Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (174)

Search Parameters:
Keywords = Λ(R,T)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 359 KiB  
Article
Toward the Alleviation of the H0 Tension in Myrzakulov f(R,T) Gravity
by Mashael A. Aljohani, Emad E. Mahmoud, Koblandy Yerzhanov and Almira Sergazina
Universe 2025, 11(8), 252; https://doi.org/10.3390/universe11080252 - 29 Jul 2025
Viewed by 119
Abstract
In this work, we provide a promising way to alleviate the Hubble tension within the framework of Myrzakulov f(R,T) gravity. The latter incorporates both curvature and torsion under a non-special connection. We consider the [...] Read more.
In this work, we provide a promising way to alleviate the Hubble tension within the framework of Myrzakulov f(R,T) gravity. The latter incorporates both curvature and torsion under a non-special connection. We consider the f(R,T)=R+αR2 class, which leads to modified Friedmann equations and an effective dark energy sector. Within this class, we make specific connection choices in order to obtain a Hubble function that coincides with that of ΛCDM at early times while yielding higher H0 values at late times. The reason behind this behavior is that the dark energy equation of state exhibits phantom behavior, which is known to be a sufficient mechanism for alleviating the H0 tension. A full observational comparison with various datasets, including the Cosmic Microwave Background (CMB), is required to test the viability of this scenario. Strictly speaking, the present work does not provide a complete solution to the Hubble tension but rather proposes a promising way to alleviate it. Full article
(This article belongs to the Special Issue Gravity and Cosmology: Exploring the Mysteries of f(T) Gravity)
Show Figures

Figure 1

16 pages, 1251 KiB  
Article
Demographic Parameters and Life History Traits of Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) Influenced by Different Temperatures and Two Types of Food
by Mohammed M. E. Elmoghazy, Eslam Kamal Fahmy, Tagwa Salah Ahmed Mohammed Ali, Mohamed El-Sherbiny, Rasha Hamed Al-Serwi, Moaz Abulfaraj and Dalia M. A. Elsherbini
Insects 2025, 16(8), 777; https://doi.org/10.3390/insects16080777 - 29 Jul 2025
Viewed by 345
Abstract
Studying the nutritional ecology of Neoseiulus cucumeris (Oudemans) at different temperatures is a fundamental tool for improving mass production for use in biological control of pest mites. The current research studied the impact of both food types and temperatures on the life history [...] Read more.
Studying the nutritional ecology of Neoseiulus cucumeris (Oudemans) at different temperatures is a fundamental tool for improving mass production for use in biological control of pest mites. The current research studied the impact of both food types and temperatures on the life history and demographic parameters of the predator mite N. cucumeris. Mite cultures in the laboratory were developed using Tetranychus urticae Koch, and N. cucumeris was collected from field plants. The developmental stages of N. cucumeris fed on date palm pollen and the immature stages of T. urticae were investigated in a laboratory setting at different temperatures. Our research revealed that N. cucumeris readily accepted both food types at all the tested temperatures. The developmental stages and adult longevity of N. cucumeris, both female and male, decreased dramatically when the temperature increased from 18 °C to 34 °C. The net reproductive rate (R0) reached its greatest values of 22.52 and 9.72 offspring/individual at 26 °C, and the intrinsic rate of increase (rm) reached its maximum values of 0.17 and 0.13 day−1 at 34 °C and minimum of 0.12 and 0.10 day−1 at 18 °C, when fed on date palm pollen and immature stages of T. urticae, respectively. Conversely, the average generation time (T) showed a notable reduction from 22.48 to 16.48 and 20.88 to 16.76 days, accompanied by an upsurge in temperature from 18 °C to 34 °C, when fed on date palm pollen and immature stages of T. urticae, respectively. The finite rate of growth (λ) exhibited distinct variations, reaching its highest value at 34 °C, 26 °C, and 18 °C when fed on date palm pollen and immature stages of T. urticae, respectively. From these results, we can conclude that N. cucumeris was successfully fed date palm pollen as an alternate source of nourishment. In addition, the immature stages of T. urticae are suitable as food sources for N. cucumeris because they shorten the mean generation time. Therefore, the success of mass-rearing the predator mite N. cucumeris on a different, less expensive diet, such as date palm pollen, and determining the most suitable temperature for it has increased its spread as a biocontrol agent. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 2118 KiB  
Article
Ribosomal Hibernation Factor Links Quorum-Sensing to Acid Resistance in EHEC
by Yang Yang, Xinyi Zhang, Zixin Han, Junpeng Li, Qiaoqiao Fang and Guoqiang Zhu
Microorganisms 2025, 13(8), 1730; https://doi.org/10.3390/microorganisms13081730 - 24 Jul 2025
Viewed by 259
Abstract
The mechanism by which quorum sensing (QS) enhances stress resistance in enterohemorrhagic Escherichia coli (E. coli) O157:H7 remains unclear. We employed optimized exogenous QS signal N-acyl-homoserinelactones (AHL) (100 μM 3-oxo-C6-AHL, 2 h) in EHEC O157:H7 strain EDL933, which was validated with [...] Read more.
The mechanism by which quorum sensing (QS) enhances stress resistance in enterohemorrhagic Escherichia coli (E. coli) O157:H7 remains unclear. We employed optimized exogenous QS signal N-acyl-homoserinelactones (AHL) (100 μM 3-oxo-C6-AHL, 2 h) in EHEC O157:H7 strain EDL933, which was validated with endogenous yenI-derived AHL, to investigate QS-mediated protection against acid stress. RNA-seq transcriptomics identified key upregulated genes (e.g., rmf). Functional validation using isogenic rmf knockout mutants generated via λ-Red demonstrated abolished stress resistance and pan-stress vulnerability. Mechanistic studies employing qRT-PCR and stress survival assays established Ribosomal Hibernation Factor (RMF) as a non-redundant executor in a SdiA–RMF–RpoS axis, which activates ribosomal dormancy and SOS response to enhance EHEC survival under diverse stresses. For the first time, we define ribosomal hibernation as the core adaptive strategy linking QS to pathogen resilience, providing crucial mechanistic insights for developing EHEC control measures against foodborne threats. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

25 pages, 11927 KiB  
Article
Hydroxylated vs. Carboxylated Nanotubes: Differential Impacts on Fall Armyworm Development, Reproduction, and Population Dynamics
by Zhao Wang, Syed Husne Mobarak, Fa-Xu Lu, Jing Ai, Xie-Yuan Bai, Lei Wu, Shao-Zhao Qin and Chao-Xing Hu
Insects 2025, 16(8), 748; https://doi.org/10.3390/insects16080748 - 22 Jul 2025
Viewed by 365
Abstract
Carbon nanotubes are promising in agriculture for improving crop resilience and delivering agrochemicals. However, their effects on insect pests, especially chewing pests such as the fall armyworm (Spodoptera frugiperda), remain underexplored. In this study, we investigated how two types of functionalized [...] Read more.
Carbon nanotubes are promising in agriculture for improving crop resilience and delivering agrochemicals. However, their effects on insect pests, especially chewing pests such as the fall armyworm (Spodoptera frugiperda), remain underexplored. In this study, we investigated how two types of functionalized multi-walled carbon nanotubes—hydroxylated (MWCNTs-OH) and carboxylated (MWCNTs-COOH), both obtained from Jiangsu Xianfeng Nano (Nanjing, China)—affect the pest’s development and reproduction. Using an age-stage two-sex life table approach, we fed larvae diets containing 0.04, 0.4, or 4 mg/g of these nanomaterials. Both types of MWCNTs exhibited concentration-dependent inhibitory effects. At the highest dose (4 mg/g), larval development was significantly prolonged, adult pre-oviposition periods increased, and fecundity (egg production) sharply declined, especially with MWCNTs-OH. Population growth parameters were also suppressed: net reproductive rate (R0), intrinsic rate of increase (r), and finite rate of increase (λ) were reduced at 4 mg/g, particularly with MWCNTs-OH, while mean generation time (T) was extended with MWCNTs-COOH. Overall, MWCNTs-OH demonstrated a greater inhibitory impact compared to MWCNTs-COOH. These findings suggest that functionalized MWCNTs could serve as potential novel pest control agents against S. frugiperda by impeding its development and reproduction. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

14 pages, 1323 KiB  
Article
Impact of Temperature and Soil Moisture on the Life Cycle of the Strawberry Pest Priophorus fulvostigmatus and Its Control
by Juan Cui, Jingxu Yin, Lihuan Dong, Yu Gao, Shusen Shi, Jingzhu Zou, Wenbo Li and Yu Wang
Insects 2025, 16(7), 717; https://doi.org/10.3390/insects16070717 - 12 Jul 2025
Viewed by 453
Abstract
Priophorus fulvostigmatus, a species of leaf-cutter wasp, is an important leaf-feeding pest on strawberries. We investigated the effects of temperature and soil moisture content on key life cycle parameters of P. fulvostigmatus. The development time, survival, fecundity, and life table parameters [...] Read more.
Priophorus fulvostigmatus, a species of leaf-cutter wasp, is an important leaf-feeding pest on strawberries. We investigated the effects of temperature and soil moisture content on key life cycle parameters of P. fulvostigmatus. The development time, survival, fecundity, and life table parameters of P. fulvostigmatus were observed at five temperatures. Pupal development and survival under five moisture contents (8%, 12%, 16%, 20%, and 24%) and four durations of water immersion (0, 1, 3, and 5 d) were recorded. P. fulvostigmatus could complete its life cycle at a constant temperature range of 16–28 °C. The duration of the immature stage first decreased and then increased with rising temperature, being longest at 16 °C and shortest at 25 °C. Female longevity and female fecundity did not differ between the temperature range of 16–25 °C. However, survival rates at all developmental stages decreased with increasing temperature. At 28 °C, both fecundity and survival rates of P. fulvostigmatus were significantly reduced compared to other temperatures. Compared with that at the constant temperature of 22 °C, the developmental duration of each stage was similar at a fluctuating temperature of 22 °C. The number of eggs laid per female, the longevity of male adults, and the eclosion rate were all significantly reduced. The net reproductive rate (R0) under constant temperature conditions was significantly higher than under fluctuating temperature conditions, and the mean generation period (T), intrinsic rate of increase (r), and finite rate of increase (λ) differed significantly. The soil moisture content significantly impacted the pupation and eclosion of P. fulvostigmatus. Differences in soil moisture content had no significant effect on the duration of development; a moisture content of 8–16% was more suitable for their pupation and eclosion. Pupal development differed significantly between different periods of water immersion after the mature larvae were immersed in the soil. The longer the larvae remained in the soil, the lower their emergence rate after immersion. Thus, environmental temperature affected the growth, reproduction, and survival of P. fulvostigmatus. The optimal soil moisture for pupation of mature larvae was 12% to 16%. After the larvae were immersed in soil, the emergence rate was significantly reduced. These findings expand our understanding of the biological characteristics of P. fulvostigmatus and can facilitate the development of prevention and control strategies. Full article
(This article belongs to the Collection Integrated Pest Management Strategies for Horticultural Crops)
Show Figures

Figure 1

22 pages, 4476 KiB  
Article
Real-Time Model Predictive Control for Two-Level Voltage Source Inverters with Optimized Switching Frequency
by Ariel Villalón, Claudio Burgos-Mellado, Marco Rivera, Rodrigo Zuloaga, Héctor Levis, Patrick Wheeler and Leidy Y. García
Appl. Sci. 2025, 15(13), 7365; https://doi.org/10.3390/app15137365 - 30 Jun 2025
Viewed by 393
Abstract
The increasing integration of renewable energy, electric vehicles, and industrial applications demands efficient power converter control strategies that reduce switching losses while maintaining high waveform quality. This paper presents a Finite-Control-Set Model Predictive Control (FCS-MPC) strategy for three-phase, two-level voltage source inverters (VSIs), [...] Read more.
The increasing integration of renewable energy, electric vehicles, and industrial applications demands efficient power converter control strategies that reduce switching losses while maintaining high waveform quality. This paper presents a Finite-Control-Set Model Predictive Control (FCS-MPC) strategy for three-phase, two-level voltage source inverters (VSIs), incorporating a secondary objective for switching frequency minimization. Unlike conventional MPC approaches, the proposed method optimally balances control performance and efficiency trade-offs by adjusting the weighting factor (λmin). Real-time implementation using the OPAL-RT platform validates the effectiveness of the approach under both linear and non-linear load conditions. Results demonstrate a significant reduction in switching losses, accompanied by improved waveform tracking; however, trade-offs in distortion are observed under non-linear load scenarios. These findings provide insights into the practical implementation of real-time predictive control strategies for high-performance power converters. Full article
(This article belongs to the Special Issue New Trends in Grid-Forming Inverters for the Power Grid)
Show Figures

Figure 1

15 pages, 1952 KiB  
Article
Engineering and Evaluation of a Live-Attenuated Vaccine Candidate with Enhanced Type 1 Fimbriae Expression to Optimize Protection Against Salmonella Typhimurium
by Patricia García, Arianna Rodríguez-Coello, Andrea García-Pose, María Del Carmen Fernández-López, Andrea Muras, Miriam Moscoso, Alejandro Beceiro and Germán Bou
Vaccines 2025, 13(6), 659; https://doi.org/10.3390/vaccines13060659 - 19 Jun 2025
Viewed by 501
Abstract
Background:Salmonella Typhimurium is a major zoonotic pathogen, in which type 1 fimbriae play a crucial role in intestinal colonization and immune modulation. This study aimed to improve the protective immunity of a previously developed growth-deficient strain—a double auxotroph for D-glutamate and D-alanine—by [...] Read more.
Background:Salmonella Typhimurium is a major zoonotic pathogen, in which type 1 fimbriae play a crucial role in intestinal colonization and immune modulation. This study aimed to improve the protective immunity of a previously developed growth-deficient strain—a double auxotroph for D-glutamate and D-alanine—by engineering the inducible expression of type 1 fimbriae. Methods: PtetA-driven expression of the fim operon was achieved by λ-Red mutagenesis. fimA expression was quantified by qRT-PCR, and fimbriation visualized by transmission electron microscopy. Adhesive properties were evaluated through FimH sequence analysis, yeast agglutination, mannose-binding/inhibition assays, and HT-29 cell adherence. BALB/c mice were immunized orogastrically with IRTA ΔΔΔ or IRTA ΔΔΔ PtetA::fim. Safety and immunogenicity were assessed by clinical monitoring, bacterial load, fecal shedding, ELISA tests, and adhesion/blocking assays using fecal extracts. Protection was evaluated after challenging with wild-type and heterologous strains. Results: IRTA ΔΔΔ PtetA::fim showed robust fimA expression, dense fimbrial coverage, a marked mannose-sensitive adhesive phenotype and enhanced HT-29 attachment. Fimbrial overexpression did not alter intestinal colonization or translocation to mesenteric lymph nodes (mLNs). Immunization elicited a mixed IgG1/IgG2a, significantly increased IgA and IgG against type 1 fimbriae-expressing Salmonella, and enhanced the ability of fecal extracts to inhibit the adherence of wild-type strains. Upon challenge (IRTA wild-type/20220258), IRTA ΔΔΔ PtetA::fim reduced infection burden in the cecum (−1.46/1.47-log), large intestine (−1.35/2.17-log), mLNs (−1.32/0.98-log) and systemic organs more effectively than IRTA ΔΔΔ. Conclusions: Inducible expression of type 1 fimbriae enhances mucosal immunity and protection, supporting their inclusion in next-generation Salmonella vaccines. Future work should assess cross-protection and optimize FimH-mediated targeting for mucosal delivery. Full article
(This article belongs to the Special Issue Vaccine Design and Development)
Show Figures

Figure 1

14 pages, 1072 KiB  
Article
Effect of Silicon on the Biology and Reproductive Fitness of Tetranychus macfarlanei Baker and Pritchard (Acari: Tetranychidae) on the Country Bean (Lablab purpureus L.)
by Md. Nasimul Hassan, Faysal Ahmed, Farhana Akter Tonni, Mst. Masuma Momtaj Meem, Quazi Forhad Quadir, Tetsuo Gotoh and Mohammad Shaef Ullah
Plants 2025, 14(12), 1765; https://doi.org/10.3390/plants14121765 - 9 Jun 2025
Viewed by 1176
Abstract
The red spider mite, Tetranychus macfarlanei, is a significant pest of various crops, and silicon (Si), a beneficial micronutrient, serves as a physical defense against herbivores when accumulated in plant tissues. This study examined the effects of silicon on the biology of [...] Read more.
The red spider mite, Tetranychus macfarlanei, is a significant pest of various crops, and silicon (Si), a beneficial micronutrient, serves as a physical defense against herbivores when accumulated in plant tissues. This study examined the effects of silicon on the biology of T. macfarlanei on Lablab purpureus plants treated with 0 ppm (control), 28, and 56 ppm silicon concentrations. The results showed that silicon treatments notably affected mite development. At the highest concentration of 56 ppm Si, females exhibited the longest immature period, shortest lifespan, and shortest oviposition period. Egg production per female was highest at the 0 ppm Si level (94.62) and lowest at the 56 ppm Si concentration (42.29). Life table parameters, including the intrinsic rate of increase (r), net reproductive rate (R0), finite rate of increase (λ), and gross reproductive rate (GRR), declined progressively with increasing silicon concentrations. Compared to the control (0 ppm Si), the highest silicon level resulted in reductions of approximately 24% in r, 55% in R0, 4% in λ, and 27% in GRR, indicating a substantial negative impact of silicon on the reproductive potential of T. macfarlanei. These findings suggest that higher silicon levels effectively suppress T. macfarlanei populations and may be useful in integrated mite management strategies. Full article
(This article belongs to the Special Issue Plant Protection: Focusing on Phytophagous Mites)
Show Figures

Figure 1

12 pages, 294 KiB  
Article
Analysis of Sublethal and Lethal Effects of Chlorantraniliprole on Loxostege sticticalis Based on Age-Stage, Two-Sex Life Table
by Xiaoxue Pan, Yongmei Fan, Liangang Mao, Lizhen Zhu, Xingang Liu and Lan Zhang
Agriculture 2025, 15(10), 1065; https://doi.org/10.3390/agriculture15101065 - 15 May 2025
Viewed by 389
Abstract
Chlorantraniliprole, serving as a substitute for traditional insecticide, has been widely utilized in controlling lepidopteran pests. Loxostege sticticalis (Lepidoptera: Crambidae) is a polyphagous insect and poses a significant threat as a migratory insect. This study investigated the life history traits of a field-collected [...] Read more.
Chlorantraniliprole, serving as a substitute for traditional insecticide, has been widely utilized in controlling lepidopteran pests. Loxostege sticticalis (Lepidoptera: Crambidae) is a polyphagous insect and poses a significant threat as a migratory insect. This study investigated the life history traits of a field-collected population in response to chlorantraniliprole exposure based on an age-stage, two-sex life table. After treating the third-instar larvae of L. sticticalis with three different doses of chlorantraniliprole, namely LC10, LC25, and LC50, the survival, development, and fecundity of L. sticticalis were affected significantly in a dose-dependent manner. Chlorantraniliprole at doses of LC10, LC25, and LC50 prolonged the average generation time (T) compared to the control group. The net reproductive rate (R0) and intrinsic growth rate (r) were significantly higher in the LC10 group but significantly lower in the LC25 and LC50 groups. Chlorantraniliprole used at a dose of LC10 was shown to increase the finite growth rate (λ), while it decreased λ at doses of LC25 and LC50. These results suggested that chlorantraniliprole induces hormetic effects by enhancing fecundity and reproductive potential at lower sublethal concentration (LC10), while reducing the reproductive output at higher doses (LC25 and LC50). Our results provide useful information for developing management strategies for L. sticticalis involving the use of chlorantraniliprole. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

15 pages, 272 KiB  
Article
Efficacy of the Combination of λ-Cyhalothrin and Chlorantraniliprole Against Four Key Storage Pests
by Waqas Wakil, Nickolas G. Kavallieratos, Aqsa Naeem, Hamza Jamil, Demeter Lorentha S. Gidari and Maria C. Boukouvala
Insects 2025, 16(4), 387; https://doi.org/10.3390/insects16040387 - 4 Apr 2025
Viewed by 881
Abstract
With over 1000 species of pests causing losses in both the quantity and quality of stored food, insect contamination poses significant challenges. The present study assesses the efficacy of the combination of λ-cyhalothrin and chlorantraniliprole against four key storage pests—Trogoderma granarium, [...] Read more.
With over 1000 species of pests causing losses in both the quantity and quality of stored food, insect contamination poses significant challenges. The present study assesses the efficacy of the combination of λ-cyhalothrin and chlorantraniliprole against four key storage pests—Trogoderma granarium, Sitophilus oryzae, Rhyzopertha dominica, and Tribolium castaneum. Laboratory bioassays demonstrated species-dependent mortality, with S. oryzae and R. dominica suffering 100% mortality in several tested scenarios. A 90-day persistence trial revealed decreased efficacy over time, especially for T. granarium (32.0–71.4% at 0 days and 0.0–7.5% at 90 days) and T. castaneum (38.8–82.7% at 0 days and 0.0–12.7% at 90 days) vs. S. oryzae and R. dominica. Progeny production of S. oryzae and R. dominica was almost suppressed in persistence trials (0.4 individuals per vial and 1 individual per vial, respectively) after 30 days of storage at the dose of 5 mg/kg wheat. The results highlight the variability in insecticidal performance based on species, dose, exposure, and commodity type, emphasizing the need for tailored pest management strategies in the storage environment. Full article
17 pages, 7651 KiB  
Article
Adaptability of Yuanjiang River Valley Danaus genutia to Different Host Plants in Yunan
by Jun Yao, Ting Du, Yangyang Li, Chengli Zhou and Lei Shi
Insects 2025, 16(4), 368; https://doi.org/10.3390/insects16040368 - 1 Apr 2025
Viewed by 441
Abstract
This study aims to determine the local host plant range for Yuanjiang River Valley Danaus genutia (Cramer, 1779) and evaluate the effects of different host plants on its growth, development, and reproductive success. This research assesses adult oviposition preferences and larval feeding tendencies [...] Read more.
This study aims to determine the local host plant range for Yuanjiang River Valley Danaus genutia (Cramer, 1779) and evaluate the effects of different host plants on its growth, development, and reproductive success. This research assesses adult oviposition preferences and larval feeding tendencies on various host plants. An age-stage, two-sex life table was constructed to analyze the butterfly’s growth, development, reproductive success, survival rates, and other physiological aspects on different host plants. Population dynamics over the next 60 days were simulated to offer a comprehensive evaluation of the host plant suitability for D. genutia. The results indicated that D. genutia adults preferred laying eggs on Cynanchum corymbosum, followed by C. annularium, C. rostellatum, and Asclepias curassavica, with very few eggs laid on Calotropis gigantea and Dregea volubilis. Larval feeding preferences were observed in the order of C. annularium > C. corymbosum > C. rostellatum, with A. curassavica consumed only by first-instar larvae, while C. gigantea and D. volubilis were avoided. Under identical room temperature conditions, larvae feeding on C. annularium and C. corymbosum completed a full generation. Larvae feeding on C. annularium exhibited shorter developmental periods and higher early survival rates compared to those feeding on C. corymbosum, with no significant differences in adult longevity, sex ratio, or number of eggs per female. Female adults did not die immediately after laying eggs. No significant differences in the intrinsic rate of increase (r), finite rate of increase (λ), net reproduction rate (R0), or doubling time (Td) were found between populations feeding on the two host plants. However, the gross reproductive rate (GRR) and mean generation time (T) were significantly lower in the population feeding on C. corymbosum. These results confirm C. annularium and C. corymbosum as host plants for D. genutia larvae and provide a theoretical and scientific basis for the conservation of the Yuanjiang River Valley D. genutia population. Full article
(This article belongs to the Collection Butterfly Diversity and Conservation)
Show Figures

Figure 1

17 pages, 2277 KiB  
Article
A Bacterial Endophyte Bacillus amyloliquefaciens W10 Enhances the Tomato Resistance Against Tuta absoluta
by Mingshi Qian, Chaoqi Sheng, Mingying Zheng, Ke Zhu, Youxin Yu, Gang Xu and Guoqing Yang
Agronomy 2025, 15(3), 695; https://doi.org/10.3390/agronomy15030695 - 13 Mar 2025
Viewed by 682
Abstract
The tomato leafminer, Tuta absoluta, is a destructive invasive tomato pest worldwide. Bacillus amyloliquefaciens W10, a bacterium isolated from the rhizosphere of tomatoes, is classified as a plant growth-promoting rhizobacterium. However, whether B. amyloliquefaciens W10 can improve the resistance of tomato against [...] Read more.
The tomato leafminer, Tuta absoluta, is a destructive invasive tomato pest worldwide. Bacillus amyloliquefaciens W10, a bacterium isolated from the rhizosphere of tomatoes, is classified as a plant growth-promoting rhizobacterium. However, whether B. amyloliquefaciens W10 can improve the resistance of tomato against T. absoluta remains unclear. In this study, we found that B. amyloliquefaciens W10 promoted the tomato growth and significantly reduced the fecundity of T. absoluta. To further evaluate the effects of B. amyloliquefaciens W10 on the tomato’s resistance to T. absoluta, the age-stage, two-sex life table, and oviposition preference test were carried out to investigate the individual fitness, population parameters, and preference behavior of T. absoluta. Compared to the control, the intrinsic rate of increase (rm), net reproductive rate (R0), and finite rate of increase (λ) of T. absoluta in the treatment group were significantly reduced, while the population doubling time (DT) was significantly increased. Meanwhile, the oviposition preferences of T. absoluta for the treated tomato plants were reduced. After T. absoluta infestation, electrical conductivity and hydrogen peroxide (H2O2) content in tomato leaves after B. amyloliquefaciens W10 treatment were significantly lower than those in the control, while peroxidase (POD), polyphenol oxidase (PPO), jasmonic acid (JA), and salicylic acid (SA) levels were significantly higher. In addition, the O2, superoxide dismutase (SOD), and catalase (CAT) levels were also affected. qRT-RCR analyses revealed that B. amyloliquefaciens W10 colonization induced the expressions of JA- and SA-related genes, including AOS1, AOC, PAL1, and SAMT, in tomato plants after T. absoluta infestation. These findings provide valuable insights and theoretical support for the application of beneficial endophytes to induce the resistance in tomatoes against T. absoluta. Full article
(This article belongs to the Special Issue Molecular Advances in Crop Protection and Agrobiotechnology)
Show Figures

Figure 1

22 pages, 7551 KiB  
Article
Dual-Band Single-Layered Frequency Selective Surface Filter for LTE Band with Angular Stability
by Vartika Dahima, Ranjan Mishra and Ankush Kapoor
Telecom 2025, 6(1), 18; https://doi.org/10.3390/telecom6010018 - 7 Mar 2025
Viewed by 1542
Abstract
This study presents an innovative Dual-Band Frequency Selective Surface (FSS) designed for LTE applications, offering an effective solution for minimizing Passive Inter-Modulation (PIM) in contemporary wireless communication systems at the base station. The proposed passband FSS filter is designed to deliver optimal dual-band [...] Read more.
This study presents an innovative Dual-Band Frequency Selective Surface (FSS) designed for LTE applications, offering an effective solution for minimizing Passive Inter-Modulation (PIM) in contemporary wireless communication systems at the base station. The proposed passband FSS filter is designed to deliver optimal dual-band filtering characteristics with consistent stability over incidence angles up to 80°. Corresponding to antenna systems requirements, the proposed method gives resonant frequencies at 1.9 and 2.1 GHz which operate in the LTE band with bandwidths of 40 and 60 MHz, respectively. Moreover, the proposed design is analyzed to establish the optimal range for each resonant frequency by examining the parametric effects. The suggested FSS-based filter consists of a single-layer structure with the dimension of the unit cell of 0.33λ1 × 0.33λ1 where λ1 is the wavelength of low frequency, which delivers desired reflection and transmission coefficients using RT/Duroid 5880 with a thickness of 0.508 mm. The designed filter is validated through measurements of a fabricated prototype, demonstrating its practicality and performance. Simulations carried out with Equivalent Circuit Modeling (ECM) are demonstrated by measurements from a constructed 4 × 4 array prototype, showing a robust alignment with experimental findings. This work emphasizes an asymmetric FSS design that improves frequency selectivity and angular stability for the desired LTE dual band and also depicts the future possibilities for tuneable models and broader applications to meet the demands of modern wireless communication. Full article
Show Figures

Figure 1

14 pages, 4786 KiB  
Article
Room Temperature NO2-Sensing Properties of N-Doped ZnO Nanoparticles Activated by UV-Vis Light
by Angelo Ferlazzo, Giovanni Neri, Andrea Donato, Giovanni Gugliandolo and Mariangela Latino
Sensors 2025, 25(1), 114; https://doi.org/10.3390/s25010114 - 27 Dec 2024
Viewed by 1091
Abstract
Zinc oxide nanoparticles (ZnO NPs) with varying levels of nitrogen (N) doping were synthesized using a straightforward sol–gel approach. The morphology and microstructure of the N-doped ZnO NPs were examined through techniques such as SEM, XRD, photoluminescence, and Raman spectroscopy. The characterization revealed [...] Read more.
Zinc oxide nanoparticles (ZnO NPs) with varying levels of nitrogen (N) doping were synthesized using a straightforward sol–gel approach. The morphology and microstructure of the N-doped ZnO NPs were examined through techniques such as SEM, XRD, photoluminescence, and Raman spectroscopy. The characterization revealed visible changes in the morphology and microstructure resulting from the incorporation of nitrogen into the ZnO lattice. These N-doped ZnO NPs were used in the fabrication of conductometric gas sensors designed to operate at room temperature (RT) for detecting low concentrations of NO2 in the air, under LED UV-Vis irradiation (λ = 400 nm). The influence of nitrogen doping on sensor performance was systematically studied. The findings indicate that N-doping effectively enhances ZnO-based sensors’ ability to detect NO2 at RT, achieving a notable response (S = R/R0) of approximately 18 when exposed to 5 ppm of NO2. These improvements in gas-sensing capabilities are attributed to the reduction in particle size and the narrowing of the optical band gap. Full article
Show Figures

Figure 1

12 pages, 3140 KiB  
Article
Age-Stage, Two-Sex Life Tables of Megalurothrips usitatus (Bagnall) and Frankliniella intonsa (Trybom) on Different Bean Pods Under Laboratory Conditions: Implications for Their Competitive Interactions
by Mengni Li, Zhengke Peng, Chaosong Guo, Yong Xiao, Fei Yin, Haibin Yuan, Zhenyu Li and Myron P. Zalucki
Insects 2024, 15(12), 1003; https://doi.org/10.3390/insects15121003 - 18 Dec 2024
Cited by 2 | Viewed by 1214
Abstract
As two major pests of cowpea in South China, bean flower thrips [Megalurothrips usitatus (Bagnall)] and flower thrips [Frankliniella intonsa (Trybom)] always occur on the same plant. In this study, the two-sex life table parameters of these two species were investigated [...] Read more.
As two major pests of cowpea in South China, bean flower thrips [Megalurothrips usitatus (Bagnall)] and flower thrips [Frankliniella intonsa (Trybom)] always occur on the same plant. In this study, the two-sex life table parameters of these two species were investigated on three bean pods: cowpea (Vigna unguiculata L. var. Chunqiu Wujiadou), snap bean (Phaseolus vulgaris L. var. Yonglong 3), and green bean (Phaseolus vulgaris L. var. Linghangzhe) using standard cut bean protocols. Longevity of female adult M. usitatus showed no significant difference on cowpea and snap bean, but was shortest on green bean, with the highest fecundity on snap bean, followed by cowpea and green bean. Longevity and fecundity of female adult F. intonsa were both highest on cowpea, followed by snap bean and green bean. On snap bean, the population parameters (R0, GRR, T) of M. usitatus were higher than F. intonsa, whereas r and λ were not different, suggesting that M. usitatus were more competitive on snap bean. On cowpea, the population parameters (R0, GRR, r, λ) of F. intonsa were higher than M. usitatus, suggesting a competitive advantage of F. intonsa on cowpea. To better mimic field conditions, we investigated the survival and fecundity of adult M. usitatus under two distinct scenarios: when they could feed directly on cut surfaces of cowpeas (standard lab protocol), and when they could not. Adult survival of M. usitatus is not significantly influenced by whether or not they fed directly on cut surfaces of cowpeas. However, a notable decrease in fecundity was observed in M. usitatus that fed on surface-covered cut pods. This suggested that direct feeding on cut surfaces of cowpea did have an impact on thrips’ fecundity, offering fresh perspectives for future research into the growth and development of thrips in a laboratory. Our study suggests that experiments involving cut surfaces may be misleading, and further investigations are ongoing to address these concerns. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

Back to TopTop