Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (105)

Search Parameters:
Journal = Radiation
Section = General

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 591 KiB  
Brief Report
Deployment of an In Vivo Dosimetry Program with P-Type Diodes for Radiotherapy Treatments
by Miguel Felizardo and Elisabete Dias
Radiation 2025, 5(3), 22; https://doi.org/10.3390/radiation5030022 - 14 Jul 2025
Viewed by 239
Abstract
Background: We present the implementation of an in vivo dosimetry program that enhances treatment setups, ensuring high accuracy that is needed globally. This approach proves valuable in smaller departments by helping to detect and prevent errors. Evaluation studies have shown that in vivo [...] Read more.
Background: We present the implementation of an in vivo dosimetry program that enhances treatment setups, ensuring high accuracy that is needed globally. This approach proves valuable in smaller departments by helping to detect and prevent errors. Evaluation studies have shown that in vivo dosimetry is a reliable method for assessing the overall accuracy of treatment delivery. Methods: Comprehensive development and validation of an in vivo dosimetry program using silicon diodes, ionization chambers, and calibrated electrometers for accurate radiation in dose measurements for treatments involving Co-60 or 6 MV X-ray beams. Results: The outcomes demonstrated that all diodes were dependable, with deviations of less than 1% (0.89 ± 0.10 cGy). Calibration curves were generated, showing dose variations of only 0.13% in the diode readings. The overall analysis revealed a mean deviation of up to 1%. Conclusions: These results provide a thorough assessment for patients’ treatment and facilitate timely interventions when needed, helping to ensure that dose variations stay within acceptable limits. Full article
Show Figures

Figure 1

12 pages, 1268 KiB  
Article
Troubleshooting in a Digital World—Server Failure of OIS in Radiotherapy from a Medical Perspective
by Hilke Vorwerk, Gertrud Schmich, Philipp Lishewski, Sebastian Adeberg and Ahmed Gawish
Radiation 2025, 5(2), 20; https://doi.org/10.3390/radiation5020020 - 10 Jun 2025
Viewed by 461
Abstract
The number of server failures, including those in radiotherapy, has dramatically increased over the past 5 years, primarily due to cyberattacks. Despite this trend, many clinics remain unprepared to handle such situations effectively. While it is possible to resolve these issues with thorough [...] Read more.
The number of server failures, including those in radiotherapy, has dramatically increased over the past 5 years, primarily due to cyberattacks. Despite this trend, many clinics remain unprepared to handle such situations effectively. While it is possible to resolve these issues with thorough preparation and dedicated effort without causing significant interruptions to patient treatments, the process is considerably easier if numerous steps and analyses, both technical and clinical, have already been undertaken. This preemptive work allows for quicker responses and a faster resumption of patient treatments. There are established guidelines on how to prioritize patients and manage total dose in the event of multiple missed treatment sessions. However, many radiotherapy departments in Germany still lack individualized plans for handling software failures. In this article, we describe a failure of the radiotherapy OIS (ARIA by Varian) caused by an interface failure in the Central IT department of the clinic. From this event, we developed a clinical guideline for addressing issues during the outage and identified clinical processes that can be implemented in advance. Our focus was particularly on handling the large volumes of data involved in organizing patient treatments and scheduling. Overall, there needs to be a cultural shift in both the development of technical server infrastructures and the approach to managing OIS failures, as the likelihood of such events increases along with the negative impacts due to increasingly complex treatment plans and software landscapes. Full article
Show Figures

Figure 1

8 pages, 2120 KiB  
Case Report
Low-Dose Radiotherapy for Severe COVID-19 Lung Disease—Have Meta-Analyses Accounted for Dose and Timing of Radiotherapy?
by Leonie Eastlake, Prakash Thanikachalam, David Cameron, Dimitri Dimitroyannis, Wanda Ingham, Pascoe Mannion, Gillian Clarkson, Aashish Vyas, Anthony Chalmers and Dennis Hadjiyiannakis
Radiation 2025, 5(2), 19; https://doi.org/10.3390/radiation5020019 - 8 Jun 2025
Viewed by 651
Abstract
Low-dose radiotherapy had historically been used to treat both bacterial and viral pneumonias. In the present day, this is not in use due to the development of antibiotics and other supportive measures as well as a concern regarding late radiation toxicities. COVID-19 presented [...] Read more.
Low-dose radiotherapy had historically been used to treat both bacterial and viral pneumonias. In the present day, this is not in use due to the development of antibiotics and other supportive measures as well as a concern regarding late radiation toxicities. COVID-19 presented us with a novel respiratory illness without a strong evidence-based best practice; it was thought, therefore, that there may be a role for low-dose radiotherapy in the absence or failure of a standard treatment. The rationale for this was based around the ability of low-dose radiation to reduce an inflammatory state. We treated two individuals suffering from severe COVID-19 with low-dose whole lung radiotherapy, in the setting of a phase I trial. Both patients improved clinically, biochemically, and radiologically within a matter of days. We discuss why the meta-analyses may not have shown this advantage. Full article
Show Figures

Figure 1

17 pages, 10873 KiB  
Article
Evaluation of the Characteristics of Short Acquisition Times Using the Clear Adaptive Low-Noise Method and Advanced Intelligent Clear-IQ Engine
by Ryosuke Ogasawara, Akiko Irikawa, Yuya Watanabe, Tomoya Harada, Shota Hosokawa, Kazuya Koyama, Keisuke Tsuda, Toru Kimura, Koichi Okuda and Yasuyuki Takahashi
Radiation 2025, 5(2), 18; https://doi.org/10.3390/radiation5020018 - 6 Jun 2025
Viewed by 1067
Abstract
This study aimed to evaluate the characteristics of short acquisition times using the Clear adaptive Low-noise Method (CaLM) and Advanced intelligent clear-IQ engine (AiCE) reconstructions in a semiconductor-based positron emission tomography (PET)/computed tomography system. PET data were acquired for 30 min in list [...] Read more.
This study aimed to evaluate the characteristics of short acquisition times using the Clear adaptive Low-noise Method (CaLM) and Advanced intelligent clear-IQ engine (AiCE) reconstructions in a semiconductor-based positron emission tomography (PET)/computed tomography system. PET data were acquired for 30 min in list mode and resampled into time frames ranging from 15 to 120 s. Images were reconstructed using three-dimensional ordinary Poisson ordered-subset expectation maximization (OSEM) with time of flight (TOF) and OSEM with TOF and point spread function modeling (PSF) algorithms, with OSEM iterations adjusted from 1 to 20 and CaLM applied under Mild, Standard, and Strong settings. AiCE reconstruction allows for the modification of only the acquisition time. The images were evaluated based on the coefficient of variation, recovery coefficient, % background variability (N10mm), % contrast-to-% background variability ratio (QH10mm/N10mm), and contrast-to-noise ratio. While OSEM with TOF reconstruction did not significantly reduce the acquisition time, the addition of PSF correction suggested the potential for further reduction. Given that the AiCE characteristics may vary depending on the equipment used, further investigation is required. Full article
Show Figures

Figure 1

20 pages, 2074 KiB  
Article
Cannabidiol Mediates Beneficial Effects on the Microvasculature of Murine Hearts with Regard to Irradiation-Induced Inflammation and Early Signs of Fibrosis
by Lisa Bauer, Bayan Alkotub, Markus Ballmann, Khouloud Hachani, Mengyao Jin, Morteza Hasanzadeh Kafshgari, Gerhard Rammes, Alan Graham Pockley and Gabriele Multhoff
Radiation 2025, 5(2), 17; https://doi.org/10.3390/radiation5020017 - 21 May 2025
Viewed by 1266
Abstract
Objective: Radiotherapy administered to control thoracic cancers results in a partial irradiation of the heart at mean doses up to 19 Gy, which increases the risk of developing a spectrum of cardiovascular diseases known as radiation-induced heart disease (RIHD). As inflammation is a [...] Read more.
Objective: Radiotherapy administered to control thoracic cancers results in a partial irradiation of the heart at mean doses up to 19 Gy, which increases the risk of developing a spectrum of cardiovascular diseases known as radiation-induced heart disease (RIHD). As inflammation is a major driver of the development of RIHD, we investigated the potential of the anti-inflammatory agent cannabidiol (CBD) to attenuate irradiation-induced cardiovascular damage in vivo. Methods: Female C57BL/6 mice were given daily injections of CBD (i.p., 20 mg/kg body weight) for 4 weeks beginning either 2 weeks prior to 16 Gy irradiation of the heart or at the time of irradiation. Mice were sacrificed 30 min and 2, 4, and 10 weeks after irradiation to investigate the expression of inflammatory markers and stress proteins in primary cardiac endothelial cells (ECs). DNA double-strand breaks, immune cell infiltration, and signs of fibrosis were studied in explanted heart tissue. Results: We showed that the irradiation-induced upregulation of the inflammatory markers ICAM-1 and MCAM was only attenuated when treatment with CBD was started 2 weeks prior to irradiation but not when the CBD treatment was started concomitant with irradiation of the heart. The protective effect of CBD was associated with a decrease in irradiation-induced DNA damage and an increased expression of protective heat shock proteins (Hsp), such as Hsp32/Heme-oxygenase-1 (HO-1) and Hsp70, in the heart tissue. While the upregulation of the inflammatory markers ICAM-1 and MCAM, expression was prevented up to 10 weeks after irradiation by CBD pre-treatment, and the expression of VCAM-1, which started to increase 10 weeks after irradiation, was further upregulated in CBD pre-treated mice. Despite this finding, 10 weeks after heart irradiation, immune cell infiltration and fibrosis markers of the heart were significantly reduced in CBD pre-treated mice. Conclusion: CBD treatment before irradiation mediates beneficial effects on murine hearts of mice, resulting in a reduction of radiation-induced complications, such as vascular inflammation, immune cell infiltration, and fibrosis. Full article
(This article belongs to the Topic Innovative Radiation Therapies)
Show Figures

Figure 1

12 pages, 422 KiB  
Article
New Bayesian Posterior Approaches for Cytogenetic Partial Body Irradiation Inference
by Manuel Higueras and Hans Carrillo
Radiation 2025, 5(2), 16; https://doi.org/10.3390/radiation5020016 - 13 May 2025
Viewed by 634
Abstract
The number of chromosomal aberrations induced by a whole-body uniform exposure to ionizing radiation is typically assumed to follow a Poisson distribution. If this exposure is partial, the zero-inflated Poisson model is appropriate to describe the yield of chromosomal aberrations. In this work, [...] Read more.
The number of chromosomal aberrations induced by a whole-body uniform exposure to ionizing radiation is typically assumed to follow a Poisson distribution. If this exposure is partial, the zero-inflated Poisson model is appropriate to describe the yield of chromosomal aberrations. In this work, two different Bayesian posterior approaches (numerical integration and Laplace’s approximation) for zero-inflated Poisson responses are studied for cytogenetic biodosimetry dose estimation purposes. They are evaluated using two experiments from the literature, both of which include data for dose–response calibration and the simulation of partial-body exposure. Laplace’s approximation demonstrates strong performance, delivering rapid results with a loss of precision that may not significantly impact clinical measurements compared to those obtained through the more computationally intensive numerical integration approach. Full article
Show Figures

Figure 1

16 pages, 4715 KiB  
Article
Longitudinal Measurements of Inflammatory Indices During Treatment for Locally Advanced Rectal Cancer and Associations with Smoking, Ethnicity and Pathological Response
by Nancy Huang, Joseph Descallar, Wei Chua, Weng Ng, Emilia Ip, Christopher Henderson, Tara L. Roberts and Stephanie Hui-Su Lim
Radiation 2025, 5(2), 15; https://doi.org/10.3390/radiation5020015 - 7 May 2025
Viewed by 1103
Abstract
This study explores the change in inflammatory markers over the course of neoadjuvant chemoradiation and adjuvant chemotherapy for LARC and assesses the association with clinicopathological factors at pre-specified time-points. We examined the trends of neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), C-reactive protein (CRP), [...] Read more.
This study explores the change in inflammatory markers over the course of neoadjuvant chemoradiation and adjuvant chemotherapy for LARC and assesses the association with clinicopathological factors at pre-specified time-points. We examined the trends of neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), C-reactive protein (CRP), carcinoembryonic antigen (CEA), fibrinogen, and albumin through multilevel modelling of 29 prospective LARC patients across six time-points: before neoadjuvant chemoradiation (T1), week 3 of chemoradiation (T2), post-chemoradiation (T3), post-surgery (T4), midpoint of adjuvant chemotherapy (T5), and chemotherapy completion (T6). Variables collected included ethnic background, body mass index (BMI), smoking status, and pathological responses graded by Ryan tumour regression grade and pathological tumour and nodal status. NLR and PLR demonstrated an increasing trend during chemoradiation. Median CEA was highest at baseline and lowest at T4. The highest median values for NLR, PLR, CRP, and fibrinogen were at T4. Smokers demonstrated a trend towards a higher NLR compared to non-smokers. NLR was significantly higher in Caucasians compared to Asians at T2. Patients with pathological node-negative status had a higher NLR at T5 and T6 and a higher PLR at T1, T3, T5 and T6. Overall, inflammatory indices change dynamically throughout treatment and vary with clinicopathological factors. Full article
Show Figures

Figure 1

13 pages, 5627 KiB  
Article
No Survival Effect in Cell Lines with Different Growth Factor-Induced Division Rates, but with Different Fractionation Schemes
by Lena Blanke, Laura S. Hildebrand, Rainer Fietkau and Luitpold Distel
Radiation 2025, 5(2), 14; https://doi.org/10.3390/radiation5020014 - 29 Apr 2025
Viewed by 744
Abstract
The aim of this work was to investigate the relationship between the growth rate of tumor cells and their fractionation gain. Two head and neck squamous cell carcinoma (HNSCC) cell lines, one human papillomavirus (HPV) negative (HPV−) and one HPV+, and a primary [...] Read more.
The aim of this work was to investigate the relationship between the growth rate of tumor cells and their fractionation gain. Two head and neck squamous cell carcinoma (HNSCC) cell lines, one human papillomavirus (HPV) negative (HPV−) and one HPV+, and a primary fibroblast cell line were supplemented with four different concentrations of fetal bovine serum (FBS) to achieve different division rates. The effect of five different fractionation regimens was studied, namely 1 × 10 Gy, 2 × 5 Gy, 3 × 3.3 Gy, 4 × 2.5 Gy, and 5 × 2 Gy. Survival was studied using the colony-forming assay. Different concentrations of FBS were used to achieve different doubling rates for all cell lines. The HPV+ cell line was significantly more sensitive to radiation than the HPV− cell line in all fractionation schemes. The fibroblast cell line was less sensitive at low fractionation compared to the tumor cell lines. Low fractionation had a significantly higher effect, except for 5 × 2 Gy fractionation, which had a higher effect than 4 × 2.5 Gy. The number of radiosensitive mitoses during irradiation in the fractionation scheme could not explain the higher effect of 5 × 2 Gy. There was no difference in survival with the four different concentrations of FBS in all three cell lines and different fractionations. The doubling time (DT) rates of cell lines resulting from FBS deprivation do not reflect the expected increased radiation sensitivity of rapidly dividing cells. Full article
Show Figures

Figure 1

19 pages, 20636 KiB  
Case Report
Implementing Neurosurgery and Cesium-131 Brachytherapy in Veterinary Medicine: A Veterinary Case Study with a Review of Clinical Usage of Cesium-131 for Brain Tumors in Human Patients and Opportunities for Translational Research
by Isabelle F. Vanhaezebrouck, R. Timothy Bentley, Alex Georgiades, Susan Arnold, Joshua A. Young, Nathan Claus, Laura Danaher, Joshua B. Klutzke and Matthew L. Scarpelli
Radiation 2025, 5(2), 13; https://doi.org/10.3390/radiation5020013 - 15 Apr 2025
Viewed by 1454
Abstract
This article explores the implementation of Cesium-131 brachytherapy in veterinary academia, challenging the prevailing use of external beam therapy for small animal brain tumors. The authors report on the first ever canine patient treated with Cesium-131. While recent advances like intensity-modulated and stereotactic [...] Read more.
This article explores the implementation of Cesium-131 brachytherapy in veterinary academia, challenging the prevailing use of external beam therapy for small animal brain tumors. The authors report on the first ever canine patient treated with Cesium-131. While recent advances like intensity-modulated and stereotactic radiation therapies gain ground, brachytherapy remains underutilized in veterinary practice, primarily due to regulatory hurdles. In contrast, Cesium-131 brachytherapy, widely adopted in human medicine for neoplasia within the brain, presents advantages such as a short half-life, low kilovolt emission, and enhanced safety. Motivated by the need to eliminate post-surgery radiation delays, our academic center undertakes Cesium-131 brachytherapy for small animals, aiming to gather preliminary clinical data on disease-free intervals and survival rates. Comparative analyses against historical external beam therapy data may offer insights applicable to the human neuro-radiation community. Additionally, the technique’s implementation could initiate preclinical platform for combined intracavitary treatments, particularly immunotherapy, leveraging brachytherapy’s spatial dose distribution heterogeneity to influence the tumor microenvironment and enhance the immune response. The authors outline the adaptation of the technique on a canine glioma patient to provide preliminary feasibility results, describe the principal indications and outcomes of Cesium-131 for human brain tumors, and discuss prospects for advancing veterinary neuro-brachytherapy. Full article
(This article belongs to the Topic Innovative Radiation Therapies)
Show Figures

Figure 1

1 pages, 121 KiB  
Correction
Correction: Patching, S.G. Spermidine Binding to the Acetinobacter baumannii Efflux Protein AceI Observed by Near-UV Synchrotron Radiation Circular Dichroism Spectroscopy. Radiation 2022, 2, 228–233
by Radiation Editorial Office
Radiation 2025, 5(2), 12; https://doi.org/10.3390/radiation5020012 - 11 Apr 2025
Viewed by 252
Abstract
Radiation’s Editorial Office wishes to make the following changes to the published article [...] Full article
15 pages, 2995 KiB  
Article
Assessment of Tumor Infiltrating Lymphocytes in Predicting Stereotactic Ablative Radiotherapy (SABR) Response in Unresectable Breast Cancer
by Mateusz Bielecki, Khadijeh Saednia, Fang-I Lu, Shely Kagan, Danny Vesprini, Katarzyna J. Jerzak, Roberto Salgado, Raffi Karshafian and William T. Tran
Radiation 2025, 5(2), 11; https://doi.org/10.3390/radiation5020011 - 2 Apr 2025
Viewed by 1624
Abstract
Background: Patients with advanced breast cancer (BC) may be treated with stereotactic ablative radiotherapy (SABR) for tumor control. Variable treatment responses are a clinical challenge and there is a need to predict tumor radiosensitivity a priori. There is evidence showing that tumor infiltrating [...] Read more.
Background: Patients with advanced breast cancer (BC) may be treated with stereotactic ablative radiotherapy (SABR) for tumor control. Variable treatment responses are a clinical challenge and there is a need to predict tumor radiosensitivity a priori. There is evidence showing that tumor infiltrating lymphocytes (TILs) are markers for chemotherapy response; however, this association has not yet been validated in breast radiation therapy. This pilot study investigates the computational analysis of TILs to predict SABR response in patients with inoperable BC. Methods: Patients with inoperable breast cancer (n = 22) were included for analysis and classified into partial response (n = 12) and stable disease (n = 10) groups. Pre-treatment tumor biopsies (n = 104) were prepared, digitally imaged, and underwent computational analysis. Whole slide images (WSIs) were pre-processed, and then a pre-trained convolutional neural network model (CNN) was employed to identify the regions of interest. The TILs were annotated, and spatial graph features were extracted. The clinical and spatial features were collected and analyzed using machine learning (ML) classifiers, including K-nearest neighbor (KNN), support vector machines (SVMs), and Gaussian Naïve Bayes (GNB), to predict the SABR response. The models were evaluated using receiver operator characteristics (ROCs) and area under the curve (AUC) analysis. Results: The KNN, SVM, and GNB models were implemented using clinical and graph features. Among the generated prediction models, the graph features showed higher predictive performances compared to the models containing clinical features alone. The highest-performing model, using computationally derived graph features, showed an AUC of 0.92, while the highest clinical model showed an AUC of 0.62 within unseen test sets. Conclusions: Spatial TIL models demonstrate strong potential for predicting SABR response in inoperable breast cancer. TILs indicate a higher independent predictive performance than clinical-level features alone. Full article
Show Figures

Figure 1

20 pages, 4837 KiB  
Review
Effects Induced in Human Cells and Tissues by Low Doses of Ionizing Radiation: A Review of Vibrational Spectroscopy Contributions
by Ines Delfino, Maria Daniela Falco, Maria Lepore and M. Portaccio
Radiation 2025, 5(2), 10; https://doi.org/10.3390/radiation5020010 - 31 Mar 2025
Viewed by 1888
Abstract
Humans are constantly exposed to low doses and low-dose rates of ionizing radiation from both natural and man-made sources. For this reason, there is a growing interest in studies on the biological effects of low-dose radiation. Vibrational spectroscopies, such as Fourier transform infrared [...] Read more.
Humans are constantly exposed to low doses and low-dose rates of ionizing radiation from both natural and man-made sources. For this reason, there is a growing interest in studies on the biological effects of low-dose radiation. Vibrational spectroscopies, such as Fourier transform infrared and Raman micro-spectroscopies, have been fruitfully employed for studying the effects of high doses of ionizing radiation on biosystems. Aiming at clarifying the potential of the above-mentioned spectroscopic techniques to monitor the changes induced in cells, tissues, and other biological samples by low doses of ionizing radiations, we report a review of the literature in this research field. The analysis of published results suggests that vibrational spectroscopies make a valuable contribution. Additional and more systematic investigations could help to fully exploit the capabilities of these spectroscopic techniques. Full article
(This article belongs to the Special Issue Vibrational Spectroscopy in Radiobiology)
Show Figures

Figure 1

13 pages, 984 KiB  
Article
Evaluation of Using an Octavius 4D Measuring System for Patient-Specific VMAT Quality Assurance
by Yawo Atsu Constantino Fiagan, Kodjo Joël Fabrice N‘Guessan, Adama Diakité, Komlanvi Victor Adjenou, Thierry Gevaert and Dirk Verellen
Radiation 2025, 5(1), 9; https://doi.org/10.3390/radiation5010009 - 20 Feb 2025
Viewed by 1528
Abstract
Background: Quality assurance (QA) programs are designed to improve the quality and safety of radiation treatments, including patient-specific QA (PSQA). The objective of this study was to investigate the conditions in which pretreatment PSQA is performed, to evaluate the root cause of the [...] Read more.
Background: Quality assurance (QA) programs are designed to improve the quality and safety of radiation treatments, including patient-specific QA (PSQA). The objective of this study was to investigate the conditions in which pretreatment PSQA is performed, to evaluate the root cause of the implementation of more complex techniques, and to identify areas for potential improvement. Materials/Methods: The Octavius 4D (O4D) system accuracy was evaluated using an O4D homogeneous phantom for different field sizes. Tests of the system response to dose linearity, field sizes, and PDD differences were performed against calculated doses for a 6 MV photon beam. The pretreatment verification of 40 VMAT plans was performed using the PTW VeriSoft software (version 8.0.1) for local and global 3D gamma analysis. The reconstructed 3D dose was compared to the calculated dose using 2%/2 mm and 3%/3 mm, 20% of the low-dose threshold, and 95% of the gamma passing rate (%GP) tolerance level. The sensitivity of the O4D system in detecting VMAT delivery and setup errors has been investigated by measuring the variation in %GP values before and after the simulated errors. Results: The O4D system reported good agreement for linearity, field size, and PDD differences with TPS dose, being within ±2% tolerance. The output factors were consistent between the ionization chamber and the O4D detector down to a 4 × 4 cm2 field size with a maximum deviation less than 1%. The introduction of deliberate errors caused a decrease in %GP values. In most scenarios, the %GP value of the simulated errors was detected with 2%/2 mm. Conclusion: The results indicate that the O4D system is sensitive enough to detect delivery and setup errors with the restrictive global criterion of 2%/2 mm for routine pretreatment verification. Full article
(This article belongs to the Topic Innovative Radiation Therapies)
Show Figures

Figure 1

12 pages, 5144 KiB  
Article
Amplification of Higher-Order Salivary Gland Volume Effects from External Beam Radiotherapy in Normal Tissue Complication Probability Modeling of Radiopharmaceutical Therapy
by Chunming Gu, Robert F. Hobbs, Ana P. Kiess, Junghoon Lee, Todd McNutt, Harry Quon, Zhuoyao Xin and Tahir I. Yusufaly
Radiation 2025, 5(1), 8; https://doi.org/10.3390/radiation5010008 - 5 Feb 2025
Viewed by 1349
Abstract
Salivary glands are common organs at risk in both head and neck external beam radiotherapy (EBRT) and radiopharmaceutical therapy (RPT), but incidences of xerostomia in RPT are inconsistent with the EBRT Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) limits. In [...] Read more.
Salivary glands are common organs at risk in both head and neck external beam radiotherapy (EBRT) and radiopharmaceutical therapy (RPT), but incidences of xerostomia in RPT are inconsistent with the EBRT Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) limits. In EBRT, salivary glands are usually assumed to be parallel organs, with QUANTEC guidelines based on Dmean, but this is known to be a gross over-simplification of the full complexity of the underlying functional organization. The goal of this work is to combine machine learning of EBRT dose–outcome data with stylized small-scale RPT dosimetry to discover more reliable normal tissue complication probability (NTCP) models of xerostomia across both modalities. A retrospective cohort of 211 EBRT patients was analyzed using a custom-designed in-house machine learning workflow. From this, a hierarchy of three models of increasing complexity was trained, evaluated for performance and generalization, and coupled with stylized small-scale salivary gland dosimetry to assess the influence of model complexity on the predicted NTCP for plausible patterns of RPT dose nonuniformity. The three models in the hierarchy (A, B, C), in increasing order of complexity, associate xerostomia with the following: the mean dose to the whole contralateral parotid (model A), the mean dose to a ductally localized region (model B) and a serial interaction dose term between two ductal sub-compartments (model C). While the difference between the three models for EBRT p-values and AUCs is rather marginal, for physiologically driven ductal dose distributions in RPT, the predicted reduction in TD50 can be as large as a factor of 10. These results provide hints towards a plausible reconciliation of the observed inconsistency of xerostomia in RPT with EBRT dose limits. Full article
Show Figures

Figure 1

14 pages, 245 KiB  
Review
Radiomics-Guided Precision Radiation Therapy in Head and Neck Squamous Cell Carcinoma
by Cuiping Yuan, Jessica An and Seyedmehdi Payabvash
Radiation 2025, 5(1), 7; https://doi.org/10.3390/radiation5010007 - 23 Jan 2025
Viewed by 2014
Abstract
Radiomics and deep learning computer vision algorithms can extract clinically relevant information from medical images, providing valuable insights for accurate diagnosis of cancerous lesions, tumor differentiation and molecular subtyping, prediction of treatment response, and prognostication of long-term outcomes. In head and neck squamous [...] Read more.
Radiomics and deep learning computer vision algorithms can extract clinically relevant information from medical images, providing valuable insights for accurate diagnosis of cancerous lesions, tumor differentiation and molecular subtyping, prediction of treatment response, and prognostication of long-term outcomes. In head and neck squamous cell carcinoma (HNSCC), growing evidence supports the potential role of radiomics and deep learning models in predicting treatment response, long-term outcomes, and treatment complications following radiation therapy. This is especially important given the pivotal role of radiotherapy in early-stage and locally advanced HNSCC, as well as in post-operative and concomitant chemoradiotherapy. In this article, we summarize recent studies highlighting the role of radiomics in predicting early post-radiotherapy response, locoregional recurrence, survival outcomes, and treatment-related complications. Radiomics-guided tools have the potential to personalize HNSCC radiation treatment by identifying low-risk patients who may benefit from de-intensified therapy and high-risk individuals who require more aggressive treatment strategies. Full article
Back to TopTop