Structure and Function of Rhizosphere Bacterial Communities in the Endangered Plant Abies ziyuanensis
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Research Area and Soil Sample Collection
2.2. Determination of Soil Physicochemical Properties
2.3. Soil Bacterial DNA Extraction, PCR Amplification, and High-Throughput Sequencing
2.4. Bioinformatics Analysis
2.5. Statistical Analysis
3. Results
3.1. Physicochemical Properties of A. ziyuanensis Rhizosphere Soil
3.2. Soil Bacterial Alpha Diversity in the Rhizosphere Soil of A. ziyuanensis
3.3. Soil Bacterial Beta Diversity in the Rhizosphere Soil of A. ziyuanensis
3.4. Characterization of the Bacterial Composition of the Rhizosphere Soil of A. ziyuanensis from Yinzhu Laoshan
3.5. Sequential Regression Analysis of A. ziyuanensis Rhizosphere Soil Bacteria and Environmental Factors
3.6. Prediction of the Functions of A. ziyuanensis Rhizosphere Soil Bacteria
3.7. Correlation Between the Functional Groups of A. ziyuanensis Rhizosphere Soil Bacteria and Soil Environmental Factors
3.8. Phenotype Prediction of A. ziyuanensis Rhizosphere Soil Bacteria
4. Discussion
4.1. Analysis of the Physicochemical Properties of A. ziyuanensis Rhizosphere Soil
4.2. Analysis of Compositional Characteristics and Soil-Driven Factors of A. ziyuanensis Rhizosphere Soil Bacteria
4.3. Analysis of Functional Groups and Phenotypic of A. ziyuanensis Rhizosphere Soil Bacteria
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SBT | Shenbaotang |
SJHT | Sanjiaohutang |
References
- Torsvik, V.; Øvreås, L. Microbial diversity and function in soil: From genes to ecosystems. Curr. Opin. Microbiol. 2002, 5, 240–245. [Google Scholar] [CrossRef]
- Xu, H.R.; Liu, W.D.; He, Y.H.; Zou, D.; Zhou, J.H.; Zhang, J.Y.; Bai, Y. Plant-root microbiota interactions in nutrient utilization. Front. Agric. Sci. Eng. 2025, 12, 16–26. [Google Scholar] [CrossRef]
- Vives-Peris, V.; de Ollas, C.; Gómez-Cadenas, A.; Pérez-Clemente, R.M. Root exudates: From plant to rhizosphere and beyond. Plant Cell Rep. 2020, 39, 3–17. [Google Scholar] [CrossRef]
- Lasa, A.V.; Fernández-González, A.J.; Villadas, P.J.; Mercado-Blanco, J.; Pérez-Luque, A.J.; Fernández-López, M. Mediterranean pine forest decline: A matter of root-associated microbiota and climate change. Sci. Total Environ. 2024, 926, 171858. [Google Scholar] [CrossRef]
- Wang, X.B.; Lv, X.T.; Yao, J.; Wang, Z.; Deng, Y.; Cheng, W.; Zhou, J.; Han, X. Habitat-specific patterns and drivers of bacterial β-diversity in China’s drylands. ISME J. 2017, 11, 1345–1358. [Google Scholar] [CrossRef] [PubMed]
- Mauchline, T.H.; Malone, J.G. Life in earth—The root microbiome to the rescue? Curr. Opin. Microbiol. 2017, 37, 23–28. [Google Scholar] [CrossRef]
- Hartman, K.; Tringe, S.G. Interactions between plants and soil shaping the root microbiome under abiotic stress. Biochem. J. 2019, 476, 2705–2724. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, K.; Wemheuer, B.; Korolkow, V.; Wemheuer, F.; Nacke, H.; Schöning, I.; Schrumpf, M.; Daniel, R. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci. Rep. 2016, 6, 33696. [Google Scholar] [CrossRef]
- Wei, H.; Peng, C.H.; Yang, B.; Song, H.; Li, Q.; Jiang, L.; Wei, G.; Wang, K.; Wang, H.; Liu, S.; et al. Contrasting soil bacterial community, diversity, and function in two forests in China. Front. Microbiol. 2018, 9, 1693. [Google Scholar] [CrossRef]
- Meng, S.; Peng, T.; Liu, X.; Wang, H.; Huang, T.; Gu, J.D.; Hu, Z. Ecological Role of Bacteria Involved in the Biogeochemical Cycles of Mangroves Based on Functional Genes Detected through GeoChip 5.0. mSphere 2022, 7, e0093621. [Google Scholar] [CrossRef]
- Wang, X.; Chi, Y.; Song, S. Important soil microbiota’s effects on plants and soils: A comprehensive 30-year systematic literature review. Front. Microbiol. 2024, 15, 1347745. [Google Scholar] [CrossRef]
- Piwosz, K.; Villena-Alemany, C.; Całkiewicz, J.; Mujakić, I.; Náhlík, V.; Dean, J.; Koblížek, M. Response of aerobic anoxygenic phototrophic bacteria to limitation and availability of organic carbon. FEMS Microbiol. Ecol. 2024, 100, fiae090. [Google Scholar] [CrossRef] [PubMed]
- Haag, A.F.; Arnold, M.F.; Myka, K.K.; Kerscher, B.; Dall’Angelo, S.; Zanda, M.; Mergaert, P.; Ferguson, G.P. Molecular insights into bacteroid development during Rhizobium-legume symbiosis. FEMS Microbiol. Rev. 2013, 37, 364–383. [Google Scholar] [CrossRef]
- Kuypers, M.; Marchant, H.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef]
- Louca, S.; Parfrey, L.W.; Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 2016, 353, 1272–1277. [Google Scholar] [CrossRef] [PubMed]
- Sansupa, C.; Wahdan, S.F.M.; Hossen, S.; Disayathanoowat, T.; Wubet, T.; Purahong, W. Can we use functional annotation of prokaryotic taxa (FAPROTAX) to assign the ecological functions of soil bacteria? Appl. Sci. 2021, 11, 688. [Google Scholar] [CrossRef]
- Zhang, S.; Pei, L.; Zhao, Y.; Shan, J.; Zheng, X.; Xu, G.; Sun, Y.; Wang, F. Effects of microplastics and nitrogen deposition on soil multifunctionality, particularly C and N cycling. J. Hazard. Mater. 2023, 451, 131152. [Google Scholar] [CrossRef]
- Muneer, M.A.; Hou, W.; Li, J.; Huang, X.; Ur Rehman Kayani, M.; Cai, Y.; Yang, W.; Wu, L.; Ji, B.; Zheng, C. Soil pH: A key edaphic factor regulating distribution and functions of bacterial community along vertical soil profiles in red soil of pomelo orchard. BMC Microbiol. 2022, 22, 38. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.Y.; Yang, S.; Wang, Z.; Feng, X.; Liu, H.; Jiang, Y. Variations in soil bacterial taxonomic profiles and putative functions in response to straw incorporation combined with N fertilization during the maize growing season. Agric. Ecosyst. Environ. 2019, 283, e106578. [Google Scholar] [CrossRef]
- Wu, Z.; Hao, Z.; Zeng, Y.; Guo, L.; Huang, L.; Chen, B. Molecular characterization of microbial communities in the rhizosphere soils and roots of diseased and healthy Panax notoginseng. Antonie Van Leeuwenhoek 2015, 108, 1059–1074. [Google Scholar] [CrossRef]
- Wang, C.; Hu, R.; Strong, P.J.; Zhuang, W.; Huang, W.; Luo, Z.; Yan, Q.; He, Z.; Shu, L. Prevalence of antibiotic resistance genes and bacterial pathogens along the soil-mangrove root continuum. J. Hazard. Mater. 2021, 408, 124985. [Google Scholar] [CrossRef]
- Shi, M.; Qin, T.; Cheng, Z.; Zheng, D.; Pu, Z.; Yang, Z.; Lim, K.J.; Yang, M.; Wang, Z. Exploring the Core Bacteria and Functional Traits in Pecan (Carya illinoinensis) Rhizosphere. Microbiol. Spectr. 2023, 11, e0011023. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Liu, Z.; Wei, J.; Li, Q.; Hou, Z.; Sun, L.; Yu, H.; Yu, J.; Lu, S. Rhizobacterial diversity, community composition, and the influence of keystone taxa on O’Neal blueberry (Vaccinium corymbosum). Front. Microbiol. 2024, 15, 1460067. [Google Scholar] [CrossRef]
- Dong, X.P.; Zhang, Z.H.; Lu, Y.; Li, L.; Du, Y.; Tariq, A.; Gao, Y.J.; Mu, Z.B.; Zhu, Y.H.; Wang, W.Q.; et al. Depth-dependent responses of soil bacterial communities to salinity in an arid region. Sci. Total Environ. 2024, 949, 175129. [Google Scholar] [CrossRef]
- Xiang, Q.P. A preliminary survey on the distribution of rare and endangered plants of Abies in China. Guangxi Plants 2001, 2, 113–117+126. [Google Scholar]
- Ning, S.J.; Tang, R.Q.; Cao, J.W. Current status and conservation countermeasures of germplasm resources of A. ziyuanensis. Guangxi Plants 2005, 25, 197–200+280. [Google Scholar]
- Wu, J.H.; Wang, Y.W.; Hu, X.H.; Deng, T.; Ye, J.T. Analyses on characteristics of rhizosphere bacterial communities of endangered plant A. ziyuanensis and their important soil influencing factors. J. Plant Resour. Environ. 2024, 33, 34–43. [Google Scholar]
- Bao, S.D. Soil Agricultural Chemistry Analysis; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Martin, M. Cutadapt Removes Adapter Sequences From High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Zhang, J.; Kobert, K.; Flouri, T.; Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 2014, 30, 614–620. [Google Scholar] [CrossRef]
- Schmieder, R.; Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011, 27, 863–864. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. SINTAX: A simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv 2016. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-Source, Platform Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Ward, T.; Larson, J.; Meulemans, J.; Hillmann, B.; Lynch, J.; Sidiropoulos, D.; Spear, J.R.; Caporaso, G.; Blekhman, R.; Knight, R.; et al. BugBase predicts organism-level microbiome phenotypes. bioRxiv 2017. [Google Scholar] [CrossRef]
- Ji, R.Q.; Xie, M.L.; Li, G.L.; Xu, Y.; Gao, T.T.; Xing, P.J.; Meng, L.P.; Liu, S.Y. Response of bacterial community structure to different ecological niches and their functions in Korean pine forests. PeerJ 2022, 10, e12978. [Google Scholar] [CrossRef]
- Parks, D.H.; Tyson, G.W.; Hugenholtz, P.; Beiko, R.G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 2014, 30, 3123–3124. [Google Scholar] [CrossRef]
- Li, F.; Lu, S.; Sun, W. Comparison of Rhizosphere Bacterial Communities of Pinus squamata, a Plant Species with Extremely Small Populations (PSESP) in Different Conservation Sites. Microorganisms 2024, 12, 638. [Google Scholar] [CrossRef]
- Ruan, M.; Hu, Z.; Zhu, Q.; Li, Y.; Nie, X. 16S rDNA Sequencing-Based Insights into the Bacterial Community Structure and Function in Co-Existing Soil and Coal Gangue. Microorganisms 2023, 11, 2151. [Google Scholar] [CrossRef]
- Miyashita, N.T. Contrasting soil bacterial community structure between the phyla Acidobacteria and Proteobacteria in tropical Southeast Asian and temperate Japanese forests. Genes Genet. Syst. 2015, 90, 61–77. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, S.H.; Jo, H.Y.; Finneran, K.T.; Kwon, M.J. Diversity and composition of soil Acidobacteria and Proteobacteria communities as a bacterial indicator of past land-use change from forest to farmland. Sci. Total Environ. 2021, 797, 148944. [Google Scholar] [CrossRef]
- Kielak, A.M.; Barreto, C.C.; Kowalchuk, G.A.; van Veen, J.A.; Kuramae, E.E. The Ecology of Acidobacteria: Moving beyond Genes and Genomes. Front. Microbiol. 2016, 7, 744. [Google Scholar] [CrossRef]
- Bhatti, A.A.; Haq, S.; Bhat, R.A. Actinomycetes benefaction role in soil and plant health. Microb. Pathog. 2017, 111, 458–467. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, W.; Liu, Y.; Jia, Z.; Li, H.; Yang, Y.; Wang, D.; He, H.; Zhang, X. Identification of microbial strategies for labile substrate utilization at phylogenetic classification using a microcosm approach. Soil Biol. Biochem. 2021, 153, 107970. [Google Scholar] [CrossRef]
- Ma, S.; De Frenne, P.; Boon, N.; Brunet, J.; Cousins, S.A.O.; Decocq, G.; Kolb, A.; Lemke, I.; Liira, J.; Naaf, T.; et al. Plant species identity and soil characteristics determine rhizosphere soil bacteria community composition in European temperate forests. FEMS Microbiol. Ecol. 2019, 95, fiz063. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Chen, L.; Zhang, J.; Yin, J.; Huang, S. Bacterial Community Structure after Long-term Organic and Inorganic Fertilization Reveals Important Associations between Soil Nutrients and Specific Taxa Involved in Nutrient Transformations. Front. Microbiol. 2017, 8, 187. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Yi, K.; Fang, K.; Gao, H.; Dai, W.; Cao, L. Microbial Community Structures and Important Associations Between Soil Nutrients and the Responses of Specific Taxa to Rice-Frog Cultivation. Front. Microbiol. 2019, 10, 1752. [Google Scholar] [CrossRef]
- Zhang, Y.; Cong, J.; Lu, H.; Li, G.; Qu, Y.; Su, X.; Zhou, J.; Li, D. Community structure and elevational diversity patterns of soil Acidobacteria. J. Environ. Sci. 2014, 26, 1717–1724. [Google Scholar] [CrossRef] [PubMed]
- Sorokin, D.Y.; Vejmelkova, D.; Lücker, S.; Streshinskaya, G.M.; Rijpstra, W.I.C.; Sinninghe Damsté, J.S.; Kleerbezem, R.; van Loosdrecht, M.; Muyzer, G.; Daims, H. Nitrolancea hollandica gen. nov., sp. nov., a chemolithoautotrophic nitrite-oxidizing bacterium isolated from a bioreactor belonging to the phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 2014, 64 Pt 6, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Rahlwes, K.C.; Sparks, I.L.; Morita, Y.S. Cell Walls and Membranes of Actinobacteria. Subcell. Biochem. 2019, 92, 417–469. [Google Scholar]
- Schade, J.; Weidenmaier, C. Cell wall glycopolymers of Firmicutes and their role as nonprotein adhesins. FEBS Lett. 2016, 590, 3758–3771. [Google Scholar] [CrossRef] [PubMed]
Types | Functions |
---|---|
Nitrogen cycle | Aerobic ammonia oxidation |
Aerobic nitrite oxidation | |
Nitrification | |
Nitrate denitrification | |
Nitrite denitrification | |
Nitrous oxide denitrification | |
Nitrogen fixation | |
Nitrate ammonification | |
Nitrite ammonification | |
Nitrite respiration | |
Nitrate respiration | |
Nitrate reduction | |
Nitrogen respiration | |
Phototrophy | Anoxygenic sulfur-oxidizing photoautotrophy |
Anoxygenic photoautotrophy | |
Photoautotrophy | |
Photoheterotrophy | |
Phototrophy | |
Chemoheterotrophy | Chemoheterotrophy |
Aerobic chemoheterotrophy |
Physicochemical Properties | SBT | SJHT | Significance |
---|---|---|---|
SWC (%) | 40.54 ± 9.85 | 48.83± 16.47 | - |
pH | 4.30 ± 0.22 | 4.38 ± 0.19 | - |
TN (g/kg) | 5.57 ± 1.14 | 5.38± 1.98 | - |
AN (mg/kg) | 285.60 ± 68.97 | 279.88± 118.87 | - |
NO3−-N (mg/kg) | 5.01 ± 6.43 | 8.74 ± 11.71 | - |
NH4+-N (mg/kg) | 31.07 ± 13.60 | 30.90 ± 13.05 | - |
SOC (g/kg) | 72.71 ± 18.54 | 64.15 ± 15.88 | - |
TP (g/kg) | 0.44 ± 0.30 | 0.71 ± 0.59 | - |
AP (mg/kg) | 3.44 ± 2.06 | 4.66 ± 6.36 | - |
TK (g/kg) | 22.27 ± 4.28 | 17.55 ± 4.08 | ** |
AK (mg/kg) | 95.73 ± 16.44 | 80.80 ± 20.60 | * |
MBC (mg/kg) | 1062.40 ± 382.04 | 1092.67 ± 501.95 | - |
MBN (mg/kg) | 456.00 ± 179.84 | 365.47 ± 117.39 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wu, J.; Deng, T.; Ye, J.; Hu, X. Structure and Function of Rhizosphere Bacterial Communities in the Endangered Plant Abies ziyuanensis. Forests 2025, 16, 1404. https://doi.org/10.3390/f16091404
Wang Y, Wu J, Deng T, Ye J, Hu X. Structure and Function of Rhizosphere Bacterial Communities in the Endangered Plant Abies ziyuanensis. Forests. 2025; 16(9):1404. https://doi.org/10.3390/f16091404
Chicago/Turabian StyleWang, Yufeng, Jiahao Wu, Tao Deng, Jiatong Ye, and Xinghua Hu. 2025. "Structure and Function of Rhizosphere Bacterial Communities in the Endangered Plant Abies ziyuanensis" Forests 16, no. 9: 1404. https://doi.org/10.3390/f16091404
APA StyleWang, Y., Wu, J., Deng, T., Ye, J., & Hu, X. (2025). Structure and Function of Rhizosphere Bacterial Communities in the Endangered Plant Abies ziyuanensis. Forests, 16(9), 1404. https://doi.org/10.3390/f16091404