Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (359)

Search Parameters:
Keywords = α/β-carotene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 776 KiB  
Article
Phytochemical Profile and Functional Properties of the Husk of Argania spinosa (L.) Skeel
by Antonietta Cerulli, Natale Badalamenti, Francesco Sottile, Maurizio Bruno, Sonia Piacente, Vincenzo Ilardi, Rosa Tundis, Roberta Pino and Monica Rosa Loizzo
Plants 2025, 14(15), 2288; https://doi.org/10.3390/plants14152288 - 24 Jul 2025
Viewed by 260
Abstract
Due to the limited scientific exploration of Argania spinosa (L.) skeel husk, this study presents the first investigation of the metabolite profile of methanol and acetone extracts analyzed by liquid chromatography coupled with electrospray ionization and high-resolution multistage mass spectrometry (LC-ESI/HRMSMS). A total [...] Read more.
Due to the limited scientific exploration of Argania spinosa (L.) skeel husk, this study presents the first investigation of the metabolite profile of methanol and acetone extracts analyzed by liquid chromatography coupled with electrospray ionization and high-resolution multistage mass spectrometry (LC-ESI/HRMSMS). A total of 43 compounds, including hydroxycinnamic acid and flavonoid derivatives, saponins, and triterpenic acids, were identified, some of which have not been previously reported in this species. The total phenols (TPC) and flavonoids (TFC) content were spectrophotometrically determined. A multi-target approach was applied to investigate the antioxidant potential using 1,1-Diphenyl-2-picrylhydrazyl (DPPH), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), β-carotene bleaching, and Ferric Reducing Ability Power (FRAP) tests. Carbohydrate hydrolyzing enzymes and lipase inhibitory activities were also assessed. The acetone extract exhibited the highest TPC and TFC values, resulting in being the most active in β-carotene bleaching test with IC50 values of 26.68 and 13.82 µg/mL, after 30 and 60 min of incubation, respectively. Moreover, it was the most active against both α-glucosidase and α-amylase enzymes with IC50 values of 12.37 and 18.93 µg/mL, respectively. These results pointed out that this by-product is a rich source of bioactive phytochemicals potentially useful for prevention of type 2 diabetes and obesity. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

16 pages, 16505 KiB  
Article
Delayed Starch Degradation Triggers Chromoplast Structural Aberration to Inhibit Carotenoid Cleavage: A Novel Mechanism for Flower Color Deepening in Osmanthus fragrans
by Xiangling Zeng, Yunfei Tan, Xin Wen, Qiang He, Hui Wu, Jingjing Zou, Jie Yang, Xuan Cai and Hongguo Chen
Horticulturae 2025, 11(7), 864; https://doi.org/10.3390/horticulturae11070864 - 21 Jul 2025
Viewed by 303
Abstract
The color of flowers in Osmanthus fragrans is regulated by carotenoid metabolism. The orange-red variety, Dangui, is believed to have evolved from the yellow variety, Jingui, through a natural bud mutation. This study uses the Jingui cultivar ‘Jinqiu Gui’ (JQG) and its bud [...] Read more.
The color of flowers in Osmanthus fragrans is regulated by carotenoid metabolism. The orange-red variety, Dangui, is believed to have evolved from the yellow variety, Jingui, through a natural bud mutation. This study uses the Jingui cultivar ‘Jinqiu Gui’ (JQG) and its bud mutation cultivar ‘Huolian Jindan’ (HLJD) as materials, combining genome resequencing, ultrastructural observation, targeted metabolomics, and transcriptomic analysis to elucidate the molecular and cellular mechanisms underlying flower color variation. Phylogenetic analysis confirms that HLJD is a natural bud mutation of JQG. Ultrastructural observations reveal that during petal development, chromoplasts are transformed from proplastids. In HLJD petals, starch granules degrade more slowly and exhibit abnormal morphology, resulting in chromoplasts displaying crystalline, tubular, and fibrous composite structures, in contrast to the typical spherical plastoglobuli found in JQG. Targeted metabolomics identified 34 carotenoids, showing significant increases in the levels of ε-carotene, γ-carotene, α-carotene, and β-carotene in HLJD petals compared to JQG, with these levels continuing to accumulate throughout the flowering process, while the levels of the cleavage products α-ionone and β-ionone decrease. Transcriptomic analysis indicates that carotenoid metabolic pathway genes do not correlate directly with the phenotype; however, 49 candidate genes significantly associated with pigment accumulation were identified. Among these, the expression of genes such as glycoside hydrolases (LYG036752, etc.), sucrose synthase (LYG010191), and glucose-1-phosphate adenylyltransferase (LYG003610) are downregulated in HLJD. This study proposes for the first time the pathway of “starch degradation delay → chromoplast structural abnormalities → carotenoid cleavage inhibition” for deepening flower color, providing a new theoretical model for the metabolic regulation of carotenoids in non-photosynthetic tissues of plants. This research not only identifies key target genes (such as glycoside hydrolases) for the color breeding of O. fragrans but also establishes a theoretical foundation for the color enhancement of other ornamental plants. Full article
Show Figures

Figure 1

17 pages, 1692 KiB  
Article
Species- and Age-Dependent Prenyllipid Accumulation in Hypericum Species’ Leaves
by Danija Lazdiņa, Ieva Miķelsone, Inga Mišina, Krists Dukurs, Ana M. Benítez-González, Carla M. Stinco, Antonio J. Meléndez-Martínez and Paweł Górnaś
Plants 2025, 14(14), 2239; https://doi.org/10.3390/plants14142239 - 20 Jul 2025
Viewed by 397
Abstract
Carotenoid, chlorophyll and tocochromanol biosynthesis and accumulation are interrelated and age-dependent in plants. Model plants produce tocopherols, but do not produce significant amounts of tocotrienols; consequently, the regulation of tocotrienol biosynthesis in plants has been scarcely studied. The Hypericum genus produces a variety [...] Read more.
Carotenoid, chlorophyll and tocochromanol biosynthesis and accumulation are interrelated and age-dependent in plants. Model plants produce tocopherols, but do not produce significant amounts of tocotrienols; consequently, the regulation of tocotrienol biosynthesis in plants has been scarcely studied. The Hypericum genus produces a variety of prenyllipids naturally in all parts of the plant, allowing for a glimpse into the relationship between them without genetic or other interference. Consequently, five Hypericum species’ leaves of different ages were investigated—H. androsaemum, H. pseudohenryi, H. hookerianum, H. patulum and one hybrid H. × inodorum (H. androsaemum × H. hircinum). The leaves contained predominantly α-tocopherol, γ-tocotrienol and δ-tocotrienol (30.9–212.8, 8.13–22.43 and 1.87–20.8 mg 100 g−1, respectively). Higher quantities of tocochromanols, a lower chlorophyll content and a higher a/b ratio were observed in the bottom (older) leaves. The predominant carotenoids were lutein (semi-quantitative) and β-carotene (7.60–28.63 and 2.33–12.43 mg 100 g−1, respectively). Carotenoid contents were lower in bottom leaves than in middle or top leaves, and the highest carotenoid content was observed in H. hookerianum and H. patulum. Leaf tocopherol, tocotrienol, chlorophyll and carotenoid accumulation were section and leaf age-dependent, and distinct relationships can be observed between the accumulation of some prenyl lipids, but not others. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Graphical abstract

18 pages, 954 KiB  
Article
Phytochemical Value and Bioactive Properties of Sweet Potato Peel Across Varieties and Drying Techniques
by Gordana Ćetković, Anja Vučetić, Teodora Cvanić, Olja Šovljanski, Aleksandra Ranitović, Biljana Lončar, Vladimir Filipović and Vanja Travičić
Processes 2025, 13(7), 2004; https://doi.org/10.3390/pr13072004 - 25 Jun 2025
Viewed by 603
Abstract
The aim of the present study was to investigate how different drying techniques (lyophilization, convective drying, and osmotic dehydration) affect the phytochemical profile, biological activities, color parameters, and antimicrobial potential of sweet potato peel from four varieties (white, pink, orange, and purple). Lyophilized [...] Read more.
The aim of the present study was to investigate how different drying techniques (lyophilization, convective drying, and osmotic dehydration) affect the phytochemical profile, biological activities, color parameters, and antimicrobial potential of sweet potato peel from four varieties (white, pink, orange, and purple). Lyophilized orange peel showed the highest carotenoid content (21.31 mg β-carotene/100 g), while osmotic dehydration resulted in the highest retention of anthocyanins in purple peel (229.58 mg cyanidin-3-glucoside/100 g). Among phenolic compounds, the most abundant were caffeic and cinnamic acids, reaching up to 434.57 mg/100 g and 430.91 mg/100 g, respectively, in white peel. Antioxidant activity was strongest in purple peel, particularly in lyophilized samples. Convective drying enhanced anti-inflammatory activity in orange peel (68.25% inhibition), and all samples demonstrated significant α-glucosidase inhibition, with values up to 96.93%. Antimicrobial effects were observed only in purple peel extracts, which showed strong antifungal activity, especially against Saccharomyces cerevisiae (inhibition zone >50 mm). These results confirm that sweet potato peel holds considerable potential as a functional ingredient and that its bioactive value can be significantly influenced by the drying method applied. Full article
(This article belongs to the Special Issue Processes in Agri-Food Technology)
Show Figures

Figure 1

20 pages, 3486 KiB  
Article
A Comparative Study of the Phytochemical Composition, Antioxidant Properties, and In Vitro Anti-Diabetic Efficacy of Different Extracts of Caulerpa prolifera
by Safae Ouahabi, Nour Elhouda Daoudi, Mohamed Chebaibi, Ibrahim Mssillou, Ilyesse Rahhou, Mohamed Bnouham, Belkheir Hammouti, Marie-Laure Fauconnier, Alicia Ayerdi Gotor, Larbi Rhazi and Mohammed Ramdani
Mar. Drugs 2025, 23(7), 259; https://doi.org/10.3390/md23070259 - 21 Jun 2025
Viewed by 989
Abstract
The Moroccan coastline has been the focus of attention for researchers studying the national algal flora, with the aim of preserving these invaluable natural resources. Since the year 2000, these resources have stimulated great interest in the creation of new drugs, as well [...] Read more.
The Moroccan coastline has been the focus of attention for researchers studying the national algal flora, with the aim of preserving these invaluable natural resources. Since the year 2000, these resources have stimulated great interest in the creation of new drugs, as well as their integration into food supplements and foods. Therefore, this study aims to explore the phytochemistry of a series of extracts derived from Caulerpa prolifera. To ensure better extraction of the various metabolites present, two extraction methods, namely maceration and the Soxhlet method, were employed using solvents of varying polarity (hexane, ethyl acetate, methanol, and water). The chemical composition of the extracts was analyzed using GC-MS for fatty acids and HPLC-DAD for phenolic compounds. Antioxidant activity was evaluated using DPPH and β-carotene bleaching assays, while antidiabetic potential was assessed by in vitro inhibition of α-amylase and α-glucosidase. In addition, Molecular docking models were employed to assess the interaction between the bioactive molecules and the human pancreatic α-amylase and α-glucosidase enzymes. Vanillin, p-coumaric acid, sinapic acid, 7,3′,4′-flavon-3-ol, and kaempferol were the most abundant phenolic compounds. Anti-diabetic and antioxidant effects were highly significant. Full article
Show Figures

Figure 1

28 pages, 3523 KiB  
Review
Nanoliposomes as Effective Vehicles of Antioxidant Compounds in Food and Health
by Jonathan García-Morales, Diana Fimbres-Olivarría, Ricardo Iván González-Vega, Ariadna Thalía Bernal-Mercado, Santiago Pedro Aubourg-Martínez, Karla Alejandra López-Gastélum, Miguel Ángel Robles-García, José de Jesús Ornelas-Paz, Saúl Ruiz-Cruz and Carmen Lizette Del-Toro-Sánchez
Int. J. Mol. Sci. 2025, 26(12), 5523; https://doi.org/10.3390/ijms26125523 - 9 Jun 2025
Viewed by 586
Abstract
Nanoliposomes have increased exponentially since their discovery in the 1960s, primarily for encapsulating medicines or compounds that can improve human health. However, recent studies propose nanoliposomes as vehicles to protect, transport, and subsequently release compounds of various kinds to fortify the properties of [...] Read more.
Nanoliposomes have increased exponentially since their discovery in the 1960s, primarily for encapsulating medicines or compounds that can improve human health. However, recent studies propose nanoliposomes as vehicles to protect, transport, and subsequently release compounds of various kinds to fortify the properties of foods and cause a prolonged release of encapsulated substances in a specific part of the body. Among the compounds successfully encapsulated are β-carotene; α-carotene; vitamins A, C, and D; and lycopene, among others. The encapsulation of extracts with high contents of antioxidant pigments is still to be explored. Therefore, this review aims to compile the compounds that have been successfully encapsulated and have met the specific prolonged release criteria, highlighting areas of research opportunity and application such as biomedical, pharmaceutical, and nutraceutical industries. Full article
(This article belongs to the Special Issue Micro-Nano Materials for Drug Delivery and Disease Treatment)
Show Figures

Figure 1

22 pages, 521 KiB  
Article
Pressurized Liquid Extraction of Bioactive Compounds from Seeds and Sprouts Trigonella foenum-graecum L. (Fenugreek): Enhanced Antioxidant and Anti-Hyperglycemic Activities
by Geovanni Silva Comilo, Karen Keli Barbosa Abrantes, Karina Miyuki Retamiro, Oscar de Oliveira Santos Junior, Wardleison Martins Moreira, Willyan Machado Giufrida, Celso Vataru Nakamura, Carlos Eduardo Barão, Lisiane dos Santos Freitas, Camila da Silva and Lucio Cardozo-Filho
Foods 2025, 14(12), 2021; https://doi.org/10.3390/foods14122021 - 7 Jun 2025
Viewed by 824
Abstract
The present study examined the impact of germination using Aloe vera as an elicitor on the phytochemical composition, antioxidant capacity, and in vitro anti-hyperglycemic and antitumoral activity of fenugreek seed extracts germinated by pressurized n-propane. The lipid composition, free fatty acids, antioxidant [...] Read more.
The present study examined the impact of germination using Aloe vera as an elicitor on the phytochemical composition, antioxidant capacity, and in vitro anti-hyperglycemic and antitumoral activity of fenugreek seed extracts germinated by pressurized n-propane. The lipid composition, free fatty acids, antioxidant activity, and phenolic content, as well as the contents of α-tocopherol, β-carotene, and minor compounds, have been determined for the extracts. The in vitro anti-hyperglycemic and anticancer activities were also evaluated in cervical cancer (HeLa) and colon cancer (SiHa) cell lines. Antioxidant activity increased two-fold, α-tocopherol increased almost three-fold, and β-carotene content was 55% higher in the germinated seed extracts compared to the raw. Fifteen polyphenolic compounds have been identified in fenugreek seed extracts, which promote germination by increasing high levels of polyunsaturated fatty acids at the expense of reducing saturated fatty acids. Extracts obtained from seed germination and elicitation with Aloe vera demonstrated potential in vitro anticancer activity in HeLa and SiHa cells. Fenugreek extracts demonstrated high in vitro inhibition of α-glucosidase (99%) and α-amylase (95%), indicating anti-hyperglycemic potential. The use of Aloe vera germination, combined with extraction using pressurized n-propane, demonstrated efficiency in enriching fenugreek seed extracts with bioactive compounds with potential in vitro anti-hyperglycemic and antitumor activity. Full article
Show Figures

Figure 1

18 pages, 2164 KiB  
Article
Dietary Supplementation with Algae Powders and Carotenoids Enhances Growth Performance and Tissue-Specific Carotenoid Accumulation in Penaeus Vannamei
by Pujiang Liu, Chengwei Huang, Qian Shen, Qijun Luo, Rui Yang, Haimin Chen, Wei Wu and Juanjuan Chen
Animals 2025, 15(11), 1550; https://doi.org/10.3390/ani15111550 - 25 May 2025
Viewed by 541
Abstract
The pigmentation and coloration of P. vannamei are primarily determined by the type and concentration of dietary carotenoids, with carotenoid-rich macroalgae serving as effective dietary supplements to enhance pigment accumulation and improve commercial quality. Five experimental diets were formulated with 3% brown algae [...] Read more.
The pigmentation and coloration of P. vannamei are primarily determined by the type and concentration of dietary carotenoids, with carotenoid-rich macroalgae serving as effective dietary supplements to enhance pigment accumulation and improve commercial quality. Five experimental diets were formulated with 3% brown algae (Saccharina japonica, SJ group; Sargassum fusiforme, SF group), red algae (Neoporphyra haitanensis, NH group), or 0.1% purified carotenoids (zeaxanthin, ZT group; fucoxanthin, FX group). The results showed that both macroalgae and carotenoid supplementation significantly enhanced weight gain rate (WGR) and specific growth rate (SGR) compared to the control group, with the zeaxanthin and fucoxanthin groups exhibiting the greatest improvements (1.6-fold and 1.3-fold, respectively). The N. haitanensis-supplemented diet, which had the highest carotenoid content, resulted in the most pronounced carotenoid accumulation (2.58-fold increase). Carotenoids were mainly deposited in the exoskeleton, followed by the hepatopancreas, with minimal accumulation in muscle tissue. α-Carotene and β-carotene contributed most to exoskeleton deposition, while lutein and zeaxanthin had weaker effects, and fucoxanthin showed no significant influence. Tissue-specific distribution patterns were observed: α-carotene and β-carotene were localized in the exoskeleton; fucoxanthin and zeaxanthin were found only in the exoskeleton and hepatopancreas, and astaxanthin was present in all three tissues. Furthermore, astaxanthin diesters (C20:5 and C22:6) were primarily detected in the exoskeleton and hepatopancreas, while monoesters (C16:0 and C18:0) were specific to muscle. These findings suggest that targeted supplementation of algal-derived carotenoids can enhance both growth and pigmentation in P. vannamei, providing a theoretical basis for the development of functional feeds to improve shrimp commercial quality. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

15 pages, 807 KiB  
Article
Development and Chemical, Physical, Functional, and Multi-Element Profile Characterization of Requeijão with Guabiroba Pulp
by Amanda Alves Prestes, Brunna de Kacia Souza Coelho, Leandro José de Oliveira Mindelo, Ana Caroline Ferreira Carvalho, Jefferson Santos de Gois, Dayanne Regina Mendes Andrade, Carolina Krebs de Souza, Cristiane Vieira Helm, Adriano Gomes da Cruz and Elane Schwinden Prudencio
Processes 2025, 13(5), 1322; https://doi.org/10.3390/pr13051322 - 26 Apr 2025
Cited by 2 | Viewed by 655
Abstract
Five requeijão samples, classified as Brazilian cream cheeses, were developed: one control (without guabiroba pulp (Campomanesia xanthocarpa O. Berg) and four with 5, 10, 15, and 20% (m/m) guabiroba pulp. They were evaluated for pH, water activity (aw), [...] Read more.
Five requeijão samples, classified as Brazilian cream cheeses, were developed: one control (without guabiroba pulp (Campomanesia xanthocarpa O. Berg) and four with 5, 10, 15, and 20% (m/m) guabiroba pulp. They were evaluated for pH, water activity (aw), color, texture, multi-mineral composition, carotenoid content, and microstructure. The addition of guabiroba pulp reduced pH and maintained Aw. The samples with 5%, 10%, 15%, and 20% guabiroba pulp presented a yellow–reddish coloration. The formulation with 5% had the lowest values of firmness, resilience, texture, and spreadability. From 10% onwards, an increase in cohesiveness and a reduction in creaminess were observed. The sample with 15% presented better spreadability, while the 20% sample had adhesiveness similar to the control. No traces of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Pb, or Se were detected. The detected elements, in descending order, were Na, Ca, P, S, K, Mg, Sr, and Zn. β-carotene was predominant, with guabiroba pulp enhancing α-carotene, β-carotene, β-cryptoxanthin, and λ-carotene levels, especially at 20% pulp. Microstructure analysis by scanning electron microscopy (SEM) showed no significant differences. These findings highlight the potential of guabiroba pulp as a functional ingredient in requeijão, enhancing its carotenoid profile while maintaining desirable textural and physicochemical properties. Full article
Show Figures

Figure 1

17 pages, 5179 KiB  
Article
Salinity-Induced VOC Modulation and Physiological Adaptations in Adenosma indiana
by Jinnawat Manasathien, Woraporn Laojinda and Piyanut Khanema
Int. J. Plant Biol. 2025, 16(1), 36; https://doi.org/10.3390/ijpb16010036 - 19 Mar 2025
Viewed by 549
Abstract
Saline environments shape plant metabolism, driving ecological and biochemical adaptations. This study investigated the impact of salinity on Adenosma indiana (Indian scent-wort), a medicinal herb known for its volatile organic compounds (VOCs) and anti-inflammatory and antimicrobial properties, to elucidate its adaptive strategies. During [...] Read more.
Saline environments shape plant metabolism, driving ecological and biochemical adaptations. This study investigated the impact of salinity on Adenosma indiana (Indian scent-wort), a medicinal herb known for its volatile organic compounds (VOCs) and anti-inflammatory and antimicrobial properties, to elucidate its adaptive strategies. During the flowering stage, samples were collected from four saline microhabitats in Kalasin Province, Thailand. We analyzed soil properties, plant growth, photosynthetic pigments, compatible solutes (anthocyanins, proline, total sugars), and elemental concentrations (K, Na, Ca, Mg) across different tissues. Results showed that A. indiana maintained stable growth while enhancing chlorophyll and β-carotene levels under increasing salinity. GC-MS identified 47 VOCs, including 3-cyclopenten-1-one (first reported in this species) and β-bisabolene, both strongly linked to soil salinity. In low-salinity soils, leaves accumulated high sodium, inducing osmoprotectants (proline, total sugars) and VOCs (D-limonene, α-pinene, terpinolene, 1-octen-3-ol) in peltate glandular trichomes. Conversely, in high-salinity soils, lower leaf sodium levels were associated with increased β-bisabolene and β-caryophyllene production, suggesting distinct biochemical pathways. These findings reveal salinity-driven VOC modulation in A. indiana, highlighting its adaptive potential for medicinal applications in saline environments and its role as a source of salt-tolerant bioactive compounds. Full article
Show Figures

Graphical abstract

50 pages, 1777 KiB  
Review
Carotenoids for Antiaging: Nutraceutical, Pharmaceutical, and Cosmeceutical Applications
by Mariia Shanaida, Olha Mykhailenko, Roman Lysiuk, Nataliia Hudz, Radosław Balwierz, Arkadii Shulhai, Nataliya Shapovalova, Volodymyr Shanaida and Geir Bjørklund
Pharmaceuticals 2025, 18(3), 403; https://doi.org/10.3390/ph18030403 - 13 Mar 2025
Cited by 3 | Viewed by 3912
Abstract
Background: Carotenoids are bioactive tetraterpenoid C40 pigments that are actively synthesized by plants, bacteria, and fungi. Compounds such as α-carotene, β-carotene, lycopene, lutein, astaxanthin, β-cryptoxanthin, fucoxanthin, and zeaxanthin have attracted increasing attention for their antiaging properties. They exhibit antioxidant, [...] Read more.
Background: Carotenoids are bioactive tetraterpenoid C40 pigments that are actively synthesized by plants, bacteria, and fungi. Compounds such as α-carotene, β-carotene, lycopene, lutein, astaxanthin, β-cryptoxanthin, fucoxanthin, and zeaxanthin have attracted increasing attention for their antiaging properties. They exhibit antioxidant, neuroprotective, and anti-inflammatory properties, contributing to the prevention and treatment of age-related diseases. Objectives: The aim of this study was to comprehensively analyze the pharmacological potential and biological mechanisms of carotenoids associated with age-related disorders and to evaluate their application in nutraceuticals, pharmaceuticals, and cosmeceuticals. Methods: A systematic review of studies published over the past two decades was conducted using the databases PubMed, Scopus, and Web of Science. The selection criteria included clinical, in silico, in vivo, and in vitro studies investigating the pharmacological and therapeutic effects of carotenoids. Results: Carotenoids demonstrate a variety of health benefits, including the prevention of age-related macular degeneration, cancer, cognitive decline, metabolic disorders, and skin aging. Their role in nutraceuticals is well supported by their ability to modulate oxidative stress and inflammatory pathways. In pharmaceuticals, carotenoids show promising results in formulations targeting neurodegenerative diseases and metabolic disorders. In cosmeceuticals, they improve skin health by protecting it against UV radiation and oxidative damage. However, bioavailability, optimal dosages, toxicity, and interactions with other bioactive compounds remain critical factors to maximize therapeutic efficacy and still require careful evaluation by scientists. Conclusions: Carotenoids are promising bioactive compounds for antiaging interventions with potential applications in a variety of fields. Further research is needed to optimize their formulas, improve bioavailability, and confirm their long-term safety and effectiveness, especially in the aging population. Full article
Show Figures

Figure 1

21 pages, 566 KiB  
Article
Enhancing Tomato Growth and Quality Under Deficit Irrigation with Silicon Application
by Mikel Añibarro-Ortega, Alexis Pereira, José Pinela, Vasiliki Liava, Christina Chaski, Alexios A. Alexopoulos, Lillian Barros and Spyridon A. Petropoulos
Agronomy 2025, 15(3), 682; https://doi.org/10.3390/agronomy15030682 - 12 Mar 2025
Cited by 1 | Viewed by 1638
Abstract
This study aimed to evaluate the effect of two irrigation systems (deficit irrigation (DI)—70% of field capacity—and full irrigation (FI)—100% of field capacity) and a biostimulant formulation (silicon (Si) and calcium (Ca) at four different rates) on the chemical composition and fruit quality [...] Read more.
This study aimed to evaluate the effect of two irrigation systems (deficit irrigation (DI)—70% of field capacity—and full irrigation (FI)—100% of field capacity) and a biostimulant formulation (silicon (Si) and calcium (Ca) at four different rates) on the chemical composition and fruit quality of greenhouse-grown tomatoes. Deficit irrigation and biostimulant application influenced the proximate composition of tomato fruits. Fructose and glucose were the main soluble sugars, while malic and citric acids were the predominant organic acids. Free sugar and organic acid content increased under DI and biostimulant applications. In contrast, deficit irrigation combined with biostimulant application decreased α-tocopherol levels. In terms of carotenoids, lycopene and β-carotene concentrations were higher under full irrigation. The main fatty acids were palmitic (C16:0) and linoleic (C18:2n6) acids, with saturated (SFA) and polyunsaturated (PUFA) fatty acids being the main classes. Moreover, biostimulant applications reduced the total phenolic content regardless of the irrigation regime, whereas the flavonoid content increased when biostimulants were applied under FI conditions. Regarding antioxidant activity (assessed by TBARS and OxHLIA assays), a variable response to irrigation and biostimulant application was observed. In conclusion, the application of Si and Ca under DI showed promising results in terms of yield and quality of tomato fruit and it could be considered a sustainable strategy to mitigate adverse effects of climate change on horticultural crops. Full article
Show Figures

Figure 1

15 pages, 1342 KiB  
Article
Isolation of Carrot Chromoplasts and Assessment of Their Carotenoid Content and Bioaccessibility
by Ana M. Benítez-González, Lourdes Gómez-Gómez, Oussama Ahrazem, Patricia Esquivel, Carla M. Stinco and Antonio J. Meléndez-Martínez
Molecules 2025, 30(6), 1267; https://doi.org/10.3390/molecules30061267 - 12 Mar 2025
Cited by 1 | Viewed by 1027
Abstract
The bioaccessibility (fraction of compounds released from the food matrix and available for absorption) and carotenoid content of carrot chromoplasts obtained through high-speed centrifugation using sucrose gradients were assessed. Three chromoplast bands were isolated, corresponding to sucrose gradients between 15 and 30%, 30 [...] Read more.
The bioaccessibility (fraction of compounds released from the food matrix and available for absorption) and carotenoid content of carrot chromoplasts obtained through high-speed centrifugation using sucrose gradients were assessed. Three chromoplast bands were isolated, corresponding to sucrose gradients between 15 and 30%, 30 and 40%, and 40 and 50%. Total carotenoid levels increased ~2.8-fold when comparing the fractions of the bands of the lowest and highest sucrose gradients. The carotenoid profiles of the bands were similar. Phytoene and phytofluene accounted for approximately 3 and 4%, respectively, while ζ-carotene made up about 3%. Provitamin A carotenoids comprised about 85% of the total carotenoids in the respective fractions. Lutein content varied among fractions, with 1.61% in the 15/30% band and 0.77% in the 40/50% sucrose band. Similar micellar carotenoid profiles were also observed across fractions. α-carotene and β-carotene accounted for 8% and 0.2% of the total carotenoid content, respectively, while ζ-carotene constituted 19%. Lutein content in micelles ranged from 0.5% in the highest sucrose content fractions to 3.2% in the lowest. Phytoene and phytofluene were the predominant carotenoids in micelles. They accounted for 41.7% and 28.4%, respectively, together representing 70% of all carotenoids, with no differences among fractions. Colourless carotenoids were more readily incorporated into micelles, followed by ζ-carotene, lutein, and provitamin A carotenoids. Full article
Show Figures

Figure 1

24 pages, 862 KiB  
Article
Changes in Oxidative Stress, Inflammatory Markers, and Lipid Profile After a 6-Week High-Antioxidant-Capacity Dietary Intervention in CVD Patients
by Magdalena Czlapka-Matyasik, Lidia Wadolowska, Paweł Gut and Anna Gramza-Michałowska
Nutrients 2025, 17(5), 806; https://doi.org/10.3390/nu17050806 - 26 Feb 2025
Cited by 3 | Viewed by 2295
Abstract
Background/Objectives: Increased dietary antioxidant capacity is a good means of lowering oxidative stress and cardiovascular risk. Established antioxidant capacity doses should be tested using dietary intervention. Methods: We analysed the influence of a high-antioxidant-capacity diet on oxidative stress (OS) and inflammatory [...] Read more.
Background/Objectives: Increased dietary antioxidant capacity is a good means of lowering oxidative stress and cardiovascular risk. Established antioxidant capacity doses should be tested using dietary intervention. Methods: We analysed the influence of a high-antioxidant-capacity diet on oxidative stress (OS) and inflammatory and lipid profile in CVD (cardiovascular disease) subjects with initially low (LowA) and high (HighA) antioxidant capacity markers. It was an experimental study with a 6-week dietary intervention (DI). Forty-eight CVD patients completed the DI. Blood and urine samples were collected, and anthropometric measurements were taken. Dietary data were collected using a multi-day food record method. α-tocopherol, β-carotene, and retinol were chosen as antioxidant capacity markers; F2-isoprostanes (F2-IsoP), oxidised low-density lipoproteins (oxLDL), and uric acid (UA) were used as OS markers; and interleukin 6 (IL-6) and high-sensitivity C-reactive proteins (hs-CRP) were used as inflammatory markers. Total cholesterol, low- and high-density lipoproteins, and triglycerides (TCHOL, LDL, HDL, TRI) as lipid profiles were analysed. Two groups of subjects with LowA and HighA profiles were identified. Results: The total dietary antioxidant capacity intake during DI was increased by 56%. In the total sample, the DI increased β-carotene, retinol, and UA, and decreased IL-6 oxLDL. The LowA group exhibited increased β-carotene, α-tocopherol, retinol, and decreased IL-6. The HighA group exhibited increased β-carotene and decreased IL-6, F2-IsoP, oxLDL, and oxLDL/LDL ratio. In the HighA group, compared to the LowA group, greater decreases in α-tocopherol and F2-IsoP were found. In both groups, inflammatory markers (IL-6) decreased, and β-carotene increased. Conclusions: The DI results depended on the antioxidant capacity profile at baseline; nevertheless, the established DI including selected antioxidative snacks significantly decrease oxidative stress and improve antioxidant capacity. Further research on diet natural antioxidant supplementation needs to be continued. Full article
(This article belongs to the Section Lipids)
Show Figures

Graphical abstract

23 pages, 1840 KiB  
Review
Distribution, Biosynthesis, and Function of Carotenoids in Oxygenic Phototrophic Algae
by Shinichi Takaichi
Mar. Drugs 2025, 23(2), 62; https://doi.org/10.3390/md23020062 - 31 Jan 2025
Cited by 1 | Viewed by 1822
Abstract
For photosynthesis, oxygenic phototrophic organisms necessarily contain not only chlorophylls but also carotenoids. Various carotenoids have been identified in algae and taxonomic studies of algae have been conducted. In this review, the relationship between the distribution of chlorophylls and carotenoids and the phylogeny [...] Read more.
For photosynthesis, oxygenic phototrophic organisms necessarily contain not only chlorophylls but also carotenoids. Various carotenoids have been identified in algae and taxonomic studies of algae have been conducted. In this review, the relationship between the distribution of chlorophylls and carotenoids and the phylogeny of sea and freshwater oxygenic phototrophs, including cyanobacteria, red algae, brown algae, and green algae, is summarized. These phototrophs contain division- or class-specific chlorophylls and carotenoids, such as fucoxanthin, peridinin, diadinoxanthin, and siphonaxanthin. The distribution of β-carotene and its derivatives, including β-carotene, zeaxanthin, violaxanthin, neoxanthin, diadinoxanthin, fucoxanthin, and peridinin (β-branch carotenoids), are limited to divisions of a part of Rhodophyta, Cryptophyta, Heterokontophyta, Haptophyta, and Dinophyta. Meanwhile, the distribution of α-carotene and its derivatives, such as lutein, loroxanthin, and siphonaxanthin (α-branch carotenoids), are limited to divisions of a part of Rhodophyta (macrophytic type), Cryptophyta, Euglenophyta, Chlorarachniophyta, and Chlorophyta. In addition, carotenogenesis pathways are also discussed based on the chemical structures of carotenoids and the known characteristics of carotenogenesis enzymes in other organisms. The specific genes and enzymes for carotenogenesis in algae are not yet known. Most carotenoids bind to membrane-bound pigment-protein complexes, such as reaction centers and light-harvesting complexes. Some carotenoids function in photosynthesis and are briefly summarized. Water-soluble peridinin-chlorophyll a-protein (PCP) and orange carotenoid protein (OCP) have also been characterized. This review is a summary and update from the previous review on the distribution of major carotenoids, primary carotenogenesis pathways, and the characteristics of carotenogenesis enzymes and genes. Full article
(This article belongs to the Special Issue Recent Advances in Marine-Derived Pigments)
Show Figures

Figure 1

Back to TopTop