antidepressant, and anxiolytic activities are other CNS effects that have been investigated for certain DAs. However, despite various CNS effects, recent advances in developing new drugs from DAs were insignificant due to their neurotoxicity. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

4 pages, 660 KiB  
Short Note
(R)-N-Benzyl-N-(1-phenylethyl)cyclohexanamine
by Ángel García-González, Leland Belda, Alejandro Manchado, Carlos T. Nieto and Narciso Martín Garrido
Molbank 2023, 2023(1), M1561; https://doi.org/10.3390/M1561 - 20 Jan 2023
Viewed by 1813
Abstract
The preparation and characterization of a new chiral tertiary dibenzylamine are described. These molecules are well known in the literature for their high neuropharmacological potential. The general synthetic pathway is based on asymmetric Aza–Michael addition of chiral (R)-N-benzyl-N [...] Read more.
The preparation and characterization of a new chiral tertiary dibenzylamine are described. These molecules are well known in the literature for their high neuropharmacological potential. The general synthetic pathway is based on asymmetric Aza–Michael addition of chiral (R)-N-benzyl-N-(α-methylbenzyl)amide to methyl cyclohex-1-en-carboxilate obtaining the β-amino ester, followed by carboxylic acid hydrolysis and subsequent Barton descarboxylation. Interestingly, it is a general synthetic procedure of a wide range of chiral amines by careful choice of insaturated esters and alkylation of the chiral enolate in the initial reaction. The new tertiary dibenzylamine molecule is fully characterized by NMR Spectroscopy (1H and 13C), as well by High-Resolution Mass Spectrometry and Infrared Spectroscopy. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Scheme 1

21 pages, 3950 KiB  
Article
Molecular and Aggregate Structural, Thermal, Mechanical and Photophysical Properties of Long-Chain Amide Gelators Containing an α-Diketo Group in the Presence or Absence of a Tertiary Amine Group
by Girishma Grover, Andrea Blake Brothers and Richard G. Weiss
Gels 2023, 9(1), 36; https://doi.org/10.3390/gels9010036 - 31 Dec 2022
Viewed by 2293
Abstract
Three structurally related gelators, each containing octadecyl chains, an α-diketo group at the 9,10 positions, and each with a different N-amide group—isobutyl (DIBA), isopentyl (DIPA) or N-(2-(dimethylamino)ethyl) (DMEA)—have been synthesized. Their neat structures as well as the thermal mechanical, and photophysical properties in [...] Read more.
Three structurally related gelators, each containing octadecyl chains, an α-diketo group at the 9,10 positions, and each with a different N-amide group—isobutyl (DIBA), isopentyl (DIPA) or N-(2-(dimethylamino)ethyl) (DMEA)—have been synthesized. Their neat structures as well as the thermal mechanical, and photophysical properties in their gel states with various liquids have been investigated. The gelator networks of DIBA and DIPA in octane, hexylbenzene and silicone oil consist of bundles of fibers. These gels are partially thixotropic and mechanically, thermally (to above their melting or silicone oil gelation temperatures), and photophysically stable. They are mechanically and thermally stronger than the gels formed with DMEA, the gelator with a tertiary amine group. The lone pair of electrons of the tertiary amine group leads to an intra-molecular or inter-molecular charge-transfer interaction, depending on whether the sample is a solution, sol, or gel. Neat, solid DMEA does not undergo the charge-transfer process because its amino and diketo groups are separated spatially by a large distance in the crystalline state and cannot diffuse into proximity. However, the solution of DIPA upon the addition of triethylamine becomes unstable over time at room temperature in the dark or (more rapidly) when irradiated, which initiates the aforementioned charge-transfer processes. The eventual reaction of the gelators in the presence of a tertiary amine group is ascribed to electron transfer from the lone-pair on nitrogen to an α-diketo group, followed by proton transfer to an oxygen atom on the anion radical of the α-diketo group from a methyl or methylene group attached to the nitrogen atom of the cation radical. Finally, the formation of an α-diketyl radical leads to irreversible electronic and structural changes that are observed over time. Full article
(This article belongs to the Special Issue Current and Future Trends in Supramolecular Gels)
Show Figures

Figure 1

15 pages, 4970 KiB  
Review
Organocatalytic Synthesis of α-Aminonitriles: A Review
by Bakhtar Ullah, Navneet Kumar Gupta, Quanli Ke, Naseeb Ullah, Xingke Cai and Dongqing Liu
Catalysts 2022, 12(10), 1149; https://doi.org/10.3390/catal12101149 - 1 Oct 2022
Cited by 18 | Viewed by 4004
Abstract
α-Aminonitriles, which have anticancer, antibacterial, antiviral, and antifungal properties, have played an important role in pharmacology. Furthermore, they can also be used to synthesize natural and unnatural amino acids. The main bottleneck in the commercialization of these products is their large-scale production with [...] Read more.
α-Aminonitriles, which have anticancer, antibacterial, antiviral, and antifungal properties, have played an important role in pharmacology. Furthermore, they can also be used to synthesize natural and unnatural amino acids. The main bottleneck in the commercialization of these products is their large-scale production with controlled chirality. A variety of methods have been used to synthesize α-aminonitriles. Among other reported methods for preparing α-aminonitriles, the Strecker reaction is considered appropriate. Recent developments, however, have enabled the α-cyanation of tertiary and secondary amines by functionalizing the carbon–hydrogen (C–H) bond as an attractive alternative procedure for the preparation of α-aminonitriles in the presence of an oxidant and a cyanide source. In most cases, these reactions are catalyzed by transition metal catalysts, such as Fe, Cu, Rh, V, Au, Ru, Mo, Pt, Re, and Co, or by photocatalysts. As an alternative, organocatalysts can also be used to produce aminonitriles. Although there have been numerous reviews on the preparation of α-aminonitriles, no such reviews have been published specifically on the organocatalyzed synthesis of α-aminonitriles. Organocatalysis plays a significant role in synthesizing α-aminonitriles via Strecker-type reactions and cross dehydrogenative coupling reactions (CDC). In this mini review, we discuss the organocatalyzed synthesis of these molecules. A review of new organocatalysts for the synthesis of aminonitriles is expected to provide insight into the development of new industrial catalysts. Full article
Show Figures

Figure 1

11 pages, 1876 KiB  
Article
Interactions of Nereistoxin and Its Analogs with Vertebrate Nicotinic Acetylcholine Receptors and Molluscan ACh Binding Proteins
by William R. Kem, Kristin Andrud, Galen Bruno, Hong Xing, Ferenc Soti, Todd T. Talley and Palmer Taylor
Mar. Drugs 2022, 20(1), 49; https://doi.org/10.3390/md20010049 - 4 Jan 2022
Cited by 9 | Viewed by 3485
Abstract
Nereistoxin (NTX) is a marine toxin isolated from an annelid worm that lives along the coasts of Japan. Its insecticidal properties were discovered decades ago and this stimulated the development of a variety of insecticides such as Cartap that are readily transformed into [...] Read more.
Nereistoxin (NTX) is a marine toxin isolated from an annelid worm that lives along the coasts of Japan. Its insecticidal properties were discovered decades ago and this stimulated the development of a variety of insecticides such as Cartap that are readily transformed into NTX. One unusual feature of NTX is that it is a small cyclic molecule that contains a disulfide bond. In spite of its size, it acts as an antagonist at insect and mammalian nicotinic acetylcholine receptors (nAChRs). The functional importance of the disulfide bond was assessed by determining the effects of inserting a methylene group between the two sulfur atoms, creating dimethylaminodithiane (DMA-DT). We also assessed the effect of methylating the NTX and DMA-DT dimethylamino groups on binding to three vertebrate nAChRs. Radioligand receptor binding experiments were carried out using washed membranes from rat brain and fish (Torpedo) electric organ; [3H]-cytisine displacement was used to assess binding to the predominantly high affinity alpha4beta2 nAChRs and [125I]-alpha-bungarotoxin displacement was used to measure binding of NTX and analogs to the alpha7 and skeletal muscle type nAChRs. While the two quaternary nitrogen analogs, relative to their respective tertiary amines, displayed lower α4β2 nAChR binding affinities, both displayed much higher affinities for the Torpedo muscle nAChR and rat alpha7 brain receptors than their respective tertiary amine forms. The binding affinities of DMA-DT for the three nAChRs were lower than those of NTX and MeNTX. An AChBP mutant lacking the C loop disulfide bond that would potentially react with the NTX disulfide bond displayed an NTX affinity very similar to the parent AChBP. Inhibition of [3H]-epibatidine binding to the AChBPs was not affected by exposure to NTX or MeNTX for up to 24 hr prior to addition of the radioligand. Thus, the disulfide bond of NTX is not required to react with the vicinal disulfide in the AChBP C loop for inhibition of [3H]-epibatidine binding. However, a reversible disulfide interchange reaction of NTX with nAChRs might still occur, especially under reducing conditions. Labeled MeNTX, because it can be readily prepared with high specific radioactivity and possesses relatively high affinity for the nAChR-rich Torpedo nAChR, would be a useful probe to detect and identify any nereistoxin adducts. Full article
(This article belongs to the Special Issue Ion Channels as Marine Drug Targets 2021)
Show Figures

Figure 1

47 pages, 24623 KiB  
Review
Asymmetric Catalytic Ketimine Mannich Reactions and Related Transformations
by Changgong Xu, Carlyn Reep, Jamielyn Jarvis, Brandon Naumann, Burjor Captain and Norito Takenaka
Catalysts 2021, 11(6), 712; https://doi.org/10.3390/catal11060712 - 7 Jun 2021
Cited by 17 | Viewed by 6775
Abstract
The catalytic enantioselective ketimine Mannich and its related reactions provide direct access to chiral building blocks bearing an α-tertiary amine stereogenic center, a ubiquitous structural motif in nature. Although ketimines are often viewed as challenging electrophiles, various approaches/strategies to circumvent or overcome the [...] Read more.
The catalytic enantioselective ketimine Mannich and its related reactions provide direct access to chiral building blocks bearing an α-tertiary amine stereogenic center, a ubiquitous structural motif in nature. Although ketimines are often viewed as challenging electrophiles, various approaches/strategies to circumvent or overcome the adverse properties of ketimines have been developed for these transformations. This review showcases the selected examples that highlight the benefits and utilities of various ketimines and remaining challenges associated with them in the context of Mannich, allylation, and aza-Morita–Baylis–Hillman reactions as well as their variants. Full article
(This article belongs to the Special Issue Catalytic Organic Transformations/Organic Synthesis)
Show Figures

Figure 1

9 pages, 5227 KiB  
Article
Brucine Diol-Catalyzed Enantioselective Morita-Baylis-Hillman Reaction in the Presence of Brucine N-Oxide
by Venkatachalam Angamuthu, Chia-Hung Lee and Dar-Fu Tai
Catalysts 2021, 11(2), 237; https://doi.org/10.3390/catal11020237 - 10 Feb 2021
Cited by 6 | Viewed by 2820
Abstract
Brucine diol (BD) catalyzed asymmetric Morita–Baylis–Hillman (MBH) reaction is observed for the first time. Brucine N-oxide (BNO) was found to not have an effective chiral catalyst. Faster reaction rate was obtained using unsaturated ester or aromatic aldehydes in the presence of BNO. 4-Nitrobenzaldehyde [...] Read more.
Brucine diol (BD) catalyzed asymmetric Morita–Baylis–Hillman (MBH) reaction is observed for the first time. Brucine N-oxide (BNO) was found to not have an effective chiral catalyst. Faster reaction rate was obtained using unsaturated ester or aromatic aldehydes in the presence of BNO. 4-Nitrobenzaldehyde and α,β-unsaturated ketone/ester were converted to the MBH adduct in moderate yields (up to 74%) with 70% ee value by this catalytic system. The mechanism of BD catalysis is probably initiated by conjugating the vicinal diol of BD to the carbonyl group of the aromatic aldehyde through hydrogen bonding. The tertiary amine of BD acts as a nucleophile to activate vinyl ketone for coupling with the carbonyl of aldehyde through an intramolecular carbonylated reaction. Finally, the breakdown of the complex caused the formation of the MBH adduct (a benzyl-allyl alcohol). The chirality of the benzyl-allyl alcohol is likely affected by the interaction of the bulky asymmetric plane of BD. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

11 pages, 1771 KiB  
Article
Susceptibility of Asialoglycoprotein Receptor-Deficient Mice to LPS/Galactosamine Liver Injury and Protection by Betaine Administration
by Karuna Rasineni, Serene M. L. Lee, Benita L. McVicker, Natalia A. Osna, Carol A. Casey and Kusum K. Kharbanda
Biology 2021, 10(1), 19; https://doi.org/10.3390/biology10010019 - 31 Dec 2020
Cited by 9 | Viewed by 2893
Abstract
Background: Work from our laboratory has shown that the ethanol-induced increase in apoptotic hepatocellular death is closely related to the impairment in the ability of the asialoglycoprotein receptor (ASGP-R) to remove neighboring apoptotic cells. In this study, we assessed the role of ASGP-R [...] Read more.
Background: Work from our laboratory has shown that the ethanol-induced increase in apoptotic hepatocellular death is closely related to the impairment in the ability of the asialoglycoprotein receptor (ASGP-R) to remove neighboring apoptotic cells. In this study, we assessed the role of ASGP-R in fulminant liver failure and investigated whether prior treatment with betaine (a naturally occurring tertiary amine) is protective. Methods: Lipopolysaccharide (LPS; 50 μg/kg BW) and galactosamine (GalN; 350 mg/kg BW) were injected together to wild-type and ASGP-R-deficient mice that were treated for two weeks prior with or without 2% betaine in drinking water. The mice were sacrificed 1.5, 3, or 4.5 h post-injection, and tissue samples were collected. Results: LPS/GalN injection generate distinct molecular processes, which includes increased production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), thus causing apoptosis as evident by increased caspase-3 activity. ASGP-R deficient animals showed increased liver caspase activities, serum TNF-α and IL-6 levels, as well as more pronounced liver damage compared with the wild-type control animals after intraperitoneal injection of LPS/GalN. In addition, prior administration of betaine was found to significantly attenuate the LPS/GalN-induced increases in liver injury parameters. Conclusion: Our work underscores the importance of normal functioning of ASGP-R in preventing severe liver damage and signifies a therapeutic role of betaine in prevention of liver injuries from toxin-induced fulminant liver failure. Full article
(This article belongs to the Special Issue Non-alcoholic Liver Injury)
Show Figures

Figure 1

10 pages, 1229 KiB  
Communication
Asymmetric Synthesis of Tertiary α -Hydroxyketones by Enantioselective Decarboxylative Chlorination and Subsequent Nucleophilic Substitution
by Mei Kee Kam, Akira Sugiyama, Ryouta Kawanishi and Kazutaka Shibatomi
Molecules 2020, 25(17), 3902; https://doi.org/10.3390/molecules25173902 - 27 Aug 2020
Cited by 7 | Viewed by 3784
Abstract
Chiral tertiary α-hydroxyketones were synthesized with high enantiopurity by asymmetric decarboxylative chlorination and subsequent nucleophilic substitution. We recently reported the asymmetric decarboxylative chlorination of β-ketocarboxylic acids in the presence of a chiral primary amine catalyst to obtain α-chloroketones with high enantiopurity. Here, we [...] Read more.
Chiral tertiary α-hydroxyketones were synthesized with high enantiopurity by asymmetric decarboxylative chlorination and subsequent nucleophilic substitution. We recently reported the asymmetric decarboxylative chlorination of β-ketocarboxylic acids in the presence of a chiral primary amine catalyst to obtain α-chloroketones with high enantiopurity. Here, we found that nucleophilic substitution of the resulting α-chloroketones with tetrabutylammonium hydroxide yielded the corresponding α-hydroxyketones without loss of enantiopurity. The reaction proceeded smoothly even at a tertiary carbon. The proposed method would be useful for the preparation of chiral tertiary alcohols. Full article
Show Figures

Figure 1

17 pages, 5526 KiB  
Article
PEGylated Amine-Functionalized Poly(ε-caprolactone) for the Delivery of Plasmid DNA
by Amin Jafari, Nika Rajabian, Guojian Zhang, Mohamed Alaa Mohamed, Pedro Lei, Stelios T. Andreadis, Blaine A. Pfeifer and Chong Cheng
Materials 2020, 13(4), 898; https://doi.org/10.3390/ma13040898 - 18 Feb 2020
Cited by 8 | Viewed by 5538
Abstract
As a promising strategy for the treatment of various diseases, gene therapy has attracted increasing attention over the past decade. Among various gene delivery approaches, non-viral vectors made of synthetic biomaterials have shown significant potential. Due to their synthetic nature, non-viral vectors can [...] Read more.
As a promising strategy for the treatment of various diseases, gene therapy has attracted increasing attention over the past decade. Among various gene delivery approaches, non-viral vectors made of synthetic biomaterials have shown significant potential. Due to their synthetic nature, non-viral vectors can have tunable structures and properties by using various building units. In particular, they can offer advantages over viral vectors with respect to biosafety and cytotoxicity. In this study, a well-defined poly(ethylene glycol)-block-poly(α-(propylthio-N,N-diethylethanamine hydrochloride)-ε-caprolactone) diblock polymer (PEG-b-CPCL) with one poly(ethylene glycol) (PEG) block and one tertiary amine-functionalized cationic poly(ε-caprolactone) (CPCL) block, as a novel non-viral vector in the delivery of plasmid DNA (pDNA), was synthesized and studied. Despite having a degradable polymeric structure, the polymer showed remarkable hydrolytic stability over multiple weeks. The optimal ratio of the polymer to pDNA for nanocomplex formation, pDNA release from the nanocomplex with the presence of heparin, and serum stability of the nanocomplex were probed through gel electrophoresis. Nanostructure of the nanocomplexes was characterized by DLS and TEM imaging. Relative to CPCL homopolymers, PEG-b-CPCL led to better solubility over a wide range of pH. Overall, this work demonstrates that PEG-b-CPCL possesses a range of valuable properties as a promising synthetic vector for pDNA delivery. Full article
(This article belongs to the Special Issue Biomaterial Design for Disease Applications)
Show Figures

Graphical abstract

18 pages, 1921 KiB  
Article
2-Unsubstituted Imidazole N-Oxides as Novel Precursors of Chiral 3-Alkoxyimidazol-2-ylidenes Derived from trans-1,2-Diaminocyclohexane and Other Chiral Amino Compounds
by Grzegorz Mlostoń, Małgorzata Celeda, Marcin Jasiński, Katarzyna Urbaniak, Przemysław J. Boratyński, Peter R. Schreiner and Heinz Heimgartner
Molecules 2019, 24(23), 4398; https://doi.org/10.3390/molecules24234398 - 2 Dec 2019
Cited by 13 | Viewed by 4583
Abstract
‘Desymmetrization’ of trans-1,2-diaminocyclohexane by treatment with α,ω-dihalogenated alkylation reagents leads to mono-NH2 derivatives (‘primary-tertiary diamines’). Upon reaction with formaldehyde, these products formed monomeric formaldimines. Subsequently, reactions of the formaldimines with α-hydroxyiminoketones led to the corresponding 2-unsubstituted imidazole N-oxide derivatives, which [...] Read more.
‘Desymmetrization’ of trans-1,2-diaminocyclohexane by treatment with α,ω-dihalogenated alkylation reagents leads to mono-NH2 derivatives (‘primary-tertiary diamines’). Upon reaction with formaldehyde, these products formed monomeric formaldimines. Subsequently, reactions of the formaldimines with α-hydroxyiminoketones led to the corresponding 2-unsubstituted imidazole N-oxide derivatives, which were used here as new substrates for the in situ generation of chiral imidazol-2-ylidenes. Upon O-selective benzylation, new chiral imidazolium salts were obtained, which were deprotonated by treatment with triethylamine in the presence of elemental sulfur. Under these conditions, the intermediate imidazol-2-ylidenes were trapped by elemental sulfur, yielding the corresponding chiral non-enolizable imidazole-2-thiones in good yields. Analogous reaction sequences, starting with imidazole N-oxides derived from enantiopure primary amines, amino alcohols, and amino acids, leading to the corresponding 3-alkoxyimidazole-2-thiones were also studied. Full article
(This article belongs to the Special Issue Stereochemistry in Action)
Show Figures

Scheme 1

11 pages, 1883 KiB  
Article
Metal-Free α-C(sp3)–H Functionalized Oxidative Cyclization of Tertiary N,N-Diaryl Amino Alcohols: Theoretical Approach for Mechanistic Pathway
by Zakir Ullah and Mihyun Kim
Molecules 2017, 22(4), 547; https://doi.org/10.3390/molecules22040547 - 29 Mar 2017
Cited by 10 | Viewed by 7357
Abstract
The mechanistic pathway of TEMPO/I2-mediated oxidative cyclization of N,N-diaryl amino alcohols 1 was investigated. Based on direct empirical experiments, three key intermediates (aminium radical cation 3, α-aminoalkyl radical 4, and iminium 5), four types of reactive species [...] Read more.
The mechanistic pathway of TEMPO/I2-mediated oxidative cyclization of N,N-diaryl amino alcohols 1 was investigated. Based on direct empirical experiments, three key intermediates (aminium radical cation 3, α-aminoalkyl radical 4, and iminium 5), four types of reactive species (radical TEMPO, cationic TEMPO, TEMPO-I, and iodo radical), and three types of pathways ((1) SET/PCET mechanism; (2) HAT/1,6-H transfer mechanism; (3) ionic mechanism) were assumed. Under the assumption, nine free energy diagrams were acquired through density functional theory calculations. From the comparison of solution-phase free energy, some possible mechanisms were excluded, and then the chosen plausible mechanisms were concretized using the more stable intermediate 7. Full article
(This article belongs to the Special Issue Reactions of Hydrocarbons and other C‒H Compounds)
Show Figures

Figure 1

Back to TopTop