Herbaceous Layer Response to Overstory Vegetation Changes in Quercus mongolica Fisch. ex Ledeb. Forests in Korea
Abstract
1. Introduction
2. Materials and Methods
2.1. Conditions and Environment for Permanent Survey Plot Designation
2.2. Permanent Survey Plot Placement and Survey Methods
2.3. Analysis
3. Results
3.1. Changes in the Tree and Shrub Layers
3.2. Changes in Crown Openness and Transmitted Light
3.3. Changes in Species Composition and Biodiversity Among Understory Vegetation
3.4. Species Turnover for Vegetation in the Herbaceous Layer
3.5. Correlations Between Biotic and Abiotic Factors over 7 Years
4. Discussion
4.1. Relationships of Herbaceous Layer Species Composition with the Tree and Shrub Layers
4.2. Biodiversity and Species Turnover in the Herbaceous Layer
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raunkiaer, C. Life Forms of Plants and Statistical Plant Geography; Charendon Press: Oxford, UK, 1934; pp. 34–78. ISBN 9789333393362. [Google Scholar]
- Dobson, A.; Crawley, M. Pathogens and the structure of plant communities. Trends Ecol. Evol. 1994, 9, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Halpern, C.B.; Spies, T.A. Plant species diversity in natural and managed forests of the Pacific Northwest. Ecol. Appl. 1995, 5, 913–934. [Google Scholar] [CrossRef]
- Kessler, W.B.; Salwasser, H.; Cartwright, C.W.; Caplan, J. New perspectives for sustainable natural resource management. Ecol. Appl. 1992, 2, 221–225. [Google Scholar] [CrossRef]
- Lieth, H.; Aston, D.H. The light compensation point of some herbaceous plants inside and outside deciduous woods in Germany. Can. J. Bot. 1961, 39, 1255–1259. [Google Scholar] [CrossRef]
- Royo, A.; Carson, W.P. Direct and indirect effects of a dense understory on tree seedling recruitment in temperate forests: Habitat—Mediated predation versus competition. Can. J. For. Res. 2008, 38, 1634–1645. [Google Scholar] [CrossRef]
- Yarie, J. The role of understory vegetation in the nutrient cycle of forested ecosystems in the mountain hemlock biogeoclimatic zone. Ecology 1980, 61, 1498–1514. [Google Scholar] [CrossRef]
- Peterson, D.L.; Rolfe, G.L. Nutrient dynamics of herbaceous vegetation in upland and floodplain forest communities. Am. Midl. Nat. 1982, 107, 325–339. [Google Scholar] [CrossRef]
- Mabry, C.M.; Gerken, M.E.; Thompson, J.R. Seasonal storage of nutrients by perennial herbaceous species in undisturbed and disturbed deciduous hardwood forests. Appl. Veg. Sci. 2008, 11, 37–44. [Google Scholar] [CrossRef]
- UNFCCC Process: Meetings. Available online: https://unfccc.int/ (accessed on 2 January 2025).
- ILTER East Asia Pacific. Available online: https://www.ilter.network/network/ilter–east–asia–pacific (accessed on 4 February 2025).
- Condit, R. Research in large, long–term tropical forest plots. Trends Ecol. Evol. 1995, 10, 18–22. [Google Scholar] [CrossRef]
- Hobbie, J.E. Scientific accomplishments of the long term ecological research program: An introduction. BioScience 2003, 53, 17–20. [Google Scholar] [CrossRef]
- National Institute of Forest Science. Long–Term Ecological Research (LTER) on Forest Ecosystem Responses to Global Environmental Change; Samsungaddcom: Seoul, Republic of Korea, 2014; pp. 11–402. ISBN 9788981762636.
- Arsenault, A.; Bradfield, G.E. Structural compositional varialtion in three age–classes of temperate rainforests in southern coastal British Columbia. Can. J. Bot. 1995, 73, 54–64. [Google Scholar] [CrossRef]
- Brulisauer, A.R.; Bradfield, G.E.; Maze, J. Quantifying organizational change after fire in lodgepole pine forest understory. Can. J. Bot. 1996, 74, 1773–1782. [Google Scholar] [CrossRef]
- Rees, M.; Rick, C.; Mick, C.; Steve Pand Dave, T. Long–Term Studies of Vegetation Dynamics. Science 2001, 293, 650–655. [Google Scholar] [CrossRef]
- Newton, A.C. Forest Ecology and Conservation; Oxford University Press: New York, NY, USA, 2007; pp. 203–480. ISBN 9780198567455. [Google Scholar]
- Son, Y.H. Forest Ecosystem Management: Concepts, Principles and Applications. Korean J. Ecol. 1997, 20, 201–216. [Google Scholar]
- Richardson, D.M.; Allsopp, N.; D’Antonio, C.M.; Milton, S.J.; Rejmánek, M. Plant invasions—The role of mutualisms. Biol. Rev. 2000, 75, 65–93. [Google Scholar]
- Cavender-Bares, J. Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. New Phytol. 2019, 221, 669–692. [Google Scholar] [CrossRef]
- Petit, R.J.; Brewer, S.; Bordács, S.; Burg, K.; Cheddadi, R.; Coart, E.; Cottrell, J.; Csaikl, U.M.; van Dam, B.; Deans, J.D.; et al. Identification of refugia and post–glacial colonization routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For. Ecol. Manag. 2002, 156, 49–74. [Google Scholar] [CrossRef]
- Sakachep, Z.K.; Rai, P.K. Effects of Invasive Alien Plants on Floristic Diversity and Soil Physico–Chemical Characteristics in Hailakandi District, Assam, an Indo Burma Hotspot Region. Trop. Ecol. 2025, 66, 303–320. [Google Scholar] [CrossRef]
- de Souza, F.M.; Batista, J.L.F. Restoration of seasonal semideciduous forests in Brazil: Influence of age and restoration design on forest structure. For. Ecol. Manag. 2004, 191, 185–200. [Google Scholar] [CrossRef]
- Mölder, A.; Bernhardt-Römermann, M.; Schmidt, W. Herb-layer diversity in deciduous forests: Raised by tree richness or beaten by beech? For. Ecol. Manag. 2008, 256, 272–281. [Google Scholar] [CrossRef]
- Heo, J.A.; Lee, J.S. Analysis of Pine Tree’s Sub vegetation Environment in the Urban Parks. Hort. Sci. Technol. 2002, 10, 47–53. [Google Scholar]
- Jung, D.J.; Kim, H.R.; Shin, M.Y. Characteristics of Vegetation Structure for Prolific Open–Pollinated Progeny Stands of Pinus koraiensis by Environmental Factor. Korean J. Agric. For. Meteorol. 2003, 5, 151–157. [Google Scholar]
- Cho, Y.C.; Kim, J.S.; Lee, J.H.; Lee, H.H.; Ma, H.S.; Lee, C.S.; Cho, H.J.; Bae, K.H. Early Responses of Planted Quercus serrata Seedlings and Understory Vegetation to Artificial Gap Treatments in Black Locust Plantation. J. Korean For. Soc. 2009, 98, 94–105. [Google Scholar]
- Cho, Y.C.; Hong, J.G.; Cho, H.J.; Bae, K.H.; Kim, J.S. Structure and Understory Species Diversity of Pinus parviflora–Tsuga sieboldii Forest in Ulleung Island. J. Korean For. Soc. 2011, 100, 34–41. [Google Scholar]
- Cheon, K.I.; Jung, S.C.; Lee, C.W.; Byun, J.G.; Joo, S.H.; Yoo, J.H.; Lee, S.G.; Choi, C.H.; Park, I.H. Community Structure and Understory Vegetation Distribution Pattern of Fagus engleriana Stand in Is. Ulleung. J. Korea Soc. Environ. Restor. Technol. 2012, 15, 81–95. [Google Scholar] [CrossRef]
- Noss, R.F. Indicators for monitoring biodiversity: A hierarchical approach. Conserv. Biol. 1990, 4, 355–364. [Google Scholar] [CrossRef]
- McGeoch, M.A. The selection, testing and application of terrestrial insects as bioindicators. Biol. Rev. Camb. Philos. Soc. 1998, 73, 181–201. [Google Scholar] [CrossRef]
- Mori, A.S.; Suzuki, K.F.; Hori, M.; Kadoya, T.; Okano, K.; Uraguchi, A.; Muraoka, H.; Sato, T.; Shibata, H.; Suzuki–Ohno, Y.; et al. Perspective: Sustainability challenges, opportunities and solutions for long–term ecosystem observations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2023, 378, 20220192. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Sim, H.S.; Kim, J.S.; Bae, K.H.; Cho, Y.C. Processes driving understory community dynamics in Ulleungdo Island broadleaved forest, South Korea. Ecol. Res. 2021, 36, 686–700. [Google Scholar] [CrossRef]
- Mirtl, M.; Borer, E.T.; Djukic, I.; Forsius, M.; Haubold, H.; Hugo, W.; Jourdan, J.; Lindenmayer, D.; McDowell, W.H.; Orenstein, D.E.; et al. Genesis, goals and achievements of long—Term ecological research at the global scale: A critical review of ILTER and future directions. Sci. Total Environ. 2018, 626, 1439–1462. [Google Scholar] [CrossRef]
- Park, B.J.; Kim, J.J.; Byeon, J.G.; Cheon, K.; Joo, S.H.; Lee, Y.G. The classification of forest community and character of stand structure in Mt. Myeonbong: Focused on research forest in Kyungpook national university, Cheongsong. J. Korean For. Soc. 2016, 105, 391–400. [Google Scholar] [CrossRef]
- Kim, J.W.; Lee, Y.G. Classification and Assessment of Plant Communities; World Science: Seoul, Republic of Korea, 2006; pp. 33–60. ISBN 9788958810605. [Google Scholar]
- Experiment Forest of Kyungpook National University. Available online: https://home.knu.ac.kr/HOME/knuforest/sub.htm?nav_code=knu1692153609 (accessed on 4 August 2025).
- Climate Data in South Korea. Available online: http://www.kma.go.kr (accessed on 11 January 2025).
- Geological Information Research System. Available online: http://www.kigam.re.kr/ (accessed on 11 January 2025).
- Braun-Blanquet, J. Pflanzensoziologie: Grundzüge Der Vegetationskunde; Springer: Wien, Austria, 1964; pp. 17–205. ISBN 9783709181119. [Google Scholar]
- Ivanova, N. Global Overview of the Application of the Braun-Blanquet Approach in Research. Forests 2024, 15, 937. [Google Scholar] [CrossRef]
- Korea Fern Society. Ferns and Fern Allies of Korea; Geobook: Seoul, Republic of Korea, 2005; pp. 1–399. ISBN 9788995504925. [Google Scholar]
- Korea National Arboretum. Rare Plants Data Book in Korea; Geobook: Seoul, Republic of Korea, 2008; pp. 1–332. ISBN 9788991458352. [Google Scholar]
- Korea National Arboretum. Invasive Alien Plant Impact on Forest; Sumeungil: Seoul, Republic of Korea, 2015; pp. 1–280. ISBN 9791187031185. [Google Scholar]
- Cho, Y.H.; Kim, J.H.; Park, S.H. Grasses and Sedges in South Korea; Geobook: Seoul, Republic of Korea, 2016; pp. 1–528. ISBN 9788994242422. [Google Scholar]
- Korea National Arboretum. Checklist of Vascular Plants in Korea; Samsung edCOM: Seoul, Republic of Korea, 2017; pp. 1–1000. ISBN 9791188720125. [Google Scholar]
- Korea National Arboretum. Native & 100 Cultivar Caprifoliaceae; Blue Sensation: Seoul, Republic of Korea, 2022; pp. 1–147. ISBN 9791192743097. [Google Scholar]
- Knowledge System of National Species in Korea. Available online: http://www.nature.go.kr/kpni (accessed on 3 January 2025).
- Pereira, R., Jr.; Zweede, J.; Asner, G.P.; Keller, M. Forest Canopy Damage and Recovery in Reduced—Impact and Conventional Selective Logging in Eastern Para, Brazil. For. Ecol. Manag. 2002, 168, 77–89. [Google Scholar] [CrossRef]
- Haugo, R.D.; Halpern, C.B. Vegetation resposes to conifer encroachment in a dry, montane meadow; a chronosequence approach. Can. J. Bot. 2007, 85, 285–298. [Google Scholar] [CrossRef]
- Beckschäfer, P.; Seidel, D.; Kleinn, C.; Xu, J. On the exposure of hemispherical photographs in forests. Ifroest Biogeosciences For. 2013, 6, 228. [Google Scholar] [CrossRef]
- Shannon, C.E. The mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Curtis, J.T.; McIntosh, R.P. An upland forest continuum in the prairie–forest border region of Wisconsin. Ecology 1951, 32, 476–496. [Google Scholar] [CrossRef]
- Park, B.J.; Heo, T.I.; Cheon, K.I. 2024. Analyzing Generalist Plant Species Using Topographic Characteristics of Picea jezoensis (Siebold & Zucc.) Carrière Forests in East Asia: From China (Mt. Changbai) to South Korea. Int. J. Plant Biol. 2024, 15, 320–339. [Google Scholar]
- McCune, B.; Grace, J.B. Analysis of Ecological Communities; MjM Software Design: Gleneden Beach, OR, USA, 2002; pp. 29–295. ISBN 9780972129008. [Google Scholar]
- Hallett, L.M.; Jones, S.K.; MacDonald, A.A.M.; Jones, M.B.; Flynn, D.F.B.; Ripplinger, J.; Slaughter, P.; Gries, C.; Collins, S.L. Codyn: An R package of community dynamics metrics. Methods Ecol. Evol. 2016, 7, 1146–1151. [Google Scholar] [CrossRef]
- McGeoch, M.A.; Latombe, M.; Andrew, N.R.; Nakagawa, S.; Nipperess, D.A.; Roigé, M.; Marzinelli, E.M.; Campbell, A.H.; Vergés, A.; Thomas, T.; et al. Measuring continuous compositional change using decline and decay in zeta diversity. Ecology 2019, 100, e02832. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Deane, D.C.; Hui, C.; McGeoch, M. Two dominant forms of multisite similarity decline—Their origins and interpretation. Ecol. Evol. 2023, 13, e9859. [Google Scholar] [CrossRef]
- Gaston, K.J.; He, F. The distribution of species range size: A stochastic process. Proc. R. Soc. Lond. B 2002, 269, 1079–1086. [Google Scholar] [CrossRef]
- Zuppinger-Dingley, D.; Schmid, B.; Petermann, J.S.; Yadav, V.; De Deyn, G.B.; Flynn, D.F. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 2014, 515, 108–111. [Google Scholar] [CrossRef]
- Latombe, G.; Hui, C.; McGeoch, M.A. Multi-site generalised dissimilarity modelling: Using zeta diversity to differentiate drivers of turnover in rare and widespread species. Methods Ecol. Evol. 2017, 8, 431–442. [Google Scholar] [CrossRef]
- Korea National Arboretum. Annual Report on Gwangneung Forest and Experimental Forest; Sum-En-gil: Seoul, Republic of Korea, 2020; pp. 54–89. ISBN 9788997450657. [Google Scholar]
- Oliver, C.D.; Larson, B.C. Forest Stand Dynamics; McGraw-Hill: New York, NY, USA, 1990; pp. 27–467. ISBN 9780070478299. [Google Scholar]
- Oliver, C.D. Forest development in North America following major disturbances. J. Ecol. Manag. 1981, 3, 153–168. [Google Scholar] [CrossRef]
- Peterson, C.J.; Squiers, E.R. An unexpected change in spatial pattern across 10years in an aen-white pine forest. J. Ecol. 1995, 83, 847–855. [Google Scholar] [CrossRef]
- Chung, G.Y.; Jang, H.D.; Chan, K.S.; Choi, H.J.; Kim, Y.S.; Kim, H.J.; Son, D.C. A checklist of endemic plants on the Korean Peninsula II. Korean J. Plant Taxon. 2023, 53, 79–101. [Google Scholar] [CrossRef]
- Gilliam, F.S.; Turrill, N.L.; Adams, M.B. Herbaceous—Layer and overstory species in clear cut and mature central Appalachian hardwood forests. Ecol. Appl. 1995, 5, 947–955. [Google Scholar] [CrossRef]
- Langford, A.N.; Buell, M.F. Integration, identity, and stability in the plant association. Adv. Ecol. Res. 1969, 6, 83–135. [Google Scholar]
- Edward, E.C.C.; Richard, T.B. Secondary Succession, Gap Dynamics, and Community Structure in a Southern Appalachian Cove Forest. Ecology 1989, 70, 728–735. [Google Scholar] [CrossRef]
- Miura, M.; Manabe, T.; Nishimura, N.; Yamamoto, S.I. Forest canopy and community dynamics in a temperate old-growth evergreen broad-leaved forest, south-western Japan: A 7-year study of a 4-ha plot. J. Ecol. 2001, 89, 841–849. [Google Scholar] [CrossRef]
- Beckage, B.; Clark, J.S.; Clinton, B.D.; Haines, B.L. A long-term study of tree seedling recruitment in southern Appalachian forests: The effects of canopy gaps and shrub understories. Can. J. For. Res. 2000, 30, 1617–1631. [Google Scholar] [CrossRef]
- Matsuo, T.; Martínez-Ramos, M.; Bongers, F.; van der Sande, M.T.; Poorter, L. Forest structure drives changes in light heterogeneity during tropical secondary forest succession. J. Ecol. 2021, 109, 2871–2884. [Google Scholar] [CrossRef]
- Goldblum, D. The effects of treefall gaps on understory vegetation in New York State. J. Veg. Sci. 1997, 8, 125–132. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, S.; Jiang, X.; Chen, S.; Xiao, Y.; Zhao, Y.; Yan, Y.; Wen, Y. Spatio-temporal variation of species richness and phylogenetic diversity patterns for spring ephemeral plants in northern China. Glob. Ecol. Conserv. 2023, 48, e02752. [Google Scholar] [CrossRef]
- DeJong, T.M. A comparison of three diversity indices based on their components of richness and evenness. Oikos 1975, 26, 222–227. [Google Scholar] [CrossRef]
- Norman, W.H.M.; David, M.; William, G.L.; Wilson, J.B. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos 2005, 111, 112–118. [Google Scholar] [CrossRef]
- Wilsey, B.J.; Polley, H.W. Realistically low species evenness does not alter grassland species-richness-productivity relationships. Ecology 2004, 85, 2693–2700. [Google Scholar] [CrossRef]
- Marion, Z.H.; Fordyce, J.A.; Fitzpatrick, B.M. Pairwise beta diversity resolves an underappreciated source of confusion in calculating species turnover. Ecology 2017, 98, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Hui, C.; McGeoch, M.A. Zeta diversity as a concept and metric that unifies incidence—Based biodiversity patterns. Am. Nat. 2014, 184, 684–694. [Google Scholar] [CrossRef]
- Wang, S.; Loreau, M.; de Mazancourt, C.; Isbell, F.; Beierkuhnlein, C.; Connolly, J.; Deutschman, D.H.; Doležal, J.; Eisenhauer, N.; Hector, A.; et al. Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony. Ecology 2021, 102, e03332. [Google Scholar] [CrossRef]
- McGill, B.J.; Etienne, R.S.; Gray, J.S.; Alonso, D.; Anderson, M.J.; Benecha, H.K.; Dornelas, M.; Enquist, B.J.; Green, J.L.; He, F.; et al. Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 2007, 10, 995–1015. [Google Scholar] [CrossRef]
- Chave, J. Neutral theory and community ecology. Ecol. Lett. 2004, 7, 241–253. [Google Scholar] [CrossRef]
- Chase, J.M.; Myers, J.A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 2351–2363. [Google Scholar] [CrossRef] [PubMed]
- Gilliam, F.S. The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience 2007, 57, 845–858. [Google Scholar] [CrossRef]
- Kucuk, S.G.; Kucuk, A.T.; Yildirim, M.Y. Understory plant diversity under variable overstory cover in East-Mediterranean conifer forests. For. Ecol. Manag. 2021, 492, 119118. [Google Scholar] [CrossRef]
- Silvertown, J.; Biss, P.M.; Freeland, J. Community genetics: Resource addition has opposing effects on genetic and species diversity in a 150-year experiment. Ecol. Lett. 2009, 12, 165–170. [Google Scholar] [CrossRef]
- Fukami, T. Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 2015, 46, 1–23. [Google Scholar] [CrossRef]
- Weidlich, E.W.; Nelson, C.R.; Maron, J.L.; Callaway, R.M.; Delory, B.M.; Temperton, V.M. Priority effects and ecological restoration. Restor. Ecol. 2021, 29, e13317. [Google Scholar] [CrossRef]
- Harper, J.L.; Williams, J.T.; Sagar, G.R. The behaviour of seeds in soil: I. The heterogeneity of soil surfaces and its role in determining the establishment of plants from seed. J. Ecol. 1965, 53, 273–286. [Google Scholar] [CrossRef]
- Clark, D.B.; Clark, D.A. Population ecology and microhabitat distribution of Dipteryx panamensis, a neotropical rain forest emergent tree. Biotropica 1987, 19, 236–244. [Google Scholar] [CrossRef]
- Connell, J.H.; Slatyer, R.O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 1977, 111, 1119–1144. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Collins, S.L.; Armesto, J.J. Models, mechanisms and pathways of succession. Bot. Rev. 1987, 53, 335–371. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Margules, C.R.; Botkin, D.B. Indicators of biodiversity for ecologically sustainable forest management. Conserv Biol. 2000, 14, 941–950. [Google Scholar] [CrossRef]
- Bellerose, J.; Dupuch, A.; Aubin, I. Changes in Understory Composition of Rural North American Temperate Forests after a 14-Year Period with Focus on Exotic and Sensitive Plant Species. Forests 2022, 13, 678. [Google Scholar] [CrossRef]
- Bernhardt-Römermann, M.; Baeten, L.; Craven, D.; De Frenne, P.; Hedl, R.; Lenoir, J.; Bert, D.; Brunet, J.; Chudomelová, M.E.; Decocq, G.; et al. Drivers of Temporal Changes in Temperate Forest Plant Diversity Vary Across Spatial Scales: A Meta-analysis of European Resurvey Studies. Glob. Change Biol. 2015, 21, 3726–3737. [Google Scholar] [CrossRef] [PubMed]
- Rooney, T.P.; Wiegmann, S.M.; Rogers, D.A.; Waller, D.M. Biotic Impoverishment and Homogenization in Unfragmented Forest Understory Communities. Conserv. Biol. 2004, 18, 787–798. [Google Scholar] [CrossRef]
- Jaeger, R.; Delagrange, S.; Aubin, I.; Joanisse, G.; Raymond, P. Rivest, Increasing the intensity of regeneration treatments decreased beta diversity of temperate hardwood forest understory 20 years after disturbance. Ann. For. Sci. 2022, 79, 39. [Google Scholar] [CrossRef]
Index | Plot 1 | Plot 2 | Plot 3 | Plot 4 |
---|---|---|---|---|
Aspect | N | N | NE | N |
Rock coverage (%) | 35.0 | 20.2 | 45.9 | 21.3 |
Altitude (m) | 543 | 579 | 636 | 770 |
Soil type | Brown forest soil | |||
Soil texture | Sandy loam | |||
Soil humidity | Slightly dry | |||
Landform | Middle hill |
Braun-Blanquet Scale | Range of Cover (%) | Median Value |
---|---|---|
5 | 75–100 | 87.5 |
4 | 50–75 | 62.5 |
3 | 25–50 | 37.5 |
2 | 12.5–25 | 18.75 |
1 | <12.5: numerous individuals | 9.375 |
+ | <5: few individuals | 4.69 |
r | <1: few and unique individuals | 1.01 |
Contents | 2014 | 2015 | 2017 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
T | S | T | S | T | S | T | S | |
Pinus densiflora Siebold & Zucc. | 14.277 | 0.126 | 14.415 | 0.126 | 14.251 | – | 14.251 | – |
Quercus mongolica Fisch. ex Ledeb. | 13.670 | 0.274 | 13.713 | 0.324 | 13.665 | 0.428 | 13.711 | 0.435 |
Betula schmidtii Regel | 1.810 | 0.159 | 1.676 | 0.354 | 1.639 | 0.407 | 1.554 | 0.431 |
Fraxinus sieboldiana Blume | 0.604 | 0.070 | 0.686 | 0.085 | 0.712 | 0.086 | 0.795 | 0.091 |
Rhus tricocarpa Miq. | 0.315 | 0.093 | 0.334 | 0.106 | 0.348 | 0.114 | 0.349 | 0.170 |
Acer pseudosieboldianum (Pax) Kom. | 0.125 | 0.122 | 0.131 | 0.137 | 0.154 | 0.125 | 0.177 | 0.141 |
Rhododendron schlippenbachii Maxim. | 0.128 | 0.062 | 0.148 | 0.076 | 0.159 | 0.083 | 0.188 | 0.094 |
Lindera obtusiloba Blume | 0.106 | 0.053 | 0.099 | 0.060 | 0.105 | 0.068 | 0.105 | 0.088 |
Rhododendron mucronulatum Turcz. | 0.267 | 0.051 | 0.067 | 0.064 | 0.077 | 0.054 | 0.074 | 0.057 |
Sorbus alnifolia (Siebold & Zucc.) K.Koch | 0.049 | 0.083 | 0.052 | 0.103 | 0.062 | 0.119 | 0.076 | 0.141 |
Prunus serrulata var. pubescens (Makino) Nakai | 0.145 | 0.086 | 0.151 | 0.088 | 0.108 | 0.086 | 0.110 | 0.086 |
Styrax obassia Siebold & Zucc. | 0.032 | 0.064 | 0.034 | 0.080 | 0.041 | 0.091 | 0.066 | 0.098 |
Magnolia sieboldii K.Koch | – | 0.102 | – | 0.123 | – | 0.141 | – | 0.157 |
Betula davurica Pall. | 0.265 | – | 0.268 | – | 0.251 | – | 0.286 | – |
Ilex macropoda Miq. | 0.211 | 0.057 | 0.215 | – | 0.209 | – | 0.219 | – |
Quercus variabilis Blume | 0.179 | – | 0.181 | – | 0.177 | – | 0.190 | – |
Fraxinus rhynchophylla Hance | 0.082 | 0.109 | 0.085 | 0.127 | 0.092 | 0.119 | 0.095 | 0.138 |
Tilia amurensis Rupr. | 0.042 | 0.152 | 0.043 | 0.166 | 0.044 | 0.173 | 0.059 | 0.188 |
Acer pictum subsp. mono (Maxim.) Ohashi | 0.007 | 0.031 | 0.004 | 0.035 | 0.006 | 0.045 | 0.015 | 0.045 |
Carpinus laxiflora (Siebold & Zucc.) Blume | 0.008 | 0.082 | 0.010 | 0.097 | 0.010 | 0.100 | 0.012 | 0.015 |
Ulmus davidiana var. japonica Rehder) Nakai | 0.008 | – | 0.008 | – | 0.008 | – | 0.013 | – |
Philadelphus tenuifolius Rupr. & Maxim. | – | 0.044 | – | 0.059 | – | 0.060 | – | 0.063 |
Corylus sieboldiana Blume | – | 0.052 | – | 0.083 | – | 0.102 | – | 0.105 |
Symplocos chinensis f. pilosa (Nakai) Ohwi | – | 0.066 | – | 0.071 | – | 0.073 | – | 0.492 |
Maackia amurensis Rupr. | 0.004 | 0.075 | 0.004 | 0.080 | 0.005 | 0.080 | 0.005 | – |
Quercus serrata Thunb. | 0.003 | 0.337 | 0.003 | 0.342 | 0.004 | 0.363 | 0.004 | 0.374 |
Pinus koraiensis Siebold & Zucc. | – | 0.152 | – | 0.188 | – | 0.188 | – | 0.188 |
Rhus sylvestris Siebold & Zucc. | – | 0.080 | – | 0.085 | – | 0.107 | – | 0.119 |
Weigela subsessilis (Nakai) L.H.Bailey | – | 0.038 | – | 0.045 | – | 0.057 | – | 0.067 |
Total | 32.335 | 2.623 | 32.327 | 3.104 | 32.114 | 3.269 | 32.354 | 3.783 |
Total (all layers) | 34.958 | 35.431 | 35.383 | 36.137 |
Contents | 2014 | 2015 | 2017 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
T | S | T | S | T | S | T | S | |
Pinus densiflora Siebold & Zucc. | 161 | 1 | 161 | 1 | 146 | – | 145 | – |
Quercus mongolica Fisch. ex Ledeb. | 579 | 19 | 578 | 21 | 551 | 28 | 553 | 28 |
Betula schmidtii Regel | 135 | 11 | 135 | 11 | 131 | 10 | 127 | 10 |
Fraxinus sieboldiana Blume | 45 | 561 | 41 | 568 | 40 | 559 | 40 | 564 |
Rhus tricocarpa Miq. | 66 | 137 | 64 | 133 | 63 | 127 | 59 | 127 |
Acer pseudosieboldianum (Pax) Kom. | 29 | 52 | 29 | 54 | 29 | 50 | 28 | 63 |
Rhododendron schlippenbachii Maxim. | 3 | 238 | 1 | 231 | 1 | 224 | 1 | 240 |
Lindera obtusiloba Blume | 1 | 123 | 1 | 128 | 1 | 128 | 1 | 136 |
Rhododendron mucronulatum Turcz. | 2 | 123 | 1 | 120 | 1 | 108 | 1 | 121 |
Sorbus alnifolia (Siebold & Zucc.) K.Koch | 3 | 26 | 3 | 22 | 3 | 22 | 3 | 18 |
Prunus serrulata var. pubescens (Makino) Nakai | 16 | 28 | 16 | 26 | 16 | 25 | 16 | 23 |
Styrax obassia Siebold & Zucc. | 6 | 15 | 4 | 16 | 4 | 14 | 4 | 14 |
Magnolia sieboldii K.Koch | – | 18 | – | 19 | – | 19 | – | 17 |
Betula davurica Pall. | 8 | – | 8 | – | 7 | – | 7 | – |
Ilex macropoda Miq. | 3 | 1 | 3 | – | 3 | – | 3 | – |
Quercus variabilis Blume | 6 | – | 6 | – | 5 | – | 5 | – |
Fraxinus rhynchophylla Hance | 3 | 2 | 3 | 2 | 3 | 1 | 3 | 1 |
Tilia amurensis Rupr. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Acer pictum subsp. mono (Maxim.) Ohashi | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 3 |
Carpinus laxiflora (Siebold & Zucc.) Blume | 1 | 8 | 1 | 8 | 1 | 8 | 1 | 8 |
Ulmus davidiana var. japonica Rehder) Nakai | 1 | – | 1 | – | 1 | – | 1 | – |
Philadelphus tenuifolius Rupr. & Maxim. | – | 8 | – | 9 | – | 9 | – | 9 |
Corylus sieboldiana Blume | – | 6 | – | 8 | – | 8 | – | 8 |
Symplocos chinensis f. pilosa (Nakai) Ohwi | – | 6 | – | 6 | – | 6 | – | 6 |
Maackia amurensis Rupr. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | – |
Quercus serrata Thunb. | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 5 |
Pinus koraiensis Siebold & Zucc. | – | 1 | – | 1 | – | 1 | – | 1 |
Rhus sylvestris Siebold & Zucc. | – | 1 | – | 1 | – | 1 | – | 1 |
Weigela subsessilis (Nakai) L.H.Bailey | – | 1 | – | 1 | – | 1 | – | 3 |
Total | 1074 | 1391 | 1062 | 1391 | 1012 | 1354 | 1004 | 1407 |
Total (all layers) | 2465 | 2453 | 2366 | 2397 |
Contents | 2014 | 2015 | 2017 | 2020 | F | p |
---|---|---|---|---|---|---|
H’ | 2.5057 ± 0.0241 ab | 2.5274 ± 0.0270 a | 2.4151 ± 0.0312 b | 2.5114 ± 0.0323 ab | 3.083 | 0.027 |
SR | 19.08 ± 0.47 | 19.37 ± 0.51 | 18.96 ± 0.66 | 20.24 ± 0.62 | 1.019 | 0.384 |
Even. | 0.8579 ± 0.0046 a | 0.8609 ± 0.0041 a | 0.8345 ± 0.0053 b | 0.8455 ± 0.0054 ab | 6.142 | <0.001 |
Species | Year | |||
---|---|---|---|---|
2014 | 2015 | 2017 | 2020 | |
Fraxinus sieboldiana Blume | 10.85 | 12.25 | 15.92 | 13.05 |
Vaccinium hirtum var. koreanum (Nakai) Kitam. | 8.87 | 9.20 | 9.15 | 9.28 |
Lindera obtusiloba Blume | 7.77 | 8.63 | 9.75 | 9.39 |
Rhododendron schlippenbachii Maxim. | 8.20 | 8.17 | 7.74 | 9.81 |
Carex okamotoi Ohwi | 8.03 | 8.01 | 7.63 | 6.41 |
Rhododendron mucronulatum Turcz. | 7.09 | 7.13 | 6.48 | 4.68 |
Acer pseudosieboldianum (Pax) Kom. | 4.95 | 4.52 | 4.27 | 3.27 |
Rhus tricocarpa Miq. | 4.66 | 4.51 | 4.02 | 3.63 |
Ainsliaea acerifolia Sch.Bip. | 4.08 | 3.13 | 3.95 | 5.70 |
Styrax obassia Siebold & Zucc. | 3.29 | 3.56 | 3.55 | 3.65 |
Hosta capitata (Koidz.) Nakai | 3.00 | 3.55 | 2.62 | 2.99 |
Tripterygium regelii Sprague & Takeda | 0.99 | 1.05 | 1.68 | 2.91 |
Quercus mongolica Fisch. ex Ledeb. | 1.64 | 2.41 | 2.55 | 2.18 |
Polygonatum odoratum var. pluriflorum (Miq.) Ohwi | 3.05 | 2.26 | 1.37 | 1.57 |
Calamagrostis arundinacea (L.) Roth | 2.57 | 2.13 | 1.58 | 1.88 |
Omitted (species) | 20.95 (82) | 19.49 (77) | 17.74 (85) | 19.59 (73) |
Compared Year | T | A | p | ||
---|---|---|---|---|---|
2014 | vs. | 2015 | −12.846 | 0.038 | <0.001 |
2014 | vs. | 2017 | −6.603 | 0.018 | |
2014 | vs. | 2020 | −62.919 | 0.136 | |
2015 | vs. | 2017 | −5.361 | 0.016 | |
2015 | vs. | 2020 | −26.801 | 0.065 | |
2017 | vs. | 2020 | −44.340 | 0.100 |
Species | Img. | Emg. | Turnover Intensity |
---|---|---|---|
Quercus mongolica Fisch. ex Ledeb. | 5.86 | 4.41 | 5.14 |
Rhus tricocarpa Miq. | 4.02 | 5.55 | 4.79 |
Prunus serrulata var. pubescens (Makino) Nakai | 4.48 | 4.55 | 4.52 |
Sorbus alnifolia (Siebold & Zucc.) K.Koch | 2.76 | 4.55 | 3.66 |
Lindera obtusiloba Blume | 4.02 | 2.99 | 3.51 |
Atractylodes ovata (Thunb.) DC. | 4.83 | 1.14 | 2.98 |
Styrax obassia Siebold & Zucc. | 2.99 | 2.84 | 2.92 |
Acer pseudosieboldianum (Pax) Kom. | 2.07 | 3.41 | 2.74 |
Rhododendron mucronulatum Turcz. | 2.18 | 3.13 | 2.66 |
Vaccinium hirtum var. koreanum (Nakai) Kitam. | 2.30 | 2.84 | 2.57 |
Disporum smilacinum A. Gray | 3.91 | 1.00 | 2.45 |
Calamagrostis arundinacea (L.) Roth | 1.61 | 3.27 | 2.44 |
Rhododendron schlippenbachii Maxim. | 1.49 | 3.13 | 2.31 |
Symplocos chinensis f. pilosa (Nakai) Ohwi | 3.91 | 0.71 | 2.31 |
Tripterygium regelii Sprague & Takeda | 2.30 | 1.71 | 2.00 |
Fraxinus sieboldiana Blume | 1.61 | 2.13 | 1.87 |
Omitted (species) | 49.66 (82) | 52.64 (76) | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, B.-J.; Cheon, K. Herbaceous Layer Response to Overstory Vegetation Changes in Quercus mongolica Fisch. ex Ledeb. Forests in Korea. Forests 2025, 16, 1344. https://doi.org/10.3390/f16081344
Park B-J, Cheon K. Herbaceous Layer Response to Overstory Vegetation Changes in Quercus mongolica Fisch. ex Ledeb. Forests in Korea. Forests. 2025; 16(8):1344. https://doi.org/10.3390/f16081344
Chicago/Turabian StylePark, Byeong-Joo, and Kwangil Cheon. 2025. "Herbaceous Layer Response to Overstory Vegetation Changes in Quercus mongolica Fisch. ex Ledeb. Forests in Korea" Forests 16, no. 8: 1344. https://doi.org/10.3390/f16081344
APA StylePark, B.-J., & Cheon, K. (2025). Herbaceous Layer Response to Overstory Vegetation Changes in Quercus mongolica Fisch. ex Ledeb. Forests in Korea. Forests, 16(8), 1344. https://doi.org/10.3390/f16081344