Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (393)

Search Parameters:
Journal = Forests
Section = Forest Biodiversity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1338 KB  
Article
Impact of Trapping Programs for Ips typographus (Linnaeus) (Curculionidae: Scolytinae) on Predators, Parasitoids, and Other Non-Target Insects
by Matteo Bracalini, Andrea Martini, Lorenzo Tagliaferri and Tiziana Panzavolta
Forests 2025, 16(10), 1510; https://doi.org/10.3390/f16101510 - 24 Sep 2025
Viewed by 243
Abstract
The European spruce bark beetle, Ips typographus (Linnaeus, 1758), poses a significant threat to Picea abies (Linnaeus) Karsten, 1881 forests, with outbreaks often exacerbated by abiotic disturbances like the 2018 Vaia windstorm in the Italian Alps. Pheromone-baited traps are widely used for control, [...] Read more.
The European spruce bark beetle, Ips typographus (Linnaeus, 1758), poses a significant threat to Picea abies (Linnaeus) Karsten, 1881 forests, with outbreaks often exacerbated by abiotic disturbances like the 2018 Vaia windstorm in the Italian Alps. Pheromone-baited traps are widely used for control, yet their overall efficacy and potential side effects, particularly the incidental capture of non-target insects, remain debated. This study aimed to comprehensively assess the presence and composition of non-target insects in I. typographus pheromone traps, used for both mass-trapping and monitoring, in the affected Alpine regions. We took into account single monitoring traps (dry collection) and three-trap cross configurations for mass-trapping (with preservative liquid), collecting and morphologically identifying insect by-catch. Our results revealed a non-target proportion (excluding bark beetles) significantly higher in mass-trapping (4.15%) compared to monitoring (1.00%), with approximately half being natural enemies of bark beetles. Crucially, we report that bark beetle parasitoids were repeatedly caught, with Tomicobia seitneri (Ruschka, 1924) (the third most abundant non-target species) particularly well represented, and Ropalophorus clavicornis (Wesmaël, 1835) also detected, which is noteworthy given its ecological role despite its lower numbers. Our findings underscore the significant, previously underreported, capture of beneficial parasitoids and highlight the need for careful consideration of non-target catches in I. typographus pest management strategies. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

23 pages, 8002 KB  
Article
Tree Ferns Augment Native Plant Richness and Influence Composition in Urban Plant Communities
by Hannah C. Rogers, Francis J. Burdon and Bruce D. Clarkson
Forests 2025, 16(9), 1498; https://doi.org/10.3390/f16091498 - 22 Sep 2025
Viewed by 361
Abstract
Tree ferns are ubiquitous in New Zealand forests, but there is limited knowledge of their role in urban plant communities and potential use in restoration. We assessed sixteen sites by measuring 200 m2 plots to investigate how tree ferns influence vascular plant [...] Read more.
Tree ferns are ubiquitous in New Zealand forests, but there is limited knowledge of their role in urban plant communities and potential use in restoration. We assessed sixteen sites by measuring 200 m2 plots to investigate how tree ferns influence vascular plant composition in Hamilton, North Island, New Zealand. The sixteen plots were assigned to four site type combinations based on restoration status (restored or unrestored) and tree fern presence, each with four plots. Average native plant species richness was higher at sites with tree ferns (36 ± 16; S = 68) than at sites without (19 ± 14; S = 41), with more diverse ground fern and epiphyte assemblages. Higher native plant richness at restored sites (34 ± 18; S = 62) compared to unrestored sites (20 ± 14, S = 44) was partially attributed to increased plant abundances. Multivariate analyses revealed differences in plant community composition among our site types. Angiosperms and conifers were less prevalent in plots with tree ferns, suggesting competitive relationships among these groups. However, tree ferns were associated with some shade-tolerant trees, such as Schefflera digitata J.R.Forst. & G.Forst. Indicator species of sites with tree ferns were mainly ground ferns and epiphytes (e.g., Blechnum parrisiae Christenh. and Trichomanes venosum R.Br.), whereas species with high fidelity to sites without tree ferns were pioneer trees and shrubs (e.g., Pittosporum eugenioides A.Cunn.). Community structure analyses revealed that total basal areas were highest at unrestored sites with tree ferns, but restored sites exhibited more diverse tree communities. Environmental predictors that correlated significantly with the compositional differences among our site types were tree fern basal area and restoration age. Our results highlight the need to reconsider the potential of tree ferns in current restoration practice. Tree ferns were found to augment native plant diversity in our study, indicating their potential to enhance urban ecological restoration projects in New Zealand. Full article
Show Figures

Figure 1

19 pages, 7183 KB  
Article
Vegetation-Driven Changes in Soil Properties, Enzymatic Activities, and Microbial Communities of Saline–Alkaline Wetlands
by Qian Liu, Shan Jiang, Pengbing Wu, Xu Zhang, Xingchi Guo, Ying Qu, Junyan Zheng and Yuhe Xing
Forests 2025, 16(9), 1468; https://doi.org/10.3390/f16091468 - 16 Sep 2025
Viewed by 445
Abstract
Saline–alkaline wetlands represent critical ecosystems for maintaining biodiversity, regulating hydrological processes, and supporting regional ecological resilience. However, the extent to which dominant vegetation regulates soil functionality and microbial assemblages in these unique saline systems remains insufficiently understood. In this study, we examined five [...] Read more.
Saline–alkaline wetlands represent critical ecosystems for maintaining biodiversity, regulating hydrological processes, and supporting regional ecological resilience. However, the extent to which dominant vegetation regulates soil functionality and microbial assemblages in these unique saline systems remains insufficiently understood. In this study, we examined five characteristic vegetation types—Phragmites communis Trin., Typha angustifolia L., Bryophytes, Suaeda salsa (L.) Pall., Echinochloa phyllopogon (Stapf) Koss.—across the saline wetlands of Chagan Lake, northeast China, which are embedded in a heterogeneous matrix of forests, grasslands, and agricultural lands. Comprehensive assessments of soil physicochemical properties, enzyme activities, and bacterial communities were conducted, integrating high-throughput sequencing with multivariate statistical analyses. Our results revealed that vegetation cover markedly influenced soil attributes, particularly total organic carbon (TOC) and alkali-hydrolyzed nitrogen (AN), alongside key enzymatic functions such as urease and alkaline phosphatase activities. Proteobacteria, Actinobacteria, and Acidobacteria emerged as dominant bacterial phyla, with their relative abundances tightly linked to vegetation-induced shifts in soil environments. Notably, soils under E. phyllopogon demonstrated elevated bacterial diversity and enzymatic activities, underscoring the synergistic effects of plant selection on soil biogeochemical health. Structural equation modeling further elucidated complex pathways connecting vegetation, microbial diversity, soil quality, and enzymatic functioning. These findings emphasize the pivotal role of vegetation management in improving soil fertility, shaping microbial communities, and guiding the sustainable restoration of saline–alkaline wetlands under environmental stress. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Graphical abstract

12 pages, 1371 KB  
Article
Comparison of Bird-Species Richness Between 1987 and 2024 Reveals the Urban Forest as a Stable Biodiversity Refugium in a Dynamic Urbanized Landscape
by Ivo Machar
Forests 2025, 16(9), 1405; https://doi.org/10.3390/f16091405 - 2 Sep 2025
Viewed by 731
Abstract
Urban forests provide many ecosystem services in urbanized landscapes, including biodiversity conservation. The sustainable management of urban forests requires a thorough understanding of biodiversity changes in the context of rapid urbanization. As biodiversity in rapidly changing urban areas is very dynamic, we need [...] Read more.
Urban forests provide many ecosystem services in urbanized landscapes, including biodiversity conservation. The sustainable management of urban forests requires a thorough understanding of biodiversity changes in the context of rapid urbanization. As biodiversity in rapidly changing urban areas is very dynamic, we need a better understanding of long-term biodiversity changes in urban forests. Birds are very good bioindicators of urban forest biodiversity because they are strongly habitat-sensitive. However, a major knowledge gap exists in long-term trends in bird diversity in temperate urban forests. This study analyzed a comparison of bird-species richness in a temperate Central European urban forest over a time span of 37 years. Bird-counts using the standard line-transect method conducted in 2023–2024 were compared with older field data from 1987 gained using the same method in a lowland hardwood floodplain forest in the Czech Republic. The results revealed significant faunistic similarities in the bird-species diversity of an urban forest during the 1987–2024 period. The high local alpha diversity of the bird community (42 nesting bird species) as well as the relatively high long-term stability in bird richness indicated the importance of the studied urban forest as a stable biodiversity refugium in a dynamic urbanized landscape. Therefore, urban forests can be considered very stable biodiversity refugia in dynamically changing urban areas. Full article
Show Figures

Figure 1

21 pages, 8836 KB  
Article
Structure and Function of Rhizosphere Bacterial Communities in the Endangered Plant Abies ziyuanensis
by Yufeng Wang, Jiahao Wu, Tao Deng, Jiatong Ye and Xinghua Hu
Forests 2025, 16(9), 1404; https://doi.org/10.3390/f16091404 - 2 Sep 2025
Viewed by 413
Abstract
Rhizosphere microbiota are key drivers of plant nutrition, immunity, and stress tolerance. Abies ziyuanensis L. K. Fu & S. L. Mo (Pinaceae) is an endangered conifer endemic to China, and its persistence may depend on its interactions with its belowground microbiome. However, how [...] Read more.
Rhizosphere microbiota are key drivers of plant nutrition, immunity, and stress tolerance. Abies ziyuanensis L. K. Fu & S. L. Mo (Pinaceae) is an endangered conifer endemic to China, and its persistence may depend on its interactions with its belowground microbiome. However, how soil-borne bacterial functional groups respond to, and potentially support, A. ziyuanensis remains unclear. Based on amplicon high-throughput sequencing data of the 16S rRNA gene and soil physicochemical properties, the bacterial community structure in the rhizosphere soil of A. ziyuanensis in Yinzhu Laoshan National Nature Reserve in Guangxi Zhuang Autonomous Region, China, was analyzed, and the potential ecological functions and phenotypic characteristics of the bacterial community were predicted to determine the functional taxa characteristics (nitrogen cycle, phototrophy, and chemoheterotrophy) and dominant soil environmental factors. Proteobacteria, Acidobacteria, Actinobacteria, Planctomycetes, Verrucomicrobia, and Chloroflexi were the dominant bacterial taxa in the A. ziyuanensis rhizosphere soil, and all bacteria were significantly positively correlated with soil NO3-N (R = 0.47, p = 0.0079). Based on FAPROTAX, the A. ziyuanensis rhizosphere soil bacterial community had chemoheterotrophic-related functions, which were more prevalent than nitrogen cycle- and phototrophic-related functions, and the relative abundance of bacteria with nitrogen cycle-related functions was higher than that of those with phototrophic functions. The nitrogen nutrient- and phototrophic-related functional taxa in the rhizosphere soil bacterial community had significant correlations with soil physicochemical properties, whereas the chemoheterotrophic-related functional taxa did not show a significant correlation. Based on BugBase phenotype prediction, Acidobacteria, Proteobacteria, and Chloroflexi made the greatest contribution to the phenotype, with pathogenic and stress tolerance being the most important phenotypes. The pathogenic and stress-tolerant bacteria all belonged to Proteobacteria. The rhizosphere bacteria exhibited rich diversity and dominated several biogeochemical cycling processes. This study identifies beneficial rhizosphere bacteria of A. ziyuanensis, providing a theoretical basis for conserving soil bacterial diversity and guiding the targeted recruitment of functional bacteria by the endangered plant. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

13 pages, 2986 KB  
Article
Endophyte Diversity and Resistance to Pine Wilt Disease in Coniferous Trees
by Shuting Zhao, Chao Wang, Qunqun Guo, Yanxin Pan, Meng Zhang, Huiyu Wang, Jiayi Yu, Ronggui Li and Guicai Du
Forests 2025, 16(9), 1403; https://doi.org/10.3390/f16091403 - 2 Sep 2025
Viewed by 370
Abstract
Pine wilt disease (PWD) is a serious forest disease caused by pine wood nematode (PWN). To examine the relationship between coniferous endophytes and PWD resistance, this study investigated endophytic bacterial and fungal communities in five conifer species: two Japanese black pine populations ( [...] Read more.
Pine wilt disease (PWD) is a serious forest disease caused by pine wood nematode (PWN). To examine the relationship between coniferous endophytes and PWD resistance, this study investigated endophytic bacterial and fungal communities in five conifer species: two Japanese black pine populations (Pinus thunbergii from Qingdao University, PQ, and Fushan Forest Park, PF), Chinese arborvitae (Platycladus orientalis, PO), cedar (Cedrus deodara, CD), and Masson pine (Pinus massoniana, PM). Results showed a strong correlation between endophytic microbial diversity and PWD resistance. PO with high PWD resistance hosted the most unique bacterial species, while PM with low PWD resistance had the fewest unique bacteria and significantly lower ACE and Shannon indices. At the bacterial genus level, dominant genera in resistant conifers often showed high nematocidal activity, whereas those in susceptible plants boosted nematode reproduction. PQ featured the unique dominant genus Pantoea, and PO’s unique Acinetobacter and the shared genus Bacillus (with CD) both displayed high toxicity to PWNs. In contrast, PF’s Pseudomonas and PM’s Stenotrophomonas significantly promoted nematode reproduction. Fungal community analysis revealed that the unique endophytic fungi in PQ are more abundant than those in PF, and the Shannon index of its endophytic fungi is comparable to that of CD and significantly higher than that of PF. PF’s dominant fungal genus Pestalotiopsis might facilitate nematode invasion, and its fungal Shannon index is significantly lower than PQ’s. Eight bacterial strains were isolated from these five conifer plants, with six highly nematocidal strains originating from PQ, CD, and PO. This study offers evidence that endophytic microbial communities critically influence PWD resistance, offering a microbial basis for developing resistant conifer cultivars through microbiome engineering. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

17 pages, 2142 KB  
Article
Silvicultural Practices Shape Fungal Diversity and Community Composition: Metabarcoding Study in a Pinus Forest in Central Mexico
by Liliana E. García-Valencia, Román González-Escobedo, Marisela Cristina Zamora-Martínez, Jocelyn Pérez-García, Roberto Garibay-Orijel and Florencia García-Campusano
Forests 2025, 16(9), 1397; https://doi.org/10.3390/f16091397 - 1 Sep 2025
Viewed by 586
Abstract
Silvicultural practices significantly influence the diversity and composition of soil fungal communities, which play crucial roles in maintaining forest ecosystem functionality. This study evaluated the impact of three silvicultural treatments, consisting of liberation cutting, first thinning, and second thinning, on rhizospheric fungal and [...] Read more.
Silvicultural practices significantly influence the diversity and composition of soil fungal communities, which play crucial roles in maintaining forest ecosystem functionality. This study evaluated the impact of three silvicultural treatments, consisting of liberation cutting, first thinning, and second thinning, on rhizospheric fungal and ectomycorrhizal (ECM) fungi communities in Pinus forests located in Puebla, Mexico. Using high-throughput metabarcoding of the internal transcribed spacer (ITS2) region, we identified 346 fungal genera across all treatments, with Ascomycota and Basidiomycota being the dominant phyla. Alpha diversity indices revealed a trend toward higher fungal richness for first thinning, followed by liberation cutting and lower values for second thinning. A beta diversity analysis demonstrated significant shifts in the fungal community composition across treatments, highlighting the influence of the thinning intensity. The proportions of different functional guilds were consistent across the treatments. However, compositional differences were observed, mainly in soil and wood saprotrophs and in pathogenic taxa. Liberation cutting showed enrichment in ECM taxa such as Russula and Cenococcum, whereas Tuber, Humaria, and Tricholoma were decreased for first thinning and Russula was decreased for second thinning. These findings underscore the need for sustainable forest management practices that balance productivity with the conservation of fungal biodiversity to ensure ecosystem stability and functionality. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

15 pages, 2779 KB  
Article
Butterfly Community Responses to Urbanization and Climate Change: Thermal Adaptation and Wing Morphology Effects in a Conserved Forest, South Korea
by Tae-Sung Kwon, Sung-Soo Kim, Ilju Yang, A Reum Kim and Young-Seuk Park
Forests 2025, 16(9), 1386; https://doi.org/10.3390/f16091386 - 28 Aug 2025
Viewed by 736
Abstract
Habitat and climate changes driven by human activities are altering the distribution of organisms globally. In South Korea, recent temperature increases have exceeded twice the global average, and habitats have markedly changed and shrunk due to urban development driven by population growth and [...] Read more.
Habitat and climate changes driven by human activities are altering the distribution of organisms globally. In South Korea, recent temperature increases have exceeded twice the global average, and habitats have markedly changed and shrunk due to urban development driven by population growth and economic expansion. Despite its high biodiversity and over 500 years of preservation, Gwangneung Forest in South Korea has experienced habitat alterations due to the urbanization of surrounding rural areas since the 1990s. In this study, we aimed to evaluate how butterfly communities respond to urbanization and climate change using long-term monitoring data (1998–2015) from the conserved Gwangneung Forest. We considered the thermal adaptation types (cold-, warm-, and moderately adapted species), habitat types (forest edge, forest inside, and grassland), diet breadth (monophagous, oligophagous, and polyphagous), and wingspan of butterflies. Linear regression analysis of the abundance trends for each species revealed that cold-adapted species experienced population declines, while warm-adapted species showed increases. Changes in butterfly abundance were associated with both thermal adaptation type and wingspan, with larger, more mobile species showing greater resistance to habitat loss in surrounding areas. To preserve butterfly diversity in Gwangneung Forest and across South Korea, it is crucial to conserve open green habitats—such as gardens, small arable lands, and grasslands—within urban areas, especially considering the impacts of climate change and habitat loss, which disproportionately affect smaller species with limited mobility. Full article
Show Figures

Figure 1

19 pages, 2849 KB  
Article
A Demographic Imbalance of Tree Populations in the Managed Part of Białowieża Forest (NE Poland): Implications for Nature-Oriented Forestry
by Bogdan Brzeziecki, Jacek Zajączkowski and Marek Ksepko
Forests 2025, 16(9), 1382; https://doi.org/10.3390/f16091382 - 28 Aug 2025
Viewed by 650
Abstract
Forests, both natural and managed, provide a critical habitat for a significant part of global biodiversity. Among many different groups of forest biota, tree species occupy a special position as they create conditions upon which the existence of virtually all other forest organisms [...] Read more.
Forests, both natural and managed, provide a critical habitat for a significant part of global biodiversity. Among many different groups of forest biota, tree species occupy a special position as they create conditions upon which the existence of virtually all other forest organisms depends, either directly or indirectly. To permanently play this role, particular tree species must be demographically stable; i.e., their populations should be distinguished by the balanced, size-dependent proportions of individuals representing different developmental stages (from seedlings and saplings to mature and old trees). In this study, we examined the extent to which this condition is met in the managed part of Białowieża Forest in northeastern Poland, an important biodiversity hotspot in Central Europe. Comparison of species-specific equilibrium vs. actual size distributions revealed that almost half of all trees growing in Białowieża Forest represented “inappropriate” (i.e., occurring in excess compared to the balanced models) species and/or diameter ranges. The amount of deficits was also large (around 30% of the current tree number), concerning primarily the smallest trees. Considering this, we recommend targeted, active management strategies to restore the demographic balance of key tree species and, thus, to enhance the conservation of local biodiversity. We also indicate that the key elements of such strategies should be the gradual removal of trees from surplus diameter ranges and assisted regeneration of species with the greatest deficiencies in small diameter classes. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Graphical abstract

24 pages, 3592 KB  
Review
Little Giants: Lichens in Tropical Dry Forests
by María Cristina Martínez-Habibe, Pierine Espana-Puccini and Ricardo Miranda-González
Forests 2025, 16(9), 1364; https://doi.org/10.3390/f16091364 - 22 Aug 2025
Viewed by 849
Abstract
Lichens, complex symbiotic associations between fungi and photosynthetic partners, are widespread in terrestrial ecosystems but remain poorly studied in tropical dry forests (TDFs). This review synthesizes current knowledge on the diversity, ecological roles, adaptive traits, and ethnobotanical uses of lichens in TDFs, with [...] Read more.
Lichens, complex symbiotic associations between fungi and photosynthetic partners, are widespread in terrestrial ecosystems but remain poorly studied in tropical dry forests (TDFs). This review synthesizes current knowledge on the diversity, ecological roles, adaptive traits, and ethnobotanical uses of lichens in TDFs, with a focus on the Neotropics. As most lichens discussed here are crustose species that inhabit tree bark, this paper also provides a thoughtful review of the origin, distribution, and highly heterogeneous floristic composition of TDFs, which directly shape lichen habitats. It discusses how lichens have evolved to cope with seasonal water stress, emphasizing desiccation tolerance as a key feature of the symbiosis. This review also explores lichen community composition, interactions with host trees, microclimatic conditions, herbivory, and soil crust formation. Despite evidence of high species richness, functional diversity, and ecological importance, lichens in TDFs are largely overlooked in conservation strategies. Moreover, several regions remain vastly understudied, and many species likely remain undescribed. Ethnolichenological practices, though scarce, underscore the cultural and medicinal value of these organisms. Given the high rates of habitat loss and endemism in TDFs, there is a pressing need to expand research on lichen diversity and to investigate the evolutionary origins of their survival strategies. The conservation of these lichens is inseparable from the conservation of TDFs themselves. Understanding how lichens adapt to the harsh and variable conditions of TDFs is essential for integrating them into biodiversity conservation and ecosystem restoration frameworks. Full article
(This article belongs to the Special Issue The Importance of Lichen Diversity in Forests)
Show Figures

Figure 1

19 pages, 3081 KB  
Article
Integrating a Newcomer: Niche Differentiation and Habitat Use of Eurasian Red Squirrels and Native Species in a Forest Reserve Under Human Disturbance
by Wuyuan Zhang, Xiaoxiao Liu, Tong Zhang and Guofa Cui
Forests 2025, 16(8), 1360; https://doi.org/10.3390/f16081360 - 21 Aug 2025
Viewed by 767
Abstract
Understanding the integration of newly recorded species into forest ecosystems is essential for evaluating their ecological impacts on native wildlife diversity. In this study, we examined the spatial and temporal niche dynamics of three sympatric squirrel species within the Labagoumen nature reserve, a [...] Read more.
Understanding the integration of newly recorded species into forest ecosystems is essential for evaluating their ecological impacts on native wildlife diversity. In this study, we examined the spatial and temporal niche dynamics of three sympatric squirrel species within the Labagoumen nature reserve, a temperate forest located in northern China. Particular emphasis was placed on the recently documented Eurasian red squirrel (Sciurus vulgaris) and its potential interactions with two native species: Père David’s rock squirrel (Sciurotamias davidianus) and the Siberian chipmunk (Tamias sibiricus). Using camera trapping data from 91 sites (2019–2024), we examined habitat use, activity rhythms, and niche overlap under contrasting levels of human disturbance. A total of 3419 independent effective photos of squirrels were recorded. S. vulgaris showed a broader spatial distribution and a higher relative abundance index (RAI) in the tourist area, while native species were more abundant in the non-tourist area. All three species showed similar annual activity patterns based on the monthly relative abundance index (MRAI), although native species exhibited an additional activity peak in June–July. Temporal niche overlap (Cih) and the coefficient of overlap (Δ) between S. vulgaris and native species increased during the tourist season, suggesting synchronized activity under high disturbance. In contrast, lower overlap in the non-tourist season indicated stronger temporal partitioning. The daily activity rhythm of S. vulgaris remained stable, while native species displayed more variability, especially in non-tourist areas. S. vulgaris also exhibited a significantly broader spatial niche breadth (Bi), suggesting greater habitat exploitation and adaptability. Non-metric multidimensional scaling (NMDS) revealed no significant spatial segregation among the three species, indicating successful integration of S. vulgaris into the local community. Our findings emphasize the competitive advantage of S. vulgaris and demonstrate how human activities can restructure forest small mammal assemblages by altering spatiotemporal niche partitioning. We recommend long-term ecological monitoring to assess species diversity changes and guide adaptive conservation strategies. Full article
Show Figures

Figure 1

25 pages, 7852 KB  
Article
Herbaceous Layer Response to Overstory Vegetation Changes in Quercus mongolica Fisch. ex Ledeb. Forests in Korea
by Byeong-Joo Park and Kwangil Cheon
Forests 2025, 16(8), 1344; https://doi.org/10.3390/f16081344 - 18 Aug 2025
Viewed by 635
Abstract
The development of overstory vegetation can considerably influence the composition and dynamics of herbaceous layer vegetation. However, the type of ecological processes underlying these changes remain poorly understood. We aimed to analyze changes in herbaceous layer species composition in Quercus mongolica Fisch. ex [...] Read more.
The development of overstory vegetation can considerably influence the composition and dynamics of herbaceous layer vegetation. However, the type of ecological processes underlying these changes remain poorly understood. We aimed to analyze changes in herbaceous layer species composition in Quercus mongolica Fisch. ex Ledeb. forests in central South Korea and identify the ecological processes driving succession, using zeta diversity and species turnover. We also sought to address regional bias in existing long-term monitoring data. Permanent 1 ha survey plots were established according to International Long Term Ecological Research Network guidelines, divided into 100 subplots. Data on species composition, crown openness, transmitted light, and structural variables were collected through four surveys (2014, 2015, 2017, and 2020) between 2014 and 2020. Zeta diversity and turnover metrics were used to evaluate succession dynamics. Species richness, cover, and turnover in the herbaceous layer were significantly correlated with overstory structure and rock cover. Crown openness and transmitted light declined but did not correlate with species turnover. Zeta diversity shifted from a power function model (2014–2017) to an exponential model (2020), indicating a shift from deterministic to stochastic processes. Successional changes in herbaceous vegetation may indicate a potential shift in forest structure in Q. mongolica stands—from stable, deterministic patterns to more variable, stochastic processes—highlighting the need for long-term monitoring in dynamic forest ecosystems. Full article
(This article belongs to the Special Issue Biodiversity Patterns and Ecosystem Functions in Forests)
Show Figures

Figure 1

18 pages, 2355 KB  
Article
Fragmentation, Ecological Assessment, and Diversity of EU Forest Habitat Types: A Case Study in the Calabria Region Oak Woodlands (Southern Italy)
by Antonio Morabito and Giovanni Spampinato
Forests 2025, 16(8), 1320; https://doi.org/10.3390/f16081320 - 13 Aug 2025
Viewed by 488
Abstract
Habitat fragmentation is one of the main causes of biodiversity loss and the alteration of the structure and function of habitat types. This study aimed to assess the conservation status of forest habitats by examining fragmentation and naturalness. As a case study, we [...] Read more.
Habitat fragmentation is one of the main causes of biodiversity loss and the alteration of the structure and function of habitat types. This study aimed to assess the conservation status of forest habitats by examining fragmentation and naturalness. As a case study, we examined the Oak forests of Calabria, which play an important structural and ecological role in the region. The vegetation analysis enabled us to define six forest communities, corresponding to six habitat types or subtypes, as defined by the EEC Directive 92/43. The ecological characteristics of the habitat types were analyzed using Ellenberg–Pignatti indicators. Temperature (T) and moisture (U) are the most significant ecological factors for distinguishing the different habitat types and are strongly correlated with naturalness. The analysis of landscape parameters revealed that habitat types 91AA* and 9330 are the most fragmented and punctuated, with an observed correlation between naturalness and patch density, a parameter expressing the number of patches per unit area. The study of ecological characteristics in relation to biodiversity and landscape indices contributes to the characterization of oak woodland habitats and provides guidelines for the implementation of active conservation measures. Full article
Show Figures

Figure 1

26 pages, 4023 KB  
Article
Forest Habitat and Substrate Interactions Drive True Slime Mould Diversity Across Poland
by Tomasz Pawłowicz, Tomasz Oszako, Konrad Wilamowski, Monika Puchlik, Krzysztof Sztabkowski, Igor Żebrowski, Gabriel Michał Micewicz, Gabriel Kacper Malej and Oliwia Kudrycka
Forests 2025, 16(8), 1307; https://doi.org/10.3390/f16081307 - 11 Aug 2025
Viewed by 625
Abstract
True slime mould assemblages respond acutely to microhabitat structure, which may constitute potential indicators of forest dynamics; however, large-scale syntheses integrating habitat scale and substrate specificity remain exceedingly scarce. By collating 3085 occurrence records into eight ecologically coherent habitats and ten substrate guilds, [...] Read more.
True slime mould assemblages respond acutely to microhabitat structure, which may constitute potential indicators of forest dynamics; however, large-scale syntheses integrating habitat scale and substrate specificity remain exceedingly scarce. By collating 3085 occurrence records into eight ecologically coherent habitats and ten substrate guilds, we quantified richness, entropy, turnover and indicator strength via rarefaction, Chao1/ACE, Shannon–Simpson indices, β-diversity partitioning, NMDS, PERMANOVA and IndValg analysis. Broadleaved deciduous forests accounted for 37.9% of observations and hosted the most taxa, while lignicolous samples in both deciduous and bog–mire contexts dominated species counts; open grasslands were compositionally depauperate. Species replacement, not nestedness, structured assemblages (βSIM/βSOR0.82), and habitat plus substrate explained two-thirds of variance. Indicator analysis isolated six habitat-diagnostic genera (notably Cribraria, Hemitrichia and Licea) and, at species resolution, highlighted Diderma niveum, Fuligo septica and Ceratiomyxa fruticulosa as high-fidelity bioindicators of montane grassland, bog–mire and broadleaved forest conditions, respectively. Taken together, our findings lay the groundwork for employing true slime moulds to identify habitat types and assess their ecological condition, while underscoring the conservation value of dead wood retention and structural heterogeneity. The benchmarked indicator set we provide enables rapid assessments and establishes a temporal baseline for tracking climate- and management-driven change in Central European Eumycetozoa diversity. Full article
(This article belongs to the Special Issue Biodiversity Patterns and Ecosystem Functions in Forests)
Show Figures

Figure 1

16 pages, 2995 KB  
Article
Network Structure and Species Roles in Epiphyte–Phorophyte Interactions on a Neotropical Inselberg Woody Vegetation
by Talitha Mayumi Francisco, Dayvid Rodrigues Couto and Mário Luís Garbin
Forests 2025, 16(8), 1300; https://doi.org/10.3390/f16081300 - 9 Aug 2025
Viewed by 539
Abstract
Using metrics from network theory allows us to understand the structural organization of epiphyte communities and identify the host trees (phorophytes) that are fundamental to their establishment. In this study, we applied ecological network metrics to examine the structure of interactions between vascular [...] Read more.
Using metrics from network theory allows us to understand the structural organization of epiphyte communities and identify the host trees (phorophytes) that are fundamental to their establishment. In this study, we applied ecological network metrics to examine the structure of interactions between vascular epiphytes and phorophytes in a woody inselberg community in southeastern Brazil. The recorded network comprised 30 epiphyte species and 13 phorophyte species, exhibiting a nested structure, low specialization (H2′), low connectance, and low modularity, like other epiphyte–phorophyte networks. The main roles in the network were played by the generalist epiphyte Tillandsia loliacea and the lithophytic phorophytes Tabebuia reticulata and Pseudobombax petropolitanum, which interacted with 100% of the recorded epiphytic species. Epiphyte species were organized vertically into modules that correlate with the ecological zones of the phorophytes, suggesting that their distribution responds to microclimatic variation along the vertical gradient. These results reinforce the importance of particular phorophyte species as key structuring agents of epiphytic communities and highlight their central role in extreme environments such as inselbergs. Full article
Show Figures

Figure 1

Back to TopTop