Efficacy of the Combination of λ-Cyhalothrin and Chlorantraniliprole Against Four Key Storage Pests
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Tested Commodities
2.2. Tested Insects
2.3. Insecticide
2.4. Laboratory Bioassays
2.5. Persistance Bioassays
2.6. Statistical Analysis
3. Results
3.1. Mortality in Laboratory Bioassays
3.2. Progeny in Laboratory Bioassays
3.3. Mortality in Persistence Bioassays
3.4. Progeny in Persistence Bioassays
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Phillips, T.W.; Throne, J.E. Biorational approaches to managing stored-product insects. Annu. Rev. Entomol. 2010, 55, 375–397. [Google Scholar]
- Rosentrater, K.A. Storage of Cereal Grains and Their Products, 5th ed.; Woodhead Publishing: Sawston, UK, 2022. [Google Scholar]
- Rees, D. Insects of Stored Products; Manson Publishing: London, UK, 2004. [Google Scholar]
- Hagstrum, D.W.; Klejdysz, T.; Subramanyam, B.; Nawrot, J. Atlas of Stored-Product Insects and Mites; AACC International: St. Paul, MN, USA, 2013. [Google Scholar]
- Deshwal, R.; Vaibhav, V.; Kumar, N.; Kumar, A.; Singh, R. Stored grain insect pests and their management: An overview. J. Entomol. Zool. 2020, 8, 969–974. [Google Scholar]
- Waheed, H.W.; Hassan, M.W.; Sarwar, G.; Jamil, M. Laboratory evaluation of storage bags for infestations in wheat caused by Rhyzopertha dominica F. (Coleoptera: Bostrichidae) and Trogoderma granarium everts (Coleoptera: Dermestidae) and their control using phosphine fumigation. Insects 2022, 13, 955. [Google Scholar] [CrossRef] [PubMed]
- Day, C.; White, B. Khapra Beetle, Trogoderma granarium Interceptions and Eradications in Australia and Around the World; School of Agricultural and Resource Economics, University of Western Australia: Crawley, Australia, 2016; p. 29. [Google Scholar]
- Edde, P.A. Review of the biology and control of Rhyzopertha dominica (F.) the lesser grain borer. J. Stored Prod. Res. 2012, 48, 1–18. [Google Scholar]
- Su, L.; Adam, B.D.; Arthur, F.H.; Lusk, J.L.; Meullenet, J.F. The economic effects of Rhyzopertha dominica on rice quality: Objective and subjective measures. J. Stored Prod. Res. 2019, 84, 101505. [Google Scholar]
- Arthur, F.H.; Ondier, G.O.; Siebenmorgen, T.J. Impact of Rhyzopertha dominica (F.) on quality parameters of milled rice. J. Stored Prod. Res. 2012, 48, 137–142. [Google Scholar]
- Hagstrum, D.W.; Subramanyam, B. Stored-Product Insect Resource; AACC International: Saint Paul, MN, USA, 2009; p. 509. [Google Scholar]
- Jung, J.M.; Byeon, D.H.; Kim, S.H.; Lee, W.H. Estimating economic damage to cocoa bean production with changes in the spatial distribution of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) in response to climate change. J. Stored Prod. Res. 2020, 89, 101681. [Google Scholar] [CrossRef]
- Akhtar, M.; Raza, A.M.; Iram, N.; Chaudhry, M.I.; Azeem, W. Effect of infestation of Sitophilus oryzae L. (Coleoptera: Curculionidae) on protein quality of rice under storage conditions. Int. J. Agric. Appl. Sci. 2015, 7, 43–45. [Google Scholar]
- Michlig, N.; Amirav, A.; Neumark, B.; Lehotay, S.J. Comparison of different fast gas chromatography–mass spectrometry techniques (Cold EI, MS/MS, and HRMS) for the analysis of pyrethroid insecticide residues in food. Anal. Methods 2024, 16, 5599–5618. [Google Scholar]
- Al-Sinjari, S.H.; Al-Attar, H.J. Toxic effects of essential oils of Elattaria cardamomum L. and lambda-cyhalothrin on Tribolium confusum (Duval). Sci. J. Univ. Zakho 2015, 3, 15–26. [Google Scholar]
- Yeasmin, A.M.; Waliullah, T.M.; Alam, M.A.; Islam, N.; Rahman, A.S. Co-toxicity evaluation of lambda-cyhalothrin and its synergist pbo for susceptibility of Alphitobius diaperinus (Coleoptera: Tenebrionidae). World J. Pharm. Res. 2015, 4, 239–253. [Google Scholar]
- Shakoori, F.R.; Feroz, A.; Gondal, A.; Akram, S.; Riaz, T. Impact of λ-cyhalothrin on carbohydrate metabolizing enzymes and macromolecules of a stored grain pest, Trogoderma granarium. Pak. J. Zool. 2018, 50, 1467–1474. [Google Scholar] [CrossRef]
- Feng, B.; Zhi, H.; Chen, H.; Cui, B.; Zhao, X.; Sun, C.; Wang, Y.; Cui, H.; Zeng, Z. Development of chlorantraniliprole and lambda-cyhalothrin double-loaded nano-microcapsules for synergistical pest control. Nanomaterials 2021, 11, 2730. [Google Scholar] [CrossRef]
- Abo Arab, R.B.; El-Tawelah, N.M.; Abouelatta, A.M.; Hamza, A.M. Potential of selected plant essential oils in management of Sitophilus oryzae (L.) and Rhiyzopertha dominica (F.) on wheat grains. Bull. Natl. Res. Cent. 2022, 46, 192. [Google Scholar]
- Chen, M.; Ma, Z.; Hou, J.; Zhang, L.; Li-Byarlay, H.; He, B. The effects of Cl− channel inhibitors and pyrethroid insecticides on calcium-activated chloride channels in neurons of Helicoverpa armigera. Comp. Biochem. Physiol. Part C Toxicol. 2024, 285, 109999. [Google Scholar]
- He, L.M.; Troiano, J.; Wang, A.; Goh, K. Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin. Rev. Environ. Contam. Toxicol. 2008, 195, 71–91. [Google Scholar]
- Rezende-Teixeira, P.; Dusi, R.G.; Jimenez, P.C.; Espindola, L.S.; Costa-Lotufo, L.V. What can we learn from commercial insecticides? Efficacy, toxicity, environmental impacts, and future developments. Environ. Pollut. 2022, 300, 118983. [Google Scholar]
- Ren, Y.; Li, Y.; Ju, Y.; Zhang, W.; Wang, Y. Insect cuticle and insecticide development. Arch. Insect Biochem. Physiol. 2023, 114, e22057. [Google Scholar]
- Lahm, G.P.; Cordova, D.; Barry, J.D. New and selective ryanodine receptor activators for insect control. Bioorg. Med. Chem. 2009, 17, 4127–4133. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, G.; Zhong, L.; Zhang, F.; Bai, Q.; Zheng, X.; Lu, Z. Resistance monitoring of Chilo suppressalis (Walker) (Lepidoptera: Crambidae) to chlorantraniliprole in eight field populations from east and central China. Crop Prot. 2017, 100, 196–202. [Google Scholar]
- Singh, V.; Sharma, N.; Sharma, S.K. A review on effects of new chemistry insecticides on natural enemies of crop pests. Int. J. Sci. Environ. Technol. 2016, 5, 4339–4361. [Google Scholar]
- Nawaz, M.; Cai, W.; Jing, Z.; Zhou, X.; Mabubu, J.I.; Hua, H. Toxicity and sublethal effects of chlorantraniliprole on the development and fecundity of a non-specific predator, the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Chemosphere 2017, 178, 496–503. [Google Scholar]
- Sun, Y.; Liu, S.T.; Ling, Y.; Wang, L.; Ni, H.; Guo, D.; Dong, B.B.; Huang, Q.; Long, L.P.; Zhang, S.; et al. Insecticide resistance monitoring of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) and its mechanism to chlorantraniliprole. Pest Manag. Sci. 2023, 79, 3290–3299. [Google Scholar] [CrossRef] [PubMed]
- Dinter, A.; Brugger, K.E.; Frost, N.-M.; Woodward, M.D. Chlorantraniliprole (Rynaxypyr): A novel DuPontTM insecticide with low toxicity and low risk for honey bees (Apis mellifera) and bumble bees (Bombus terrestris) providing excellent tools for uses in integrated pest management. In Proceedings of the 10th International Symposium of the ICP-Bee Protection Group, Bucharest, Romania, 8–10 October 2008; pp. 84–96. [Google Scholar]
- Passos, L.C.; Soares, M.A.; Collares, L.J.; Malagoli, I.; Desneux, N.; Carvalho, G.A. Lethal, sublethal and transgenerational effects of insecticides on Macrolophus basicornis, predator of Tuta absoluta. Entomol. Gen. 2018, 38, 127–143. [Google Scholar]
- Soares, M.A.; Passos, L.C.; Campos, M.R.; Collares, L.J.; Desneux, N.; Carvalho, G.A. Side effects of insecticides commonly used against Tuta absoluta on the predator Macrolophus basicornis. J. Pest Sci. 2019, 92, 1447–1456. [Google Scholar]
- Fagundes Matioli, T.; Zanuzo Zanardi, O.; Takao Yamamoto, P. Impacts of seven insecticides on Cotesia flavipes (Cameron) (Hymenoptera: Braconidae). Ecotoxicology 2019, 28, 1210–1219. [Google Scholar] [PubMed]
- Parsaeyan, E.; Saber, M.; Safavi, S.A.; Poorjavad, N.; Biondi, A. Side effects of chlorantraniliprole, phosalone and spinosad on the egg parasitoid, Trichogramma brassicae. Ecotoxicology 2020, 29, 1052–1061. [Google Scholar]
- Abdel razik, M.A.A. Toxicity and side effects of some insecticides applied incotton fields on Apis mellifera. Environ. Sci. Pollut. Res. 2019, 26, 4987–4996. [Google Scholar] [CrossRef]
- Arthidoro de Castro, M.B.; Martinez, L.C.; Cossolin, J.F.S.; Serra, R.S.; Serrão, J.E. Cytotoxic effects on the midgut, hypopharyngeal, glands and brain of Apis mellifera honey bee workers exposed to chronic concentrations of lambda-cyhalothrin. Chemosphere 2020, 248, 126075. [Google Scholar]
- Karpun, N.N.; Yanushevskaya, E.B.; Mikhailova, Y.V.; Díaz-Torrijo, J.; Krutyakov, Y.A.; Gusev, A.A.; Neaman, A. Side effects of traditional pesticides on soil microbial respiration in orchards on the Russian Black Sea coast. Chemosphere 2021, 275, 130040. [Google Scholar] [CrossRef]
- Attia, M.A.; Wahba, T.F.; Shaarawy, N.; Moustafa, F.I.; Guedes, R.N.C.; Dewer, Y. Stored grain pest prevalence and insecticide resistance in Egyptian populations of the red flour beetle Tribolium castaneum (Herbst) and the rice weevil Sitophilus oryzae (L.). J. Stored Prod. Res. 2020, 87, 101611. [Google Scholar] [CrossRef]
- Riaz, T.; Jalil, F.; Najeeb, A.; Minhas, T.; Shakoori, F.R. Comparative effectiveness of deltamethrin, imidacloprid and emamectin benzoate alone and in binary blends to control Trogoderma granarium: Effect on macronutrients. J. Stored Prod. Res. 2024, 105, 102233. [Google Scholar] [CrossRef]
- Wakil, W.; Schmitt, T. Field trials on the efficacy of Beauveria bassiana, diatomaceous earth and imidacloprid for the protection of wheat grains from four major stored grain insect pests. J. Stored Prod. Res. 2015, 64, 160–167. [Google Scholar] [CrossRef]
- Scheff, D.S.; Campbell, J.F.; Arthur, F.H.; Zhu, K.Y. Effects of aerosol insecticide application location on the patterns of residual efficacy against Tribolium confusum (Coleoptera: Tenebrionidae) larvae. J. Econ. Entomol. 2020, 113, 2007–2015. [Google Scholar] [CrossRef] [PubMed]
- Feroz, A.; Shakoori, A.R.; Shakoori, F.R. Effect of sublethal doses of bifenthrin and chlorpyrifos administered alone and in combinations on esterases of stored grain pest Trogoderma granarium. Pak. J. Zool. 2020, 52, 2161. [Google Scholar] [CrossRef]
- Morrison, W.R., III; Arthur, F.H.; Bruce, A. Characterizing and predicting sublethal shifts in mobility by multiple stored product insects over time to an old and novel contact insecticide in three key stored commodities. Pest Manag. Sci. 2021, 77, 1990–2006. [Google Scholar] [CrossRef]
- Yao, J.; Chen, C.; Wu, H.; Chang, J.; Silver, K.; Campbell, J.F.; Arthur, F.H.; Zhu, K.Y. Differential susceptibilities of two closely-related stored product pests, the red flour beetle (Tribolium castaneum) and the confused flour beetle (Tribolium confusum), to five selected insecticides. J. Stored Prod. Res. 2019, 84, 101524. [Google Scholar] [CrossRef]
- Khaliq, A.; Ullah, M.I.; Afzal, M.; Ali, A.; Sajjad, A.; Ahmad, A.; Khalid, S. Management of Tribolium castaneum using synergism between conventional fumigant and plant essential oils. Int. J. Trop. Insect Sci. 2020, 40, 781–788. [Google Scholar] [CrossRef]
- Cui, K.; Zhang, L.; He, L.; Zhang, Z.; Zhang, T.; Mu, W.; Lin, J.; Liu, F. Toxicological effects of the fungal volatile compound 1-octen-3-ol against the red flour beetle, Tribolium castaneum (Herbst). Ecotoxicol. Environ. Saf. 2021, 208, 111597. [Google Scholar] [CrossRef]
- Nayak, M.K.; Daglish, G.J. Combined treatments of spinosad and chlorpyrifos-methyl for management of resistant psocid pests (Psocoptera: Liposcelididae) of stored grain. Pest Manag. Sci. 2007, 63, 104–109. [Google Scholar] [CrossRef]
- Sutton, A.E.; Arthur, F.H.; Zhu, K.Y.; Campbell, J.F.; Murray, L.W. Residual efficacy of synergized pyrethrin+ methoprene aerosol against larvae of Tribolium castaneum and Tribolium confusum (Coleoptera: Tenebrionidae). J. Stored Prod. Res. 2011, 47, 399–406. [Google Scholar] [CrossRef]
- Bajracharya, N.S.; Opit, G.P.; Talley, J.; Jones, C.L. Efficacies of spinosad and a combination of chlorpyrifos-methyl and deltamethrin against phosphine-resistant Rhyzopertha dominica (Coleoptera: Bostrichidae) and Tribolium castaneum (Coleoptera: Tenebrionidae) on wheat. J. Econ. Entomol. 2013, 106, 2208–2215. [Google Scholar] [PubMed]
- Wakil, W.; Kavallieratos, N.G.; Eleftheriadou, N.; Haider, S.A.; Qayyum, M.A.; Tahir, M.; Rasool, K.G.; Husain, M.; Aldawood, A.S. A winning formula: Sustainable control of three stored-product insects through paired combinations of entomopathogenic fungus, diatomaceous earth, and lambda-cyhalothrin. Environ. Sci. Pollut. Res. 2024, 31, 15364–15378. [Google Scholar] [CrossRef] [PubMed]
- Kavallieratos, N.G.; Athanassiou, C.G.; Boukouvala, M.C. Insecticidal effect of chlorantraniliprole against major stored-product insect pests in different grain commodities under laboratory tests. Pest Manag. Sci. 2013, 69, 1141–1154. [Google Scholar]
- Plata Rueda, A.; Martínez, L.C.; Costa, N.C.R.; Zanuncio, J.C.; Fernandes, M.E.D.S.; Serrão, J.E.; Guedes, R.N.C.; Fernandes, F.L. Chlorantraniliprole–mediated effects on survival, walking abilities, and respiration in the coffee berry borer, Hypothenemus hampei. Ecotoxicol. Environ. Saf. 2019, 172, 53–58. [Google Scholar] [CrossRef]
- Magano, D.A.; Carvalho, I.R.; Doberstein, A.P.; Louro, M.V.; Bubans, V.; Drebes, L.; Guedes, J.V.C.; Lautenchleger, F.; Ferreira, L.L.; Boller, W. Efficiency and persistence of insecticides with different action mechanisms applied on wheat stored pest ‘Sitophilus zeamais’. Aust. J. Crop Sci. 2021, 15, 618–621. [Google Scholar]
- Kavallieratos, N.G.; Boukouvala, M.C.; Eleftheriadou, N.; Xefteri, D.N.; Gidari, D.L.S.; Kyrpislidi, V.P.C. The sublethal impacts of five insecticidal formulations on Oryzaephilus surinamensis behavioral traits. Pest Manag. Sci. 2024, 80, 5334–5341. [Google Scholar]
- Wakil, W.; Kavallieratos, N.G.; Eleftheriadou, N.; Sami Ullah, M.; Naeem, A.; Rasool, K.G.; Husain, M.; Aldawood, A.S. Treatment of four stored-grain pests with thiamethoxam plus chlorantraniliprole: Enhanced impact on different types of grain commodities and surfaces. Insects 2023, 14, 619. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Papanikolaou, N.E.; Kazani, A.N.; Boukouvala, M.C.; Malesios, C. Using multilevel models to explore the impact of abiotic and biotic conditions on the efficacy of pirimiphos-methyl against Tenebrio molitor L. Environ. Sci. Pollut. Res. 2021, 28, 17200–17207. [Google Scholar]
- Vásquez-Castro, J.A.; De Baptista, G.C.; Gadanha, C.D.; Trevizan, L.R. Insecticidal effect and residual action of fenitrothion and esfenvalerate on Sitophilus oryzae and S. zeamais (Coleoptera: Curculionidae) in stored maize and wheat. Int. Sch. Res. Netw. 2012, 2012, 158179. [Google Scholar]
- Wakil, W.; Kavallieratos, N.G.; Ghazanfar, M.U.; Usman, M. Laboratory and field studies on the combined application of Beauveria bassiana and fipronil against four major stored-product coleopteran insect pests. Environ. Sci. Pollut. Res. 2022, 29, 34912–34929. [Google Scholar]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar]
- Zar, J.H. Biostatistical Analysis; Pearson: Essex, UK, 2014. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research; Freeman & Company: New York, NY, USA, 1995. [Google Scholar]
- Corbel, V.; Raymond, M.; Chandre, F.; Darriet, F.; Hougard, J.M. Efficacy of insecticide mixtures against larvae of Culex quinquefasciatus Say (Diptera: Culicidae) resistant to pyrethroids and carbamates. Pest Manag. Sci. 2004, 60, 375–380. [Google Scholar] [CrossRef]
- Ahmad, M. Potentiation/antagonism of deltamethrin and cypermethrins with organophosphate insecticides in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Pestic. Biochem. Physiol. 2004, 80, 31–42. [Google Scholar]
- Attique, M.N.R.; Khaliq A Sayyed, A.H. Could resistance to insecticides in Plutella xylostella (Lep., Plutellidae) be overcome by insecticide mixtures? J. Appl. Entomol. 2006, 130, 122–127. [Google Scholar] [CrossRef]
- Ahmad, M.; Saleem, M.A.; Sayyed, A.H. Efficacy of insecticide mixtures against pyrethroid and organophosphate resistant populations of Spodoptera litura (Lepidoptera: Noctuidae). Pest Manag. Sci. 2009, 65, 266–274. [Google Scholar] [CrossRef]
- Khan, H.A.A.; Akram, W.; Shad, S.A.; Lee, J.J. Insecticide mixtures could enhance the toxicity of insecticides in a resistant dairy population of Musca domestica L. PLoS ONE 2013, 8, 60929. [Google Scholar]
- Corbett, J.R. The Biochemical Mode of Action of Pesticides; Academic Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Arthur, F.H.; Bautista, R.C.; Siebenmorgen, T.J. Influence of growing location and cultivar on Rhyzopertha dominica (Coleoptera: Bostrichidae) and Sitophilus oryzae (Coleoptera: Curculionidae) infestation of rough rice. Insect Sci. 2007, 14, 231–239. [Google Scholar]
- Liang, X.; Xiao, D.; He, Y.; Yao, J.; Zhu, G.; Zhu, K.Y. Insecticide-mediated up-regulation of cytochrome P450 genes in the red flour beetle (Tribolium castaneum). Int. J. Mol. Sci. 2015, 16, 2078–2098. [Google Scholar] [CrossRef]
- Daglish, G.J. Impact of resistance on the efficacy of binary combinations of spinosad, chlorpyrifos-methyl and s-methoprene against five stored-grain beetles. J. Stored Prod. Res. 2008, 44, 71–76. [Google Scholar] [CrossRef]
- Khashaveh, A.; Ziaee, M.; Safaralizadeh, M.H.; Lorestani, F.A. Control of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) with spinosad dust formulation in different oilseeds. Turk. J. Agric. For. 2009, 33, 203–209. [Google Scholar] [CrossRef]
- Subramanyam, B.; Hartzer, M.; Boina, D.R. Performance of pre-commercial release formulations of spinosad against five stored-product insect species on four stored commodities. J. Pest Sci. 2012, 85, 331–339. [Google Scholar]
- Andrić, G.; Kljajić, P.; Golić, M.P.; Trdan, S.; Bohinc, T.; Solarov, M.B. Effectiveness of spinosad and spinetoram against three Sitophilus species: Influence of wheat endosperm vitreousness. J. Stored Prod. Res. 2019, 83, 209–217. [Google Scholar] [CrossRef]
- Wakil, W.; Schmitt, T.; Kavallieratos, N.G. Performance of diatomaceous earth and imidacloprid as wheat, rice and maize protectants against four stored-grain insect pests. J. Stored Prod. Res. 2021, 91, 101759. [Google Scholar] [CrossRef]
- Perišić, V.; Perišić, V.; Rajičić, V.; Luković, K.; Vukajlović, F. Spinosad application in process of integrated pest management against Rhyzopertha dominica F. in stored small grains. In Book of Proceedings: 26. International Eco-Conference, Novi Sad, Serbia, 21–23 Septembar 2022; Novi Sad Ekološki pokret: Novi Sad, Serbia, 2022; pp. 125–132. [Google Scholar]
- Chintzoglou, G.J.; Athanassiou, C.G.; Markoglou, A.N.; Kavallieratos, N.G. Influence of commodity on the effect of spinosad dust against Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) and Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Int. J. Pest Manag. 2008, 54, 277–285. [Google Scholar] [CrossRef]
Species | S. oryzae | T. castaneum | T. granarium | R. dominica | |||||
---|---|---|---|---|---|---|---|---|---|
Source | df | F | p | F | p | F | p | F | p |
Commodity | 2 | 156.94 | <0.01 | 142.63 | <0.01 | 152.93 | <0.01 | 150.67 | <0.01 |
Exposure interval | 1 | 732.38 | <0.01 | 562.90 | <0.01 | 663.12 | <0.01 | 833.34 | <0.01 |
Dose rate | 3 | 614.09 | <0.01 | 522.29 | <0.01 | 400.75 | <0.01 | 727.93 | <0.01 |
Commodity × exposure interval | 2 | 3.21 | 0.04 | 5.44 | <0.01 | 3.15 | 0.04 | 0.03 | 0.97 |
Commodity × dose rate | 6 | 1.40 | 0.22 | 1.74 | 0.11 | 0.80 | 0.56 | 2.32 | 0.03 |
Exposure interval × dose rate | 3 | 1.48 | 0.22 | 2.07 | 0.10 | 3.32 | 0.02 | 0.87 | 0.45 |
Commodity × exposure interval × dose rate | 6 | 9.85 | <0.01 | 0.17 | 0.98 | 0.70 | 0.64 | 3.67 | <0.01 |
Exposure Interval (7 Days) | |||||||
Dose Rate (ppm) | |||||||
Species | Commodity | 0.01 | 0.1 | 1 | 5 | F | p |
S. oryzae | Wheat | 47.46 ± 0.85 Ad | 64.75 ± 1.73 Ac | 78.94 ± 1.13 Ab | 92.84 ± 1.18 Aa | 235.2 | <0.01 |
Maize | 39.85 ± 1.30 Bc | 51.53 ± 2.03 Bb | 62.19 ± 1.39 Ca | 67.34 ± 1.26 Ca | 63.5 | <0.01 | |
Rice | 43.88 ± 1.76 ABd | 56.11 ± 1.96 Bc | 69.78 ± 2.06 Bb | 83.53 ± 2.01 Ba | 76.5 | <0.01 | |
F | 7.83 | 12.3 | 28.2 | 70.5 | |||
p | <0.01 | <0.01 | <0.01 | <0.01 | |||
T. castaneum | Wheat | 36.02 ± 1.35 Ad | 49.34 ± 1.17 Ac | 65.34 ± 1.65 Ab | 74.09 ± 1.95 Aa | 117.6 | <0.01 |
Maize | 25.27 ± 2.38 Bd | 41.60 ± 1.61 Bc | 50.51 ± 1.15 Bb | 59.02 ± 2.03 Ba | 60.5 | <0.01 | |
Rice | 31.26 ± 2.13 ABd | 46.74 ± 1.10 ABc | 57.74 ± 1.49 Cb | 68.38 ± 1.64 Aa | 94.1 | <0.01 | |
F | 7.25 | 8.99 | 26.2 | 16.3 | |||
p | <0.01 | <0.01 | <0.01 | <0.01 | |||
T. granarium | Wheat | 32.82 ± 2.12 Ac | 42.10 ± 1.71 Ab | 56.76 ± 2.29 Aa | 63.04 ± 1.70 Aa | 48.3 | <0.01 |
Maize | 21.49 ± 1.33 Bc | 31.38 ± 1.59 Bb | 42.65 ± 1.25 Ba | 47.78 ± 1.52 Ba | 67.2 | <0.01 | |
Rice | 27.86 ± 1.83 ABd | 37.34 ± 1.80 ABc | 48.91 ± 2.21 Bb | 59.80 ± 1.88 Aa | 51.0 | <0.01 | |
F | 10.0 | 9.89 | 12.8 | 22.1 | |||
p | <0.01 | <0.01 | <0.01 | <0.01 | |||
R. dominica | Wheat | 41.46 ± 1.26 Ad | 57.79 ± 1.92 Ac | 68.69 ± 1.39 Ab | 86.03 ± 1.93 Aa | 127.4 | <0.01 |
Maize | 33.21 ± 1.57 Bd | 45.86 ± 1.93 Bc | 54.78 ± 1.22 Bb | 65.77 ± 1.22 Ca | 82.5 | <0.01 | |
Rice | 35.38 ± 2.54 Bd | 51.18 ± 1.16 Bc | 62.87 ± 2.03 Ab | 78.33 ± 1.59 Ba | 141.9 | <0.01 | |
F | 10.2 | 12.1 | 19.3 | 40.2 | |||
p | <0.01 | <0.01 | <0.01 | <0.01 | |||
Dose Rate (ppm) | |||||||
Exposure Interval (14 Days) | |||||||
Species | Commodity | 0.01 | 0.1 | 1 | 5 | F | p |
S. oryzae | Wheat | 73.29 ± 1.47 Ad | 81.15 ± 2.08 Ac | 90.42 ± 1.70 Ab | 100.00 ± 0.00 Aa | 56.7 | <0.01 |
Maize | 54.81 ± 1.84 Cd | 65.51 ± 1.79 Cc | 82.41 ± 1.17 Bb | 94.81 ± 1.59 Ba | 119.1 | <0.01 | |
Rice | 61.38 ± 1.77 Bd | 73.45 ± 1.22 Bc | 87.58 ± 1.59 ABb | 100.00 ± 0.00 Aa | 157.8 | <0.01 | |
F | 30.2 | 20.3 | 7.25 | 10.6 | |||
p | <0.01 | <0.01 | <0.01 | <0.01 | |||
T. castaneum | Wheat | 57.71 ± 2.08 Ad | 66.67 ± 2.18 Ac | 82.79 ± 1.70 Ab | 95.89 ± 1.17 Aa | 85.9 | <0.01 |
Maize | 41.78 ± 1.75 Bd | 53.42 ± 1.35 Bc | 65.76 ± 0.93 Bb | 76.35 ± 1.60 Ca | 107.5 | <0.01 | |
Rice | 46.67 ± 1.58 Bd | 59.55 ± 1.33 Bc | 71.63 ± 2.13 Bb | 83.73 ± 1.96 Ba | 79.8 | <0.01 | |
F | 20.2 | 15.7 | 27.0 | 37.2 | |||
p | <0.01 | <0.01 | <0.01 | <0.01 | |||
T. granarium | Wheat | 51.54 ± 1.53 Ad | 62.56 ± 1.06 Ac | 73.17 ± 1.55 Ab | 87.29 ± 1.21 Aa | 126.9 | <0.01 |
Maize | 37.65 ± 1.86 Bd | 46.93 ± 1.95 Cc | 55.11 ± 1.39 Cb | 69.55 ± 1.27 Ca | 67.4 | <0.01 | |
Rice | 43.49 ± 1.50 Bd | 54.10 ± 1.34 Bc | 64.76 ± 1.78 Bb | 76.36 ± 1.55 Ba | 82.5 | <0.01 | |
F | 18.0 | 27.2 | 32.5 | 43.6 | |||
p | <0.01 | <0.01 | <0.01 | <0.01 | |||
R. dominica | Wheat | 63.71 ± 2.09 Ad | 78.42 ± 1.58 Ac | 86.96 ± 1.82 Ab | 100.00 ± 0.00 Aa | 90.5 | <0.01 |
Maize | 48.12 ± 1.04 Bd | 61.53 ± 1.70 Bc | 73.19 ± 1.49 Bb | 91.09 ± 1.33 Ba | 166 | <0.01 | |
Rice | 52.59 ± 2.37 Bd | 67.48 ± 2.00 Bc | 81.32 ± 1.48 Ab | 100.00 ± 0.00 Aa | 138 | <0.01 | |
F | 17.4 | 23.4 | 18.5 | 44.2 | |||
p | <0.01 | <0.01 | <0.01 | <0.01 |
Source | df | F | p |
---|---|---|---|
Species | 3 | 437.27 | <0.01 |
Commodity | 2 | 119.89 | <0.01 |
Dose rate | 4 | 5606.17 | <0.01 |
Species × commodity | 6 | 229.11 | <0.01 |
Species × dose rate | 12 | 70.80 | <0.01 |
Commodity × dose rate | 8 | 87.69 | <0.01 |
Species × commodity × dose rate | 24 | 71.98 | <0.01 |
Dose Rate (ppm) | ||||||||
---|---|---|---|---|---|---|---|---|
Species | Commodity | 0 | 0.01 | 0.1 | 1 | 5 | F | p |
S. oryzae | Wheat | 69.48 ± 1.42 Ca | 15.23 ± 1.40 Cb | 12.51 ± 1.33 Cb | 0.86 ± 0.70 Cc | 0.78 ± 0.66 Bc | 608.3 | <0.01 |
Maize | 87.83 ± 1.01 Ba | 31.21 ± 1.11 Ab | 26.48 ± 1.42 Ab | 19.68 ± 1.17 Ac | 8.51 ± 1.08 Ad | 694.8 | <0.01 | |
Rice | 103.93 ± 1.85 Aa | 24.81 ± 1.78 Bb | 19.91 ± 1.50 Bb | 11.56 ± 1.15 Bc | 0.80 ± 0.66 Bd | 792.9 | <0.01 | |
F | 137 | 30.5 | 24.1 | 83.0 | 28.9 | |||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |||
T. castaneum | Wheat | 88.63 ± 0.89 Aa | 28.03 ± 1.01 Bb | 23.98 ± 1.43 Bb | 16.61 ± 1.37 Bc | 7.65 ± 0.96 Cd | 763.1 | <0.01 |
Maize | 64.06 ± 1.44 Ba | 33.66 ± 0.84 Ab | 29.13 ± 0.88 Abc | 25.85 ± 1.31 Ac | 18.16 ± 0.90 Ad | 254.0 | <0.01 | |
Rice | 39.38 ± 1.41 Ca | 20.05 ± 1.47 Cb | 17.11 ± 1.46 Cbc | 15.91 ± 1.20 Bbc | 12.30 ± 1.36 Bc | 58.9 | <0.01 | |
F | 371.1 | 35.6 | 21.8 | 18.2 | 23.1 | |||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |||
T. granarium | Wheat | 91.76 ± 0.54 Ba | 34.43 ± 0.80 Cb | 29.15 ± 0.88 Bc | 21.10 ± 1.34 Bd | 13.45 ± 1.31 Be | 920.7 | <0.01 |
Maize | 104.65 ± 1.83 Aa | 57.15 ± 1.14 Ab | 50.96 ± 1.30 Ac | 41.56 ± 1.50 Ad | 24.35 ± 1.32 Ae | 433.4 | <0.01 | |
Rice | 73.61 ± 1.29 Ca | 40.16 ± 1.76 Bb | 31.20 ± 1.09 Bc | 25.83 ± 1.31 Bc | 18.06 ± 1.52 Bd | 232.2 | <0.01 | |
F | 137.4 | 82.7 | 118.6 | 59.1 | 15.5 | |||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |||
R. dominica | Wheat | 113.98 ± 2.93 Aa | 22.28 ± 1.36 Bb | 16.51 ± 1.27 Bbc | 9.86 ± 0.92 Bc | 0.68 ± 0.52 Cd | 806.2 | <0.01 |
Maize | 44.66 ± 1.47 Ca | 21.81 ± 1.03 Bb | 19.18 ± 1.11 Bb | 17.11 ± 0.92 Abc | 12.65 ± 1.15 Ac | 117.8 | <0.01 | |
Rice | 105.22 ± 2.32 Ba | 33.65 ± 0.84 Ab | 24.98 ± 1.54 Ac | 15.18 ± 1.08 Ad | 8.50 ± 1.08 Be | 701.1 | <0.01 | |
F | 264.3 | 36.9 | 10.7 | 14.7 | 39.6 | |||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Species | S. oryzae | T. castaneum | T. granarium | R. dominica | |||||
---|---|---|---|---|---|---|---|---|---|
Source | df | F | p | F | p | F | p | F | p |
Dose rate | 3 | 234.52 | <0.01 | 212.47 | <0.01 | 155.41 | <0.01 | 164.90 | <0.01 |
Period of storage | 3 | 1049.14 | <0.01 | 913.53 | <0.01 | 763.52 | <0.01 | 698.05 | <0.01 |
Dose rate × period of storage | 9 | 10.20 | <0.01 | 13.94 | <0.01 | 15.81 | <0.01 | 8.27 | <0.01 |
Species | Dose (ppm) | 0 Days | 30 Days | 60 Days | 90 Days | F | p |
---|---|---|---|---|---|---|---|
S. oryzae | 0.01 | 52.74 ± 1.15 Da | 34.37 ± 0.72 Cb | 25.21 ± 1.81 Dc | 7.93 ± 1.68 Cd | 175.1 | <0.01 |
0.1 | 74.31 ± 2.35 Ca | 51.54 ± 1.54 Bb | 33.55 ± 1.17 Cc | 12.47 ± 1.37 BCd | 247.4 | <0.01 | |
1 | 85.65 ± 2.14 Ba | 57.00 ± 2.08 Bb | 41.16 ± 1.79 Bc | 18.05 ± 1.28 Bd | 234.6 | <0.01 | |
5 | 94.18 ± 0.98 Aa | 68.71 ± 1.40 Ab | 47.42 ± 1.19 Ac | 24.63 ± 1.75 Ad | 473.2 | <0.01 | |
F | 104.2 | 88.4 | 39.7 | 21.9 | |||
p | <0.01 | <0.01 | <0.01 | <0.01 | |||
T. castaneum | 0.01 | 38.77 ± 1.17 Da | 26.61 ± 1.46 Db | 14.71 ± 0.95 Dc | 0.00 ± 0.00 Cd | 247.2 | <0.01 |
0.1 | 56.12 ± 1.55 Ca | 38.20 ± 1.37 Cb | 23.27 ± 1.68 Cc | 5.80 ± 1.60 BCd | 189.9 | <0.01 | |
1 | 71.42 ± 1.74 Ba | 45.38 ± 1.82 Bb | 29.07 ± 1.83 Bc | 8.54 ± 1.76 ABd | 219.3 | <0.01 | |
5 | 82.65 ± 1.80 Aa | 53.59 ± 1.90 Ab | 37.31 ± 1.01 Ac | 12.65 ± 1.88 Ad | 301.2 | <0.01 | |
F | 143.8 | 47.6 | 44.5 | 12.2 | |||
p | <0.01 | <0.01 | <0.01 | <0.01 | |||
T. granarium | 0.01 | 31.97 ± 1.36 Da | 18.77 ± 1.45 Cb | 9.21 ± 1.36 Cc | 0.00 ± 0.00 Bd | 128.6 | <0.01 |
0.1 | 57.48 ± 1.22 Ca | 24.21 ± 1.89 Cb | 17.38 ± 1.93 Bc | 0.00 ± 0.00 Bd | 263.3 | <0.01 | |
1 | 63.94 ± 1.63 Ba | 35.48 ± 1.60 Bb | 21.81 ± 2.04 Bc | 3.41 ± 1.25 ABd | 236.2 | <0.01 | |
5 | 71.42 ± 1.97 Aa | 46.75 ± 1.90 Ab | 30.04 ± 2.24 Ac | 7.52 ± 2.01 Ad | 175.0 | <0.01 | |
F | 118.1 | 51.9 | 20.4 | 9.07 | |||
p | <0.01 | <0.01 | <0.01 | <0.01 | |||
R. dominica | 0.01 | 45.75 ± 1.91 Da | 32.51 ± 1.77 Db | 21.28 ± 1.76 Cc | 3.77 ± 1.45 Cd | 105.8 | <0.01 |
0.1 | 62.13 ± 1.48 Ca | 43.17 ± 1.62 Cb | 29.17 ± 2.05 Bc | 11.74 ± 1.51 Bd | 161.3 | <0.01 | |
1 | 76.78 ± 1.81 Ba | 52.37 ± 2.03 Bb | 35.04 ± 1.62 Bc | 15.14 ± 1.50 ABd | 221.0 | <0.01 | |
5 | 87.35 ± 1.96 Aa | 61.31 ± 2.18 Ab | 42.94 ± 1.88 Ac | 18.63 ± 1.71 Ad | 222.6 | <0.01 | |
F | 100.0 | 41.3 | 24.8 | 16.8 | |||
p | <0.01 | <0.01 | <0.01 | <0.01 |
Species | S. oryzae | T. castaneum | T. granarium | R. dominica | |||||
---|---|---|---|---|---|---|---|---|---|
Source | df | F | p | F | p | F | p | F | p |
Dose rate | 4 | 2741.44 | <0.01 | 2143.20 | <0.01 | 2021.50 | <0.01 | 2638.90 | <0.01 |
Period of storage | 3 | 150.40 | <0.01 | 212.67 | <0.01 | 209.29 | <0.01 | 149.27 | <0.01 |
Dose rate × period of storage | 12 | 5.43 | <0.01 | 4.57 | <0.01 | 2.62 | <0.01 | 4.75 | <0.01 |
Species | Dose (ppm) | 0 Days | 30 Days | 60 Days | 90 Days | F | p |
---|---|---|---|---|---|---|---|
S. oryzae | 0 | 81.28 ± 1.91 Ab | 86.51 ± 2.20 Ab | 93.23 ± 1.32 Aa | 99.06 ± 0.71 Aa | 22.4 | <0.01 |
0.01 | 8.45 ± 1.88 Bc | 21.88 ± 1.27 Bb | 27.01 ± 1.65 Bb | 35.16 ± 1.57 Ba | 48.3 | <0.01 | |
0.1 | 0.45 ± 0.14 Cd | 7.06 ± 1.52 Cc | 15.33 ± 1.36 Cb | 21.50 ± 1.72 Ca | 47.4 | <0.01 | |
1 | 0.53 ± 0.18 Cc | 0.33 ± 0.16 Dc | 8.26 ± 1.51 Db | 13.46 ± 1.81 Da | 28.7 | <0.01 | |
5 | 0.48 ± 0.20 Cb | 0.38 ± 0.16 Db | 4.05 ± 1.35 Db | 9.25 ± 1.51 Da | 16.5 | <0.01 | |
F | 856.7 | 751.3 | 639.9 | 583.4 | |||
p | <0.01 | <0.01 | <0.01 | <0.01 | |||
T. castaneum | 0 | 94.58 ± 2.41 Ac | 101.07 ± 1.93 Abc | 106.52 ± 1.85 Aab | 113.98 ± 1.67 Aa | 17.1 | <0.01 |
0.01 | 13.65 ± 1.45 Bd | 32.21 ± 1.49 Bc | 38.73 ± 2.04 Bb | 45.83 ± 1.35 Ba | 73.4 | <0.01 | |
0.1 | 5.11 ± 2.16 Cd | 16.41 ± 1.55 Cc | 27.90 ± 1.33 Cb | 36.16 ± 2.40 Ca | 50.1 | <0.01 | |
1 | 0.25 ± 0.06 Cd | 9.68 ± 1.50 CDc | 21.76 ± 1.51 Cb | 28.41 ± 1.85 Da | 78.6 | <0.01 | |
5 | 0.40 ± 0.10 Cc | 3.13 ± 1.87 Dc | 8.85 ± 1.44 Db | 17.73 ± 1.56 Ea | 29.1 | <0.01 | |
F | 649.3 | 558.7 | 532.9 | 444.1 | |||
p | <0.01 | <0.01 | <0.01 | <0.01 | |||
T. granarium | 0 | 99.35 ± 2.96 Ac | 107.95 ± 2.34 Ab | 114.87 ± 1.27 Aab | 117.43 ± 1.05 Aa | 15.4 | <0.01 |
0.01 | 21.41 ± 1.69 Bc | 38.16 ± 1.64 Bb | 46.81 ± 1.66 Ba | 53.15 ± 1.50 Ba | 71.5 | <0.01 | |
0.1 | 12.93 ± 1.55 Cc | 23.88 ± 1.49 Cb | 35.50 ± 2.54 Ca | 41.11 ± 1.65 Ca | 45.3 | <0.01 | |
1 | 6.45 ± 1.53 CDd | 14.38 ± 1.30 Dc | 24.21 ± 1.32 Db | 35.61 ± 2.51 Ca | 52.3 | <0.01 | |
5 | 0.66 ± 0.52 Dd | 9.70 ± 1.49 Dc | 16.15 ± 1.52 Eb | 23.86 ± 1.49 Da | 54.5 | <0.01 | |
F | 492.2 | 561.7 | 518.9 | 462.5 | |||
p | <0.01 | <0.01 | <0.01 | <0.01 | |||
R. dominica | 0 | 97.80 ± 1.95 Ab | 102.57 ± 2.15 Ab | 104.87 ± 1.75 Ab | 115.18 ± 1.75 Aa | 14.7 | <0.01 |
0.01 | 11.93 ± 1.79 Bc | 29.51 ± 1.31 Bb | 33.20 ± 2.15 Bb | 41.61 ± 1.77 Ba | 48.9 | <0.01 | |
0.1 | 3.13 ± 1.32 Cd | 12.95 ± 1.56 Cc | 20.95 ± 1.67 Cb | 28.48 ± 1.85 Ca | 45.1 | <0.01 | |
1 | 0.85 ± 0.65 Cc | 5.18 ± 1.08 Dc | 12.98 ± 1.57 Db | 19.81 ± 1.91 Da | 36.5 | <0.01 | |
5 | 0.88 ± 0.70 Cc | 0.98 ± 0.64 Dc | 7.11 ± 1.51 Db | 13.11 ± 1.61 Da | 23.5 | <0.01 | |
F | 909.7 | 840.2 | 518.4 | 537.9 | |||
p | <0.01 | <0.01 | <0.01 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wakil, W.; Kavallieratos, N.G.; Naeem, A.; Jamil, H.; Gidari, D.L.S.; Boukouvala, M.C. Efficacy of the Combination of λ-Cyhalothrin and Chlorantraniliprole Against Four Key Storage Pests. Insects 2025, 16, 387. https://doi.org/10.3390/insects16040387
Wakil W, Kavallieratos NG, Naeem A, Jamil H, Gidari DLS, Boukouvala MC. Efficacy of the Combination of λ-Cyhalothrin and Chlorantraniliprole Against Four Key Storage Pests. Insects. 2025; 16(4):387. https://doi.org/10.3390/insects16040387
Chicago/Turabian StyleWakil, Waqas, Nickolas G. Kavallieratos, Aqsa Naeem, Hamza Jamil, Demeter Lorentha S. Gidari, and Maria C. Boukouvala. 2025. "Efficacy of the Combination of λ-Cyhalothrin and Chlorantraniliprole Against Four Key Storage Pests" Insects 16, no. 4: 387. https://doi.org/10.3390/insects16040387
APA StyleWakil, W., Kavallieratos, N. G., Naeem, A., Jamil, H., Gidari, D. L. S., & Boukouvala, M. C. (2025). Efficacy of the Combination of λ-Cyhalothrin and Chlorantraniliprole Against Four Key Storage Pests. Insects, 16(4), 387. https://doi.org/10.3390/insects16040387