Enhancing Tomato Growth and Quality Under Deficit Irrigation with Silicon Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.2. Irrigation Treatments
2.3. Chemical Composition Analysis
2.3.1. Proximate Composition and Energy
2.3.2. Analysis of Free Sugars and Organic Acids
2.3.3. Analysis of Fatty Acids, Tocopherols, and Carotenoids
2.4. Evaluation of Bioactive Properties
2.4.1. Preparation of Hydroethanolic Extracts
2.4.2. Total Phenolic Compounds and Flavonoids Content
2.4.3. Thiobarbituric Acid Reactive Substances (TBARS) Assay
2.4.4. Oxidative Hemolysis Inhibition (OxHLIA) Assay
2.5. Statistical Analysis
3. Results and Discussion
3.1. Yield Parameters
3.2. Fruit Quality Traits
3.3. Chemical Composition
3.3.1. Nutritional Value
3.3.2. Free Sugars and Organic Acids
3.3.3. Tocopherols and Carotenoids
3.3.4. Fatty Acids
3.4. Bioactive Properties
Total Phenolic and Flavonoid Contents and Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ganugi, P.; Martinelli, E.; Lucini, L. Microbial biostimulants as a sustainable approach to improve the functional quality in plant-based foods: A review. Curr. Opin. Food Sci. 2021, 41, 217–223. [Google Scholar] [CrossRef]
- Reyes-Pérez, J.J.; Enríquez-Acosta, E.A.; Ramírez-Arrebato, M.Á.; Rodríguez-Pedroso, A.T.; Falcón-Rodríguez, A. Effect of humic acids, mycorrhiza, and chitosan on growth indicators of two tomato cultivars (Solanum lycopersicum L.). Rev. Terra Latinoam. 2020, 38, 653–666. [Google Scholar] [CrossRef]
- Ahmed, M.; Ullah, H.; Piromsri, K.; Tisarum, R.; Cha-um, S.; Datta, A. Effects of an Ascophyllum nodosum seaweed extract application dose and method on growth, fruit yield, quality, and water productivity of tomato under water-deficit stress. S. Afr. J. Bot. 2022, 151, 95–107. [Google Scholar] [CrossRef]
- Ali, A.; Cavallaro, V.; Santoro, P.; Mori, J.; Ferrante, A.; Cocetta, G. Quality and physiological evaluation of tomato subjected to different supplemental lighting systems. Sci. Hortic. 2024, 323, 112469. [Google Scholar] [CrossRef]
- Svobodová, B.; Kubáň, V. Solanaceae: A Family Well-known and Still Surprising. In Phytochemicals in Vegetables: A Valuable Source of Bioactive Compounds; Petropoulos, S.A., Ferreira, I.C.F.R., Barros, L., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2018; pp. 296–372. ISBN 9781681087399. [Google Scholar]
- Añibarro-Ortega, M.; Pinela, J.; Ćirić, A.; Martins, V.; Rocha, F.; Soković, M.D.; Barata, A.M.; Carvalho, A.M.; Barros, L.; Ferreira, I.C. Valorisation of table tomato crop by-products: Phenolic profiles and in vitro antioxidant and antimicrobial activities. Food Bioprod. Process. 2020, 124, 307–319. [Google Scholar] [CrossRef]
- Hernández-Herrera, R.M.; Sánchez-Hernández, C.V.; Palmeros-Suárez, P.A.; Ocampo-Alvarez, H.; Santacruz-Ruvalcaba, F.; Meza-Canales, I.D.; Becerril-Espinosa, A. Seaweed Extract Improves Growth and Productivity of Tomato Plants under Salinity Stress. Agronomy 2022, 12, 2495. [Google Scholar] [CrossRef]
- Añibarro-Ortega, M.; Pinela, J.; Alexopoulos, A.; Petropoulos, S.A.; Ferreira, I.C.; Barros, L. The powerful Solanaceae: Food and nutraceutical applications in a sustainable world. Adv. Food Nutr. Res. 2022, 100, 131–172. [Google Scholar] [CrossRef]
- Kumari, R.; Kaur, I.; Bhatnagar, A.K. Effect of aqueous extract of Sargassum johnstonii Setchell & Gardner on growth, yield and quality of Lycopersicon esculentum Mill. J. Appl. Phycol. 2011, 23, 623–633. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, S.; Fan, J.; Zhang, F.; Xiang, Y. Responses of growth, fruit yield, quality and water productivity of greenhouse tomato to deficit drip irrigation. Sci. Hortic. 2021, 275, 109710. [Google Scholar] [CrossRef]
- Khalid, M.F.; Huda, S.; Yong, M.; Li, L.; Li, L.; Chen, Z.H.; Ahmed, T. Alleviation of drought and salt stress in vegetables: Crop responses and mitigation strategies. Plant Growth Regul. 2023, 99, 177–194. [Google Scholar] [CrossRef]
- Rakkammal, K.; Maharajan, T.; Antony, S.; Manikandan, C. Biostimulants and their role in improving plant growth under drought and salinity. Cereal Res. Commun. 2023, 51, 61–74. [Google Scholar] [CrossRef]
- Barik, S.K.; Behera, M.D.; Shrotriya, S.; Likhovskoi, V. Monitoring climate change impacts on agriculture and forests: Trends and prospects. Environ. Monit. Assess. 2023, 195, 174. [Google Scholar] [CrossRef]
- Malik, A.; Mor, V.S.; Tokas, J.; Punia, H.; Malik, S.; Malik, K.; Sangwan, S.; Tomar, S.; Singh, P.; Singh, N.; et al. Biostimulant-treated seedlings under sustainable agriculture: A global perspective facing climate change. Agronomy 2021, 11, 14. [Google Scholar] [CrossRef]
- Cammarano, D.; Ronga, D.; Di Mola, I.; Mori, M.; Parisi, M. Impact of climate change on water and nitrogen use effi ciencies of processing tomato cultivated in Italy. Agric. Water Manag. 2020, 241, 106336. [Google Scholar] [CrossRef]
- Chartzoulakis, K.; Bertaki, M. Sustainable Water Management in Agriculture under Climate Change. Agric. Agric. Sci. Procedia 2015, 4, 88–98. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Water-use efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 2019, 10, 103. [Google Scholar] [CrossRef]
- Turan, M.; Ekinci, M.; Argin, S.; Brinza, M.; Yildirim, E. Drought stress amelioration in tomato (Solanum lycopersicum L.) seedlings by biostimulant as regenerative agent. Front. Plant Sci. 2023, 14, 1211210. [Google Scholar] [CrossRef]
- Patel, M.; Fatnani, D.; Parida, A.K. Silicon-induced mitigation of drought stress in peanut genotypes (Arachis hypogaea L.) through ion homeostasis, modulations of antioxidative defense system, and metabolic regulations. Plant Physiol. Biochem. 2021, 166, 290–313. [Google Scholar] [CrossRef]
- Patel, J.; Mishra, A. Plant aquaporins alleviate drought tolerance in plants by modulating cellular biochemistry, root-architecture, and photosynthesis. Physiol. Plant. 2021, 172, 1030–1044. [Google Scholar] [CrossRef]
- Francesca, S.; Najai, S.; Zhou, R.; Decros, G.; Cassan, C.; Delmas, F.; Ottosen, C.; Barone, A.; Manuela, M. Phenotyping to dissect the biostimulant action of a protein hydrolysate in tomato plants under combined abiotic stress. Plant Physiol. Biochem. 2022, 179, 32–43. [Google Scholar] [CrossRef]
- Chand, J.; Hewa, G.; Hassanli, A.; Myers, B. Evaluation of Deficit Irrigation and Water Quality on Production and Water Productivity of Tomato in Greenhouse. Agriculture 2020, 10, 297. [Google Scholar] [CrossRef]
- Chand, J.B.; Hewa, G.; Hassanli, A.; Myers, B. Deficit Irrigation on Tomato Production in a Greenhouse Environment: A Review. J. Irrig. Drain. Eng. 2021, 147, 04020041. [Google Scholar] [CrossRef]
- Rodriguez-Ramos, J.C.; Turini, T.; Wang, D.; Hale, L. Impacts of deficit irrigation and organic amendments on soil microbial populations and yield of processing tomatoes. Appl. Soil Ecol. 2022, 180, 104625. [Google Scholar] [CrossRef]
- Khapte, P.S.; Kumar, P.; Burman, U.; Kumar, P. Deficit irrigation in tomato: Agronomical and physio-biochemical implications. Sci. Hortic. 2019, 248, 256–264. [Google Scholar] [CrossRef]
- Malash, N.M.; Flowers, T.J.; Ragab, R. Effect of irrigation methods, management and salinity of irrigation water on tomato yield, soil moisture and salinity distribution. Irrig. Sci. 2008, 26, 313–323. [Google Scholar] [CrossRef]
- Rodriguez-Ortega, W.M.; Martinez, V.; Rivero, R.M.; Camara-Zapata, J.M.; Mestre, T.; Garcia-Sanchez, F. Use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes. Agric. Water Manag. 2017, 183, 158–168. [Google Scholar] [CrossRef]
- Chakma, R.; Saekong, P.; Biswas, A.; Ullah, H.; Datta, A. Growth, fruit yield, quality, and water productivity of grape tomato as affected by seed priming and soil application of silicon under drought stress. Agric. Water Manag. 2021, 256, 107055. [Google Scholar] [CrossRef]
- Cozzolino, E.; Di Mola, I.; Ottaiano, L.; El-Nakhel, C.; Rouphael, Y.; Mori, M. Foliar application of plant-based biostimulants improve yield and upgrade qualitative characteristics of processing tomato. Ital. J. Agron. 2021, 16, 201–207. [Google Scholar] [CrossRef]
- Liava, V.; Chaski, C.; Añibarro-Ortega, M.; Pereira, A.; Pinela, J.; Barros, L.; Petropoulos, S.A. The Effect of Biostimulants on Fruit Quality of Processing Tomato Grown under Deficit Irrigation. Horticulturae 2023, 9, 1184. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef]
- Arif, Y.; Singh, P.; Bajguz, A.; Alam, P.; Hayat, S. Silicon mediated abiotic stress tolerance in plants using physio-biochemical, omic approach and cross-talk with phytohormones. Plant Physiol. Biochem. 2021, 166, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Parađiković, N.; Teklić, T.; Zeljković, S.; Lisjak, M.; Špoljarević, M. Biostimulants research in some horticultural plant species—A review. Food Energy Secur. 2019, 8, e00162. [Google Scholar] [CrossRef]
- Hidalgo-Santiago, L.; Navarro-León, E.; López-Moreno, F.J.; Arjó, G.; González, L.M.; Ruiz, J.M.; Blasco, B. The application of the silicon-based biostimulant Codasil® offset water deficit of lettuce plants. Sci. Hortic. 2021, 285, 110177. [Google Scholar] [CrossRef]
- Cao, B.-L.; Wang, L.; Gao, S.; Xia, J.; Xu, K. Silicon-mediated changes in radial hydraulic conductivity and cell wall stability are involved in silicon-induced drought resistance in tomato. Protoplasma 2017, 254, 2295–2304. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, Y.; Gong, H.-J.; Zhao, H.-L.; Li, H.-L.; Hu, Y.-H.; Wang, Y.-C. Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. J. Integr. Agric. 2018, 17, 2151–2159. [Google Scholar] [CrossRef]
- Khan, A.L. Silicon: A Valuable Soil Element for Improving Plant Growth and CO2 Sequestration. J. Adv. Res. 2024; in press. [Google Scholar] [CrossRef]
- da Silva, A.P.R.; Fernandes, D.M.; Deus, A.C.F.; Büll, L.T. Interaction Between High Soil Zinc Level and Silicon Application Methods in Maize Plants. Silicon 2023, 15, 5133–5147. [Google Scholar] [CrossRef]
- Turhan, A.; Kuscu, H.; Asik, B.B. The Influence of Irrigation Strategies on Tomato Fruit Yield and Leaf Nutrient Contents. Gesunde Pflanz. 2022, 74, 1021–1027. [Google Scholar] [CrossRef]
- Jin, N.; Jin, L.; Wang, S.; Meng, X.; Ma, X.; He, X.; Zhang, G.; Luo, S.; Lyu, J.; Yu, J. A Comprehensive Evaluation of Effects on Water-Level Deficits on Tomato Polyphenol Composition, Nutritional Quality and Antioxidant Capacity. Antioxidants 2022, 11, 1585. [Google Scholar] [CrossRef]
- Bai, C.; Zuo, J.; Watkins, C.B.; Wang, Q.; Liang, H.; Zheng, Y.; Liu, M.; Ji, Y. Postharvest Biology and Technology Sugar accumulation and fruit quality of tomatoes under water deficit irrigation. Postharvest Biol. Technol. 2023, 195, 112112. [Google Scholar] [CrossRef]
- Lipan, L.; Issa-issa, H.; Moriana, A.; Zurita, N.M.; Galindo, A.; Martín-Palomo, M.J.; Andreu, L.; Carbonell-Barrachina, Á.A.; Hernández, F.; Corell, M. Scheduling Regulated Deficit Irrigation with Leaf Water Potential of Cherry Tomato in Greenhouse and its Effect on Fruit Quality. Agriculture 2021, 11, 669. [Google Scholar] [CrossRef]
- Francaviglia, R.; Di Bene, C. Deficit Drip Irrigation in Processing Tomato Production in the Mediterranean Basin. A data analysis for Italy. Agriculture 2019, 9, 79. [Google Scholar] [CrossRef]
- Agbna, G.H.D.; Dongli, S.; Zhipeng, L.; Elshaikh, N.A.; Guangcheng, S.; Timm, L.C. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Sci. Hortic. 2017, 222, 90–101. [Google Scholar] [CrossRef]
- Fernandes, Â.; Chaski, C.; Pereira, C.; Kostić, M.; Rouphael, Y.; Soković, M.; Barros, L.; Petropoulos, S.A. Water Stress Alleviation Effects of Biostimulants on Greenhouse-Grown Tomato Fruit. Horticulturae 2022, 8, 645. [Google Scholar] [CrossRef]
- Fernandes, Â.; Polyzos, N.; Mandim, F.; Pereira, C.; Petrović, J.; Soković, M.; Petropoulos, S.A. Combined Effect of Biostimulants and Mineral Fertilizers on Crop Performance and Fruit Quality of Watermelon Plants. Horticulturae 2023, 9, 838. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of Association of Official Analytical Chemists International. In Official Methods of Analysis of AOAC International; Horwitz, W., Latimer, G., Eds.; AOAC Inter.: Gaithersburg, MD, USA, 2019; ISBN 0935584773. [Google Scholar]
- Spréa, R.M.; Fernandes, Â.; Calhelha, R.C.; Pereira, C.; Pires, T.C.S.P.; Alves, M.J.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Chemical and bioactive characterization of the aromatic plant Levisticum officinale W.D.J. Koch: A comprehensive study. Food Funct. 2020, 11, 1292–1303. [Google Scholar] [CrossRef]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Use of UFLC-PDA for the analysis of organic acids in thirty-five species of food and medicinal plants. Food Anal. Methods 2013, 6, 1337–1344. [Google Scholar] [CrossRef]
- Pinela, J.; Barreira, J.C.M.; Barros, L.; Cabo Verde, S.; Antonio, A.L.; Carvalho, A.M.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Suitability of gamma irradiation for preserving fresh-cut watercress quality during cold storage. Food Chem. 2016, 206, 50–58. [Google Scholar]
- Nagata, M.; Yamashita, I. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi 1992, 39, 925–928. [Google Scholar]
- Lockowandt, L.; Pinela, J.; Roriz, C.L.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Bredol, M.; Ferreira, I.C.F.R. Chemical features and bioactivities of cornflower (Centaurea cyanus L.) capitula: The blue flowers and the unexplored non-edible part. Ind. Crops Prod. 2019, 128, 496–503. [Google Scholar] [CrossRef]
- Singh, M.; Singh, P.; Singh, S.; Saini, R.K.; Angadi, S.V. A global meta-analysis of yield and water productivity responses of vegetables to deficit irrigation. Sci. Rep. 2021, 11, 22095. [Google Scholar] [CrossRef]
- Sani, M.N.H.; Islam, M.N.; Uddain, J.; Chowdhury, M.S.N.; Subramaniam, S. Synergistic effect of microbial and nonmicrobial biostimulants on growth, yield, and nutritional quality of organic tomato. Crop Sci. 2020, 60, 2102–2114. [Google Scholar] [CrossRef]
- Peripolli, M.; Dornelles, S.H.B.; Lopes, S.J.; Tabaldi, L.A.; Trivisiol, V.S.; Rubert, J. Application of biostimulants in tomato subjected to water deficit: Physiological, enzymatic and production responses. Rev. Bras. Eng. Agric. Ambient. 2021, 25, 90–95. [Google Scholar] [CrossRef]
- Villa e Vila, V.; Marques, P.A.A.; Gomes, T.M.; Nunes, A.F.; Montenegro, V.G.; Wenneck, G.S.; Franco, L.B. Deficit Irrigation with Silicon Application as Strategy to Increase Yield, Photosynthesis and Water Productivity in Lettuce Crops. Plants 2024, 13, 1029. [Google Scholar] [CrossRef]
- Chakma, R.; Ullah, H.; Sonprom, J.; Biswas, A.; Himanshu, S.K.; Datta, A. Effects of Silicon and Organic Manure on Growth, Fruit Yield, and Quality of Grape Tomato Under Water-Deficit Stress. Silicon 2023, 15, 763–774. [Google Scholar] [CrossRef]
- Dou, Z.; Abdelghany, A.E.; Zhang, H.; Feng, H.; Zhang, Y.; Yu, S.; Zhang, F.; Li, Z.; Fan, J. Exogenous silicon application improves fruit yield and quality of drip-irrigated greenhouse tomato by regulating physiological characteristics and growth under combined drought and salt stress. Sci. Hortic. 2023, 321, 112352. [Google Scholar] [CrossRef]
- Villa e Vila, V.V.; Marques, P.A.A.; Rezende, R.; Wenneck, G.S.; Terassi, D.d.S.; Andrean, A.F.B.A.; Nocchi, R.C.d.F.; Matumoto-Pintro, P.T. Deficit Irrigation with Ascophyllum nodosum Extract Application as a Strategy to Increase Tomato Yield and Quality. Agronomy 2023, 13, 1853. [Google Scholar] [CrossRef]
- Dou, Z.; Feng, H.; Zhang, H.; Abdelghany, A.E.; Zhang, F.; Li, Z.; Fan, J. Silicon application mitigated the adverse effects of salt stress and deficit irrigation on drip-irrigated greenhouse tomato. Agric. Water Manag. 2023, 289, 108526. [Google Scholar] [CrossRef]
- Zhu, Y.-X.; Xu, X.-B.; Hu, Y.-H.; Han, W.-H.; Yin, J.-L.; Li, H.-L.; Gong, H.-J. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L. Plant Cell Rep. 2015, 34, 1629–1646. [Google Scholar] [CrossRef]
- Debona, D.; Rodrigues, F.A.; Datnoff, L.E. Silicon’s Role in Abiotic and Biotic Plant Stresses. Annu. Rev. Phytopathol. 2017, 55, 85–107. [Google Scholar] [CrossRef]
- Patanè, C.; Pellegrino, A.; Saita, A.; Calcagno, S.; Cosentino, S.L.; Scandurra, A.; Cafaro, V. A study on the effect of biostimulant application on yield and quality of tomato under long-lasting water stress conditions. Heliyon 2025, 11, e41187. [Google Scholar] [CrossRef]
- de Sousa, R.M.V.; Silva, A.A.; Fonseca, G.M.; da Cunha, J.G.; Lacerda, J.J.d.J.; Guimarães, W.P.; Júnior, G.B.d.S.; Moura, R.d.S.; da Silva, E.M. Silicon increases the production and quality of cherry tomato under different electrical conductivity levels. Semin. Agrar. 2022, 43, 1297–1315. [Google Scholar] [CrossRef]
- Reyes-Pérez, J.J.; Murillo-Noboa, K.P.; Murillo-Amador, B.; Hernandéz-Montiel, L.G.; Maciel-Torres, S.P.; Rivas-Garcia, T. Edaphic silicon nutrition of tomato biostimulates their growth, yield and antioxidant composition under greenhouse conditions. Hortic. Bras. 2024, 42, e276481. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Corell, M.; Moriana, A.; Hernanz, D.; Stinco, C.M.; Mapelli-Brahm, P.; Meléndez-Martínez, A.J. Effect of regulated deficit irrigation on commercial quality parameters, carotenoids, phenolics and sugars of the black cherry tomato (Solanum lycopersicum L.) ‘Sunchocola’. J. Food Compos. Anal. 2022, 105, 104220. [Google Scholar] [CrossRef]
- Plaut, Z.; Grava, A.; Yehezkel, C.; Matan, E. How do salinity and water stress affect transport of water, assimilates and ions to tomato fruits? Physiol. Plant. 2004, 122, 429–442. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Rebolloso-Fuentes, M.M. Nutrient composition and antioxidant activity of eight tomato (Lycopersicon esculentum) varieties. J. Food Compos. Anal. 2009, 22, 123–129. [Google Scholar] [CrossRef]
- Agbemafle, R.; Owusu-Sekyere; Bart-Plange, A. Effect of deficit irrigation and storage on the nutritional composition of tomato (Lycopersicon esculentum Mill. cv. Pectomech). Croat. J. Food Technol. Biotechnol. Nutr. 2015, 10, 59–65. [Google Scholar]
- Poorter, H.; Nagel, O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review. Funct. Plant Biol. 2000, 27, 595–607. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Plexida, S.; Chrysargyris, A.; Tzortzakis, N.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R. Biostimulants application alleviates water stress effects on yield and chemical composition of greenhouse green bean (Phaseolus vulgaris L.). Agronomy 2020, 10, 181. [Google Scholar] [CrossRef]
- Fernandes, Â.; Figueiredo, S.; Finimundy, T.C.; Pinela, J.; Tzortzakis, N.; Ivanov, M.; Sokovi, M.; Ferreira, I.C.F.R.; Petropoulos, S.A. Chemical Composition and Bioactive Properties of Purple French Bean (Phaseolus vulgaris L.) as Affected by Water Deficit Irrigation and Biostimulants Application. Sustainability 2021, 13, 6869. [Google Scholar] [CrossRef]
- Galindo, F.S.; Pagliari, P.H.; Rodrigues, W.L.; Fernandes, G.C.; Boleta, E.H.M.; Santini, J.M.K.; Jalal, A.; Buzetti, S.; Lavres, J.; Teixeira Filho, M.C.M. Silicon amendment enhances agronomic efficiency of nitrogen fertilization in maize and wheat crops under tropical conditions. Plants 2021, 10, 1329. [Google Scholar] [CrossRef]
- Gao, Z.; Sagi, M.; Lips, S.H. Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity. Plant Sci. 1998, 135, 149–159. [Google Scholar] [CrossRef]
- Jalali, P.; Roosta, H.R.; Khodadadi, M.; Torkashvand, A.M.; Jahromi, M.G. Effects of brown seaweed extract, silicon, and selenium on fruit quality and yield of tomato under different substrates. PLoS ONE 2022, 17, e0277923. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Su, Y.; Yang, R.; Xie, Z.; Gong, H. Effect of Foliar Application of Silicon and Selenium on the Growth, Yield and Fruit Quality of Tomato in the Field. Horticulturae 2023, 9, 1126. [Google Scholar] [CrossRef]
- Hernández, V.; Botella, M.Á.; Hellín, P.; Fenoll, J.; Flores, P. Dose-Dependent Potential of Chitosan to Increase Yield or Bioactive Compound Content in Tomatoes. Horticulturae 2022, 8, 1152. [Google Scholar] [CrossRef]
- Huang, D.; Yun, F.; Zhang, Y.; Man, X.; Wang, C.; Liao, W. D-cysteine desulfhydrase silence influences the level of sugar, organic acid, carotenoids, and polyphenols in tomato fruit. Sci. Hortic. 2023, 321, 112356. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Z.; Zhou, R.; Liu, X.; Hou, X.; Han, M.; Luo, G.; Zhou, H.; Jiang, F. Improving tomato yield, quality and antioxidant capacity in greenhouse by far-infrared radiation. Plant Stress 2023, 10, 100274. [Google Scholar] [CrossRef]
- Davies, J.N.; Kempton, R.J. Changes in the individual sugars of tomato fruit during ripening. J. Sci. Food Agric. 1975, 26, 1103–1110. [Google Scholar] [CrossRef]
- Salim, B.B.M.; Abou El-Yazied, A.; Salama, Y.A.M.; Raza, A.; Osman, H.S. Impact of silicon foliar application in enhancing antioxidants, growth, flowering and yield of squash plants under deficit irrigation condition. Ann. Agric. Sci. 2021, 66, 176–183. [Google Scholar] [CrossRef]
- Karagiannis, E.; Michailidis, M.; Skodra, C.; Molassiotis, A.; Tanou, G. Silicon influenced ripening metabolism and improved fruit quality traits in apples. Plant Physiol. Biochem. 2021, 166, 270–277. [Google Scholar] [CrossRef]
- Distefano, M.; Steingass, C.B.; Leonardi, C.; Giuffrida, F.; Schweiggert, R.; Mauro, R.P. Effects of a plant-derived biostimulant application on quality and functional traits of greenhouse cherry tomato cultivars. Food Res. Int. 2022, 157, 111218. [Google Scholar] [CrossRef]
- Jin, N.; Zhang, D.; Jin, L.; Wang, S.; Yang, X.; Lei, Y.; Meng, X.; Xu, Z.; Sun, J.; Lyu, J.; et al. Controlling water deficiency as an abiotic stress factor to improve tomato nutritional and flavour quality. Food Chem. X 2023, 19, 100756. [Google Scholar] [CrossRef] [PubMed]
- Alordzinu, K.E.; Appiah, S.A.; AL Aasmi, A.; Darko, R.O.; Li, J.; Lan, Y.; Adjibolosoo, D.; Lian, C.; Wang, H.; Qiao, S.; et al. Evaluating the Influence of Deficit Irrigation on Fruit Yield and Quality Indices of Tomatoes Grown in Sandy Loam and Silty Loam Soils. Water 2022, 14, 1753. [Google Scholar] [CrossRef]
- Jiang, X.; Zhao, Y.; Tong, L.; Wang, R.; Zhao, S. Quantitative analysis of tomato yield and comprehensive fruit quality in response to deficit irrigation at different growth stages. HortScience 2019, 54, 1409–1417. [Google Scholar] [CrossRef]
- Lahoz, I.; Pérez-de-Castro, A.; Valcárcel, M.; Macua, J.I.; Beltrán, J.; Roselló, S.; Cebolla-Cornejo, J. Effect of water deficit on the agronomical performance and quality of processing tomato. Sci. Hortic. 2016, 200, 55–65. [Google Scholar] [CrossRef]
- Pék, Z.; Szuvandzsiev, P.; Daood, H.; Neményi, A.; Helyes, L. Effect of irrigation on yield parameters and antioxidant profiles of processing cherry tomato. Cent. Eur. J. Biol. 2014, 9, 383–395. [Google Scholar] [CrossRef]
- Quadrana, L.; Almeida, J.; Otaiza, S.N.; Duffy, T.; da Silva, J.V.C.; de Godoy, F.; Asís, R.; Bermúdez, L.; Fernie, A.R.; Carrari, F.; et al. Transcriptional regulation of tocopherol biosynthesis in tomato. Plant Mol. Biol. 2013, 81, 309–325. [Google Scholar] [CrossRef]
- Saini, R.K.; Zamany, A.J.; Keum, Y.S. Ripening improves the content of carotenoid, α-tocopherol, and polyunsaturated fatty acids in tomato (Solanum lycopersicum L.) fruits. 3 Biotech 2017, 7, 43. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Chiou, A.; Pyriochou, V.; Peristeraki, A.; Karathanos, V.T. Bioactive phytochemicals in industrial tomatoes and their processing byproducts. LWT Food Sci. Technol. 2012, 49, 213–216. [Google Scholar] [CrossRef]
- Helyes, L.; Lugasi, A.; Daood, H.G.; Pék, Z. The simultaneous effect of water supply and genotype on yield quantity, antioxidants content and composition of processing tomatoes. Not. Bot. Horti Agrobot. 2014, 42, 143–149. [Google Scholar] [CrossRef]
- Takács, S.; Pék, Z.; Csányi, D.; Daood, H.G.; Szuvandzsiev, P.; Palotás, G.; Helyes, L. Influence of water stress levels on the yield and lycopene content of tomato. Water 2020, 12, 2165. [Google Scholar] [CrossRef]
- Francesca, S.; Cirillo, V.; Raimondi, G.; Maggio, A.; Rigano, M.M.; Barone, A. A Novel Protein Hydrolysate-Based Biostimulant Improves Tomato Performances under Drought Stress. Plants 2021, 10, 783. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jin, N.; Xie, Y.; Zhu, W.; Yang, Y.; Wang, J.; Lei, Y.; Liu, W.; Wang, S.; Jin, L.; et al. Improvements in the Appearance and Nutritional Quality of Tomato Fruits Resulting from Foliar Spraying with Silicon. Foods 2024, 13, 223. [Google Scholar] [CrossRef] [PubMed]
- Bayati, P.; Karimmojeni, H.; Razmjoo, J. Changes in essential oil yield and fatty acid contents in black cumin (Nigella sativa L.) genotypes in response to drought stress. Ind. Crops Prod. 2020, 155, 112764. [Google Scholar] [CrossRef]
- Li, Y.; Hu, W.; Setter, T.L.; He, J.; Zou, J.; Zhu, H.; Zheng, G.; Zhao, W.; Wang, Y.; Chen, B.; et al. Soil drought decreases oil synthesis and increases protein synthesis in cottonseed kernel during the flowering and boll formation of cotton. Environ. Exp. Bot. 2022, 201, 104964. [Google Scholar] [CrossRef]
- He, M.; Ding, N.-Z. Plant Unsaturated Fatty Acids: Multiple Roles in Stress Response. Front. Plant Sci. 2020, 11, 562785. [Google Scholar] [CrossRef]
- Barbagallo, R.N.; Di Silvestro, I.; Patanè, C. Yield, physicochemical traits, antioxidant pattern, polyphenol oxidase activity and total visual quality of field-grown processing tomato cv. Brigade as affected by water stress in Mediterranean climate. J. Sci. Food Agric. 2013, 93, 1449–1457. [Google Scholar] [CrossRef]
- Pernice, R.; Parisi, M.; Giordano, I.; Pentangelo, A.; Graziani, G.; Gallo, M.; Fogliano, V.; Ritieni, A. Antioxidants profile of small tomato fruits: Effect of irrigation and industrial process. Sci. Hortic. 2010, 126, 156–163. [Google Scholar] [CrossRef]
- Tallarita, A.V.; Vecchietti, L.; Golubkina, N.A.; Sekara, A.; Cozzolino, E.; Mirabella, M.; Cuciniello, A.; Maiello, R.; Cenvinzo, V.; Lombardi, P.; et al. Effects of Plant Biostimulation Time Span and Soil Electrical Conductivity on Greenhouse Tomato ‘Miniplum’ Yield and Quality in Diverse Crop Seasons. Plants 2023, 12, 1423. [Google Scholar] [CrossRef]
- Bogale, A.; Nagle, M.; Latif, S.; Aguila, M.; Müller, J. Regulated deficit irrigation and partial root-zone drying irrigation impact bioactive compounds and antioxidant activity in two select tomato cultivars. Sci. Hortic. 2016, 213, 115–124. [Google Scholar] [CrossRef]
- Kalisz, A.; Húska, D.; Jurkow, R.; Dvořák, M.; Klejdus, B.; Caruso, G.; Sękara, A. Nanoparticles of cerium, iron, and silicon oxides change the metabolism of phenols and flavonoids in butterhead lettuce and sweet pepper seedlings. Environ. Sci. Nano 2021, 8, 1945–1959. [Google Scholar] [CrossRef]
- Xu, X.; Zou, G.; Li, Y.; Sun, Y.; Liu, F. Silicon application improves strawberry plant antioxidation ability and fruit nutrition under both full and deficit irrigation. Sci. Hortic. 2023, 309, 111684. [Google Scholar] [CrossRef]
- Pinedo-Guerrero, Z.H.; Cadenas-Pliego, G.; Ortega-Ortiz, H.; González-Morales, S.; Benavides-Mendoza, A.; Valdés-Reyna, J.; Juárez-Maldonado, A. Form of silica improves yield, fruit quality and antioxidant defense system of tomato plants under salt stress. Agriculture 2020, 10, 367. [Google Scholar] [CrossRef]
Treatment | Number of Fruits/Plant | Fruit Weight/Plant (g) | Total Yield (kg/ha) | Dry Matter (%) |
---|---|---|---|---|
Control × DI | 18.5 ± 2.1 c | 1608 ± 101 f | 40,200 ± 1787 g | 5.8 ± 0.4 b |
Tr1 × DI | 22.5 ± 3.1 a | 1711 ± 168 e | 42,781 ± 1700 f | 5.8 ± 0.2 b |
Tr2 × DI | 20.5 ± 2.4 b | 1605 ± 145 f | 51,431 ± 1133 d | 5.8 ± 0.3 b |
Tr3 × DI | 20.3 ± 1.5 b | 2057 ±112 d | 43,402 ± 2806 f | 3.6 ± 0.4 d |
Tr4 × DI | 20.5 ± 2.5 b | 1736 ± 119 e | 49,583 ± 1988 e | 5.4 ± 0.5 b |
Control × FI | 15.4 ± 1.3 e | 2560 ± 160 b | 64,000 ± 1500 b | 5.0 ± 0.2 c |
Tr1 × FI | 13.4 ± 2.3 g | 2228 ± 146 c | 55,709 ± 1158 c | 5.1 ± 0.1 c |
Tr2 × FI | 16.2 ± 2.1 d | 2752 ± 180 a | 68,794 ± 4492 a | 5.0 ± 0.3 c |
Tr3 × FI | 14.0 ± 1.8 f | 2741 ± 162 a | 68,521 ± 2541 a | 8.3 ± 1.4 a |
Tr4 × FI | 12.6 ± 1.6 h | 2549 ± 125 b | 63,718 ± 1532 b | 4.9 ± 0.1 c |
Control × DI | Tr1 × DI | Tr2 × DI | Tr3 × DI | Tr4 × DI | Control × FI | Tr1 × FI | Tr2 × FI | Tr3 × FI | Tr4 × FI | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Dimensions (mm) | Height | 40.1 ± 2.7 d | 40.2 ± 2.3 d | 30.6 ± 3.9 e | 45.7 ± 2.7 a | 41.3 ± 2.2 cd | 45.1 ± 3.0 a | 43.0 ± 2.4 bc | 46.2 ± 2.0 a | 44.3 ± 2.1 ab | 42.7 ± 1.9 bc |
Diameter | 49.5 ± 2.2 cc | 48.0 ± 3.1 d | 38.2 ± 2.3 e | 55.5 ± 1.7 a | 50.5 ± 2.1 c | 52.9 ± 2.1 b | 50.7 ± 2.4 | 54.0 ± 3.1 a | 52.7 ± 1.4 b | 52.2 ± 2.2 b | |
Color | L* | 39.3 ± 2.9 ab | 38.6 ± 2.8 ab | 39.7 ± 1.9 ab | 37.9 ± 2.5 b | 38.5 ± 2.7 ab | 40.2 ± 2.5 ab | 38.5 ± 2.5 ab | 39.4 ± 2.2 ab | 39.3 ± 2.0 ab | 40.5 ± 2.9 a |
a* | 22.6 ± 2.0 a | 21.8 ± 2.8 a | 22.6 ± 2.0 a | 22.5 ± 2.4 a | 22.0 ± 2.5 a | 23.8 ± 2.1 a | 22.2 ± 2.1 a | 23.2 ± 2.4 a | 23.5 ± 2.2 a | 22.6 ± 3.2 a | |
b* | 29.0 ± 2.3 a | 29.6 ± 3.4 a | 30.3 ± 2.7 a | 28.7 ± 3.6 a | 29.2 ± 2.9 a | 31.6 ± 2.9 a | 29.0 ± 3.6 a | 30.5 ± 2.6 a | 31.2 ± 3 a | 31.1 ± 3.2 a | |
Firmness (Kg) | F1 | 0.92 ± 0.12 bc | 1.22 ± 0.22 ab | 1.30 ± 0.21 a | 0.97 ± 0.17 bc | 0.86 ± 0.14 cd | 1.08 ± 0.25 b | 0.94 ± 0.12 bc | 0.78 ± 0.23 d | 0.98 ± 0.31 bc | 0.95 ± 0.23 bc |
F2 | 0.93 ± 0.24 d | 1.29 ± 0.31 ab | 1.48 ± 0.32 a | 0.86 ± 0.13 | 1.17 ± 0.21 bc | 1.03 ± 0.13 c | 1.07 ± 0.17 c | 1.04 ± 0.31 c | 1.10 ± 0.22 c | 0.84 ± 0.25 d | |
EC | 2.8 ± 0.1 ab | 2.7 ± 0.4 bc | 2.9 ± 0.1 a | 2.6 ± 0.3 | 2.8 ± 0.1 ab | 2.5 ± 0.1 d | 2.8 ± 0.2 ab | 2.6 ± 0.1 cd | 2.7 ± 0.2 bc | 2.5 ± 0.1 d | |
pH | 4.4 ± 0.1 a | 4.4 ± 0.1 a | 4.4 ± 0.1 a | 4.5 ± 0.3 a | 4.4 ± 0.0 a | 4.4 ± 0.1 a | 4.5 ± 0.1 a | 4.4 ± 0.1 a | 4.4 ± 0.1 a | 4.3 ± 0.1 a | |
Acidity (g citric acid/100 g) | 0.03 ± 0.01 a | 0.03 ± 0.01 a | 0.03 ± 0.01 a | 0.02 ± 0.01 a | 0.03 ± 0.01 a | 0.02 ± 0.01 a | 0.02 ± 0.01 a | 0.02 ± 0.01 a | 0.02 ± 0.01 a | 0.02 ± 0.01 a | |
°Brix | 4.1 ± 0.2 c | 4.4 ± 0.3 a | 4.4 ± 0.3 a | 4.1 ± 0.2 | 4.2 ± 0.1 bc | 4.3 ± 0.4 ab | 4.3 ± 0.3 ab | 4.1 ± 0.1 c | 4.3 ± 0.2 ab | 4.1 ± 0.2 c |
Moisture | Proteins | Crude Fat | Ash | Carbohydrates | Energy | |
---|---|---|---|---|---|---|
(g/100 g fw) | (g/100 g fw) | (g/100 g fw) | (g/100 g fw) | (g/100 g fw) | (kcal/100 g fw) | |
Control × DI | 94.6 ± 1.1 b | 0.65 ± 0.01 d | 0.049 ± 0.003 cd | 0.35 ± 0.02 cd | 4.4 ± 0.2 c | 20.4 ± 0.8 c |
Tr1 × DI | 93.9 ± 1.3 d | 0.78 ± 0.01 a | 0.052 ± 0.003 bc | 0.40 ± 0.02 a | 4.9 ± 0.2 ab | 23.1 ± 0.8 a |
Tr2 × DI | 93.8 ± 1.0 d | 0.72 ± 0.01 b | 0.057 ± 0.004 a | 0.36 ± 0.01 bc | 5.1 ± 0.2 a | 23.6 ± 0.8 a |
Tr3 × DI | 95.0 ± 1.6 a | 0.70 ± 0.03 bc | 0.048 ± 0.001 cde | 0.32 ± 0.01 ef | 3.9 ± 0.2 d | 19.0 ± 0.8 d |
Tr4 × DI | 94.0 ± 0.8 d | 0.76 ± 0.05 a | 0.048 ± 0.003 de | 0.38 ± 0.01 ab | 4.8 ± 0.2 ab | 22.7 ± 0.8 a |
Control × RI | 95.3 ± 1.3 a | 0.57 ± 0.01 f | 0.047 ± 0.001 de | 0.31 ± 0.02 f | 3.8 ± 0.2 d | 17.8 ± 0.8 d |
Tr1 × RI | 94.5 ± 0.7 b | 0.69 ± 0.01 c | 0.054 ± 0.003 ab | 0.33 ± 0.02 de | 4.4 ± 0.2 c | 20.9 ± 0.8 bc |
Tr2 × RI | 95.1 ± 1.4 a | 0.60 ± 0.02 e | 0.045 ± 0.003 e | 0.31 ± 0.02 f | 4.0 ± 0.2 d | 18.6 ± 0.8 d |
Tr3 × RI | 94.1 ± 0.9 cd | 0.76 ± 0.01 a | 0.056 ± 0.004 a | 0.39 ± 0.02 a | 4.7 ± 0.2 bc | 22.3 ± 0.8 ab |
Tr4 × RI | 94.4 ± 1.0 bc | 0.73 ± 0.01 b | 0.052 ± 0.002 bc | 0.38 ± 0.01 ab | 4.4 ± 0.2 c | 21.1 ± 0.8 bc |
Free Sugars (g/100 g fw) | Organic Acids (mg/100 g fw) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Fructose | Glucose | Sucrose | Total | Oxalic Acid | Malic Acid | Ascorbic Acid | Citric Acid | Total | |
Control × DI | 2.6 ± 0.2 c | 0.79 ± 0.05 c | 0.0100 ± 0.0005 a | 3.4 ± 0.2 d | 57 ± 4 bc | 468 ± 28 bc | 14.4 ± 0.1 d | 423 ± 16 e | 962 ± 48 c |
Tr1 × DI | 2.85 ± 0.07 b | 1.02 ± 0.01 b | 0.010 ± 0.001 a | 3.88 ± 0.08 b | 62 ± 3 a | 519 ± 19 a | 15.7 ± 0.2 b | 518 ± 11 a | 1115 ± 34 a |
Tr2 × DI | 3.10 ± 0.07 a | 1.12 ± 0.03 a | 0.010 ± 0.001 ab | 4.2 ± 0.1 a | 56 ± 3 c | 539 ± 30 a | 17.1 ± 0.3 a | 480 ± 19 bc | 1092 ± 8 a |
Tr3 × DI | 2.3 ± 0.2 d | 0.61 ± 0.03 e | 0.010 ± 0.001 ab | 2.9 ± 0.2 e | 47 ± 3 d | 422 ± 7 d | 12.5 ± 0.2 g | 397 ± 6 f | 879 ± 17 e |
Tr4 × DI | 2.8 ± 0.2 b | 1.03 ± 0.08 b | nd | 3.8 ± 0.3 b | 57 ± 2 bc | 539 ± 22 a | 16.0 ± 0.2 b | 495 ± 22 b | 1107 ± 47 a |
Control × FI | 2.05 ± 0.09 e | 0.55 ± 0.04 f | 0.010 ± 0.001 b | 2.61 ± 0.05 f | 42 ± 1 e | 301 ± 5 f | 7.4 ± 0.1 i | 340 ± 8 h | 690 ± 8 g |
Tr1 × FI | 2.78 ± 0.08 b | 0.74 ± 0.05 cd | 0.0100 ± 0.0004 ab | 3.5 ± 0.1 cd | 59 ± 4 abc | 476 ± 22 bc | 13.9 ± 0.4 e | 459 ± 7 d | 1007 ± 33 b |
Tr2 × FI | 2.40 ± 0.02 d | 0.63 ± 0.05 e | 0.010 ± 0.001 b | 3.03 ± 0.07 e | 44 ± 2 de | 355 ± 10 e | 9.3 ± 0.1 h | 360 ± 6 g | 769 ± 17 f |
Tr3 × FI | 2.91 ± 0.03 b | 0.72 ± 0.05 d | 0.010 ± 0.001 ab | 3.63 ± 0.03 c | 61 ± 3 ab | 482 ± 26 b | 14.7 ± 0.3 c | 476 ± 7 c | 1033 ± 36 b |
Tr4 × FI | 2.42 ± 0.04 d | 0.61 ± 0.01 e | 0.010 ± 0.001 ab | 3.04 ± 0.05 e | 59 ± 3 abc | 450 ± 25 c | 12.8 ± 0.1 f | 401 ± 5 f | 923 ± 33 d |
Tocopherols (μg/100 g fw) | Carotenoids (μg/100 g fw) | ||||||
---|---|---|---|---|---|---|---|
α-Tocopherol | β-Tocopherol | γ-Tocopherol | δ-Tocopherol | Total | Lycopene | β-Carotene | |
Control × DI | 206 ± 6 d | 9.3 ± 0.6 h | 84 ± 1 f | nd | 299 ± 7 e | 533 ± 14 h | 401 ± 14 e |
Tr1 × DI | 192 ± 2 e | 19.6 ±0.5 f | 75 ± 3 g | nd | 287 ± 6 e | 607 ± 8 g | 450 ± 9 d |
Tr2 × DI | 220 ± 6 c | 29 ± 1 d | 96 ± 4 cd | 5.3 ± 0.3 b | 351 ± 12 c | 632 ± 5 f | 491 ± 7 c |
Tr3 × DI | 188 ± 7 e | 39 ± 2 a | 92 ± 2 e | nd | 318 ± 11 d | 734 ± 8 d | 515 ± 8 c |
Tr4 × DI | 197 ± 4 e | 27 ± 1 de | 94 ± 2 de | nd | 318 ± 7 d | 496 ± 6 i | 387 ± 6 e |
Control × FI | 208 ± 5 d | 31 ± 2 c | 103 ± 1 b | 5.0 ± 0.2 c | 347 ± 9 c | 941 ± 9 b | 609 ± 22 b |
Tr1 × FI | 273 ± 6 a | 37 ± 2 b | 105 ± 1 b | 4.8 ± 0.3 d | 419 ± 9 a | 624 ± 15 fg | 456 ± 23 d |
Tr2 × FI | 230 ± 3 b | 11 ± 2 g | 114 ± 2 a | nd | 355 ± 6 c | 841 ± 11 c | 521 ± 14 c |
Tr3 × FI | 269 ± 15 a | 27.3 ±0.4 de | 98 ± 4 c | nd | 395 ± 19 b | 714 ± 9 e | 491 ± 21 c |
Tr4 × FI | 211 ± 8 d | 26 ± 2 e | 84 ± 2 f | 6.4 ± 0.3 a | 328 ± 11 d | 1000 ± 6 a | 650 ± 8 a |
Fatty Acids | Categories | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C14:0 | C16:0 | C18:0 | C18:1n9 | C18:2n6 | C18:3n3 | C20:0 | C23:0 | C24:0 | SFA | MUFA | PUFA | PUFA/SFA | n6/n3 | |
Control × DI | 0.98 ± 0.02 e | 36 ± 1 cde | 5.4 ± 0.4 a | 2.9 ± 0.1 f | 33.3 ± 0.4 cd | 13 ± 1 bc | 1.35 ± 0.04 b | 0.64 ± 0.05 c | 2.2 ± 0.1 bc | 49 ± 1 cd | 3.9 ± 0.2 g | 47 ± 1 abc | 0.94 ± 0.03 cd | 2.6 ± 0.1 ab |
Tr1 × DI | 1.16 ± 0.07 cd | 36 ± 2 cde | 5.3 ± 0.2 ab | 3.2 ± 0.1 de | 33.3 ± 0.6 cd | 14 ± 1 b | 1.31 ± 0.04 b | 0.63 ± 0.03 cd | 1.79 ± 0.06 d | 48 ± 2 cde | 4.28 ± 0.03 f | 47 ± 2 abc | 0.98 ± 0.05 bc | 2.4 ± 0.1 c |
Tr2 × DI | 1.20 ± 0.04 c | 35 ± 1 de | 5.0 ± 0.4 c | 3.2 ± 0.1 de | 34 ± 2 bc | 14 ± 1 b | 1.06 ± 0.03 b | 0.55 ± 0.04 e | 2.5 ± 0.2 a | 47 ± 1 e | 4.5 ± 0.1 def | 48 ± 1 ab | 1.02 ± 0.03 b | 2.5 ± 0.2 bc |
Tr3 × DI | 1.36 ± 0.07 b | 41 ± 2 a | 5.5 ± 0.1 a | 3.6 ± 0.2 d | 34 ± 1 bc | nd | 1.33 ± 0.04 b | 0.59 ± 0.02 de | 2.11 ± 0.05 c | 55 ± 2 a | 6.1 ± 0.2 c | 39 ± 1 e | 0.72 ± 0.03 e | - |
Tr4 × DI | 1.43 ± 0.07 b | 38 ± 2 bc | 4.6 ± 0.1 d | 3.5 ± 0.1 d | 33 ± 2 cd | 12.0 ± 0.1 c | 1.11 ± 0.05 b | 0.68 ± 0.04 b | 2.3 ± 0.2 b | 50 ± 2 c | 4.67 ± 0.01 de | 46 ± 2 cd | 0.92 ± 0.05 cd | 2.7 ± 0.1 a |
Control × FI | 1.10 ± 0.01 d | 37 ± 1 bcd | nd | 5.4 ± 0.4 b | 37 ± 1 a | nd | 13 ± 1 a | 0.69 ± 0.06 b | nd | 52 ±2 b | 10.0 ± 0.7 a | 38 ± 1 e | 0.72 ± 0.03 e | - |
Tr1 × FI | 1.2 ± 0.1 c | 38 ± 2 bc | 5.1 ± 0.2 bc | 3.1 ± 0.2 ef | 33 ± 1 cd | 13 ± 1 bc | 1.12 ± 0.04 b | 0.45 ± 0.04 f | 1.73 ± 0.04 d | 49 ± 2 cd | 4.5 ± 0.1 def | 46 ± 2 cd | 0.94 ± 0.05 cd | 2.60 ± 0.04 ab |
Tr2 × FI | 1.5 ± 0.1 a | 38 ± 1 bc | 4.4 ± 0.1 d | 4.1 ± 0.3 c | 32 ± 1 d | 13 ± 1 bc | 1.1 ± 0.1 b | 0.90 ± 0.01 a | 2.4 ± 0.1 a | 50 ± 1 c | 4.9 ± 0.3 d | 45 ± 1 d | 0.89 ± 0.03 d | 2.49 ± 0.05 bc |
Tr3 × FI | 1.17 ± 0.01 cd | 34 ± 1 e | 5.4 ± 0.1 a | 6.5 ± 0.3 a | 34 ± 1 bc | 15 ± 1 a | 1.3 ± 0.1 b | 0.60 ± 0.04 de | 1.8 ± 0.1 d | 45 ± 1 f | 6.5 ± 0.3 b | 49 ± 2 a | 1.10 ± 0.05 a | 2.21 ± 0.03 d |
Tr4 × FI | 0.97 ± 0.04 e | 37 ± 2 bcd | 5.5 ± 0.2 a | 4.2 ± 0.1 c | 35 ± 1 b | 13 ± 1 bc | nd | 0.54 ± 0.04 e | 2.22 ± 0.03 bc | 47 ± 2 de | 4.20 ± 0.04 f | 48 ± 2 ab | 1.02 ± 0.06 b | 2.66 ± 0.09 a |
Total Phenolics | Total Flavonoids | TBARS | OxHLIA | |
---|---|---|---|---|
(mg GAE/g Extract) | (mg QE/g Extract) | (EC50, μg/mL) | (IC50, μg/mL) | |
Control × DI | 16.6 ± 0.8 f | 2.14 ± 0.03 g | 315 ± 6 f | 397 ± 16 b |
Tr1 × DI | 12.5 ± 0.5 i | 2.7 ± 0.1 c | 434 ± 19 d | 783 ± 26 a |
Tr2 × DI | 15.3 ± 0.6 gh | 2.9 ± 0.1 a | 553 ± 20 c | 181 ± 12 c |
Tr3 × DI | 15.7 ± 0.2 g | 2.3 ± 0.1 f | 322 ± 2 f | 376 ± 26 b |
Tr4 × DI | 14.8 ± 0.2 h | 2.9 ± 0.1 b | 312 ± 2 f | 115 ± 5 d |
Control × FI | 21.4 ± 0.3 a | 2.7 ± 0.1 c | 339 ± 11 ef | 69 ± 4 ef |
Tr1 × FI | 17.6 ± 0.3 e | 2.3 ± 0.1 f | 697 ± 27 a | 64 ± 4 f |
Tr2 × FI | 20.0 ± 0.3 b | 2.3 ± 0.1 f | 598 ± 24 b | 160 ± 10 c |
Tr3 × FI | 18.1 ± 0.8 d | 2.5 ± 0.1 e | 354 ± 9 e | 97 ± 6 de |
Tr4 × FI | 19.3 ± 0.3 c | 2.6 ± 0.1 d | 549 ± 10 c | 46 ± 2 f |
Trolox | - | - | 5.4 ± 0.3 | 21.8 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Añibarro-Ortega, M.; Pereira, A.; Pinela, J.; Liava, V.; Chaski, C.; Alexopoulos, A.A.; Barros, L.; Petropoulos, S.A. Enhancing Tomato Growth and Quality Under Deficit Irrigation with Silicon Application. Agronomy 2025, 15, 682. https://doi.org/10.3390/agronomy15030682
Añibarro-Ortega M, Pereira A, Pinela J, Liava V, Chaski C, Alexopoulos AA, Barros L, Petropoulos SA. Enhancing Tomato Growth and Quality Under Deficit Irrigation with Silicon Application. Agronomy. 2025; 15(3):682. https://doi.org/10.3390/agronomy15030682
Chicago/Turabian StyleAñibarro-Ortega, Mikel, Alexis Pereira, José Pinela, Vasiliki Liava, Christina Chaski, Alexios A. Alexopoulos, Lillian Barros, and Spyridon A. Petropoulos. 2025. "Enhancing Tomato Growth and Quality Under Deficit Irrigation with Silicon Application" Agronomy 15, no. 3: 682. https://doi.org/10.3390/agronomy15030682
APA StyleAñibarro-Ortega, M., Pereira, A., Pinela, J., Liava, V., Chaski, C., Alexopoulos, A. A., Barros, L., & Petropoulos, S. A. (2025). Enhancing Tomato Growth and Quality Under Deficit Irrigation with Silicon Application. Agronomy, 15(3), 682. https://doi.org/10.3390/agronomy15030682