Network Structure and Species Roles in Epiphyte–Phorophyte Interactions on a Neotropical Inselberg Woody Vegetation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection
2.3. Network-Level Metrics
2.4. Species-Level Metrics
2.5. Vertical Stratification
3. Results
3.1. Metrics of Network Structure
3.2. Species-Level Descriptors
3.3. Vertical Stratification
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chase, J.M.; Leibold, M.A. Ecological Niches: Linking Classical and Contemporary Approaches; University of Chicago Press: Chicago, IL, USA, 2003. [Google Scholar]
- Bascompte, J. Disentangling the web of life. Science 2009, 325, 416–419. [Google Scholar] [CrossRef]
- Burns, K.C. Network properties of an epiphytic meta-community? J. Theor. Biol. 2007, 249, 307–313. [Google Scholar] [CrossRef]
- Naranjo, C.; Iriondo, J.M.; Riofrio, M.L.; Lara-Romero, C. Evaluating the structure of commensalistic epiphyte-phorophyte networks: A comparative perspective of biotic interactions. AoB Plants 2019, 11, lz011. [Google Scholar] [CrossRef] [PubMed]
- Francisco, T.M.; Couto, D.R.; Evans, D.M.; Garbin, M.L.; Ruiz-Miranda, C.R. Structure and robustness of an epiphyte–phorophyte commensalistic network in a neotropical inselberg. Austral Ecol. 2018, 43, 903–914. [Google Scholar] [CrossRef]
- Couto, D.R.; Francisco, T.M.; Trindade, M.S. Commensalistic epiphyte–phorophyte networks in woody vegetation of tropical inselbergs: Patterns of organization and structure. Austral Ecol. 2022, 47, 911–927. [Google Scholar] [CrossRef]
- Francisco, T.M.; Couto, D.R.; Moreira, M.M.; Fontana, A.P.; Fraga, C.N. Inselbergs from Brazilian Atlantic Forest: High biodiversity refuges of vascular epiphytes from Espírito Santo. Biodivers. Conserv. 2023, 32, 2561–2584. [Google Scholar] [CrossRef]
- Barthlott, W.; Porembski, S. Why study inselbergs. In Inselbergs—Biotic Diversity of Isolated Rock Outcrops in Tropical and Temperate Regions; Porembski, S., Barthlott, W., Eds.; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–6. [Google Scholar]
- Porembski, S.; Barthlott, W. Granitic and gneissic outcrops (inselbergs) as centers of diversity for desiccationtolerant vascular plants. Plant Ecol. 2000, 151, 19–28. [Google Scholar] [CrossRef]
- Couto, D.R.; Porembski, S.; Barthlott, W.; de Paula, L.F.A. Hyperepilithics—An overlooked life form of vascular plants on tropical vertical rock walls. Austral Ecol. 2023, 48, 1074–1082. [Google Scholar] [CrossRef]
- Couto, D.R.; Francisco, T.M.; de Paula, L.F.A.; Paula, R.R.; Nascimento, M.T. Woody vegetation on tropical inselbergs: Floristic-structural characterization and aboveground carbon storage. J. Mt. Sci. 2025, 22, 1517–1534. [Google Scholar] [CrossRef]
- Porembski, S. Tropical inselbergs: Habitat types, adaptive strategies and diversity patterns. Braz. J. Bot. 2007, 20, 579–586. [Google Scholar] [CrossRef]
- Couto, D.R.; Francisco, T.M.; Manhães, V.C.; Dias, H.M.; Pereira, M.C.A. Floristic composition of a neotropical inselberg from the state of Espírito Santo, Brazil: A relevant area for conservation. Check List 2017, 13, 1–12. [Google Scholar] [CrossRef]
- Couto, D.R.; Dias, H.M.; Pereira, M.C.A.; Fraga, C.N.; Pezzopane, J.E.M. Vascular epiphytes on Pseudobombax (Malvaceae) in rocky outcrops (inselbergs) in Brazilian Atlantic Rainforest: Basis for conservation of a threatened ecosystem. Rodriguésia 2016, 67, 583–601. [Google Scholar] [CrossRef]
- Couto, D.R.; Francisco, T.M.; Garbin, M.L.; Dias, H.M.; Pereira, M.C.A.; Menini Neto, L.; Pezzopane, J.E.M. Surface roots as a new ecological zone for occurrence of vascular epiphytes: A case study on Pseudobombax trees on inselbergs. Plant Ecol. 2019, 220, 1071–1084. [Google Scholar] [CrossRef]
- Benzing, D.H. Vascular Epiphytes; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Klein, V.P.; Francisco, T.M.; Quaresma, A.C.; Piedade, M.T.F. Structure of epiphyte–phorophyte networks and their robustness to species loss in white-sand ecosystems in the Amazon. Biotropica 2025, 57, e70005. [Google Scholar] [CrossRef]
- Ceballos, S.J.; Chacoff, N.P.; Malizia, A. Interaction network of vascular epiphytes and trees in a subtropical forest. Acta Oecol. 2016, 77, 152–159. [Google Scholar] [CrossRef]
- Francisco, T.M.; Couto, D.R.; Garbin, M.L.; Muylaert, R.L.; Ruiz-Miranda, C.R. Low modularity and specialization in a commensalistic epiphyte–phorophyte network in a tropical cloud forest. Biotropica 2019, 51, 509–518. [Google Scholar] [CrossRef]
- Zottarelli, H.G.S.; Molina, J.M.P.; Ribeiro, J.E.L.S.; Sofia, S.H. A Commensal network of epiphytic orchids and host trees in an Atlantic Forest Remnant: A case study revealing the important role of large trees in the network structure. Austral Ecol. 2018, 44, 114–125. [Google Scholar] [CrossRef]
- Almeida-Neto, M.; Guimarães, P.; Guimarães, P.R., Jr.; Loyola, R.D.; Ulrich, W. A consistent metric for nestedness analysis in ecological systems: Reconciling concept and measurement. Oikos 2008, 117, 1227–1239. [Google Scholar] [CrossRef]
- Zotz, G. Plants on Plants—The Biology of Vascular Epiphytes; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Mello, M.A.; Marquitti, M.D.; Guimarães, P.R.; Viktoria, E.K.; Jordano, P.; Martinez, M.A. Modularity of seed dispersal: Differences in structure and robustness between bat- and bird-fruit networks. Oecologia 2011, 167, 131–140. [Google Scholar] [CrossRef]
- Salazar-Rivera, G.I.; Dáttilo, W.; Castillo-Campos, G.; Flores-Estévez, N.; Ramírez García, B.; Ruelas Inzunza, E. The frugivory network properties of a simplified ecosystem: Birds and plants in a Neotropical periurban park. Ecol. Evol. 2020, 10, 8579–8591. [Google Scholar] [CrossRef]
- Veloso, H.P.; Rangel-Filho, A.L.R.; Lima, J.C.A. Classificação da Vegetação Brasileira Adaptada a um Sistema Universal; Instituto Brasileiro de Geografia e Estatística: Rio de Janeiro, Brazil, 1991.
- Gentry, A.H. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Mo. Bot. Gard. 1988, 75, 1–34. [Google Scholar] [CrossRef]
- Perry, D.R. A method of access into the crowns of emergent and canopy trees. Biotropica 1978, 10, 155–157. [Google Scholar] [CrossRef]
- Sanford, W.W. Distribution of epiphytic orchids in semi- deciduous tropical forest in southern Nigeria. J. Ecol. 1968, 56, 697–705. [Google Scholar] [CrossRef]
- APG-Angiosperm Phylogeny Group. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar] [CrossRef]
- PPG, I. A community-derived classification for extant lycophytes and ferns. J. Syst. Evol. 2016, 54, 563–603. [Google Scholar] [CrossRef]
- Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: Connectance, dependence asymmetries, and coevolution. Am. Nat. 1987, 129, 657–677. [Google Scholar] [CrossRef]
- Blüthgen, N.; Menzel, F.; Blüthgen, N. Measuring specialization in species interaction networks. Ecology 2006, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Bersier, L.F.; Banasek-Richter, C.; Cattin, M.F. Quantitative descriptors of food-web matrices. Ecology 2002, 83, 2394–2407. [Google Scholar] [CrossRef]
- Bascompte, J.; Jordano, P.; Melian, C.J.; Olesen, J.M. The nested assembly of plant-animal mutualistic networks. Proc. Natl. Acad. Sci. USA 2003, 100, 9383–9387. [Google Scholar] [CrossRef]
- Guimarães, P.R., Jr.; Guimarães, P. Improving the analyses of nestedness for large sets of matrices. Environ. Modell. Softw. 2006, 21, 1512–1513. [Google Scholar] [CrossRef]
- Dormann, C.F.; Strauss, R.A. Method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 2014, 5, 90–98. [Google Scholar] [CrossRef]
- Dormann, C.F.; Gruber, B.; Fründ, J. Introducing the bipartite package: Analysing ecological networks. R News 2008, 8, 2. [Google Scholar]
- Cherven, K. Network Graph Analysis and Visualization with Gephi; Packt Publishing Limited: Birmingham, UK, 2013. [Google Scholar]
- Dehling, D.M. The structure of ecological networks. In Ecological Networks in the Tropics; Dáttilo, W., Rico-Gray, V., Eds.; Springer: Cham, Switzerland, 2018; pp. 29–42. [Google Scholar]
- Bascompte, J.; Jordano, P. The structure of plant-animal mutualistic networks. In Ecological Networks: Linking Structure to Dynamics in Food Webs; Pascual, M., Dunne, J., Eds.; Santa Fe Institute Studies in the Sciences of Complexity; Oxford University Press: Oxford, UK, 2006; pp. 143–159. [Google Scholar]
- Vázquez, D.P.; Melián, C.J.; Williams, N.M.; Blüthgen, N.; Krasnov, B.R.; Poulin, R. Species abundance and asymmetric interaction strength in ecological networks. Oikos 2007, 116, 110–1127. [Google Scholar] [CrossRef]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models: Monographs on Statistics and Applied Probability, 2nd ed.; Chapman & Hall/CRC: London, UK, 1989. [Google Scholar]
- Legendre, P.; Legendre, L. Numerical Ecology: Developments in Environmental Modelling, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Reis, R., Jr.; Oliveira, M.L.; Borges, G.R.A. RT4Bio: R Tools for Biologists, R package version 1.0; the Laboratory of Behavioral Ecology and Computational Biology: Montes Claros, Brazil, 2015.
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. vegan: Community Ecology Package, R package version 2.6-4; R Foundation: Vienna, Austria, 2022.
- Porembski, S.; Silveira, F.A.O.; Fiedler, P.L.; Watve, A.; Rabarimanarivo, M.; Kouame, F.; Hopper, S.D. Worldwide destruction of inselbergs and related rock outcrops threatens a unique ecosystem. Biodivers. Conserv. 2016, 25, 2827–2830. [Google Scholar] [CrossRef]
- Scarano, F.R. Plant communities at the periphery of the Atlantic rain forest: Rare-species bias and its risks for conservation. Biol. Conserv. 2009, 142, 1201–1208. [Google Scholar] [CrossRef]
- Sáyago, R.; Lopezaraiza-Mikel, M.; Quesada, M.; Alvarez-Anorve, M.Y.; Cascante-Marin, A.; Bastida, J.M. Evaluating factors that predict the structure of a commensalistic epiphyte-phorophyte network. Proc. R. Soc. B. 2013, 280, 20122821. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.-X.; Shen, T.; Quan, D.-L.; Nakamura, A.; Song, L. Structuring interaction networks between epiphytic bryophytes and their hosts in Yunnan, SW China. Front. For. Glob. Change 2021, 4, 716278. [Google Scholar] [CrossRef]
- Dáttilo, W.; Vizentin-Bugoni, J.; Debastiani, V.J.; Jordano, P.; Izzo, T.J. The influence of spatial sampling scales on ant–plant interaction network architecture. J. Anim. Ecol. 2019, 88, 903–914. [Google Scholar] [CrossRef]
- Silva, I.A.; Ferreira, A.W.C.; Lima, M.I.S.; Soares, J.J. Networks of epiphytic orchids and host trees in Brazilian gallery forests. J. Trop. Ecol. 2010, 26, 127–137. [Google Scholar] [CrossRef]
- Wagner, K.; Mendieta-Leiva, G.; Zotz, G. Host Specificity in vascular epiphytes: A review of methodology, empirical evidence and potential mechanisms. AoB Plants 2015, 7, plu092. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.; Saldaña, A.; Zotz, G.; Kirby, C.; Díaz, I.; Burns, K. Composition patterns and network structure of epiphyte–host interactions in Chilean and New Zealand temperate forests. N. Z. J. Bot. 2016, 54, 204–222. [Google Scholar] [CrossRef]
- Laube, S.; Zotz, G. Neither host-specific nor random: Vascular epiphytes on three tree species in a Panamanian lowland forest. Ann. Bot. 2006, 97, 1103–1114. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.; Burns, K. Epiphyte community development throughout tree ontogeny: An island ontogeny framework. J. Veg. Sci. 2015, 26, 902–910. [Google Scholar] [CrossRef]
- Cascante-Marin, A.; von Meijenfeldt, N.; de Leeuw, H.M.H.; Wolf, J.H.D.; Oostermeijer, J.G.B.; den Nijs, J.C.M. Dispersal limitation in epiphytic bromeliad communities in a Costa Rican fragmented montane landscape. J. Trop. Ecol. 2009, 25, 63–73. [Google Scholar] [CrossRef]
- Sanger, J.C.; Kirkpatrick, J.B. Fine partitioning of epiphyte habitat within Johansson zones in tropical Australian rain forest trees. Biotropica 2016, 49, 27–34. [Google Scholar] [CrossRef]
- De Paula, L.F.A.; Azevedo, L.O.; Mauad, L.P.; Cardoso, L.J.T.; Braga, J.M.A.; Kollmann, L.J.C.; Fraga, C.N.; Menini Neto, L.; Labiak, P.H.; Mello-Silva, R.; et al. Sugarloaf Land in south-eastern Brazil: A tropical hotspot of lowland inselberg plant diversity. Biodivers. Data J. 2020, 8, e53135. [Google Scholar] [CrossRef] [PubMed]
- Krömer, T.; Kessler, M.; Gradstein, S.R. Vertical stratification of vascular epiphytes in submontane and montane forest of the Bolivian Andes: The importance of the understory. Plant Ecol. 2007, 189, 261–278. [Google Scholar] [CrossRef]
- Zimmerman, J.K.; Olmsted, I.C. Host tree utilization by vascular epiphytes in a seasonally inundated forest (Tintal) in Mexico. Biotropica 1992, 24, 402–407. [Google Scholar] [CrossRef]
- Vergara-Torres, C.A.; Pacheco-Álvarez, M.C.; Flores-Palacios, A. Host preference and host limitation of vascular epiphytes in a tropical dry forest of central Mexico. J. Trop. Ecol. 2010, 26, 563–570. [Google Scholar] [CrossRef]
- Callaway, R.M.; Reinhart, K.O.; Tucker, S.C.; Pennings, S.C. Effects of epiphytic lichens on host preference of the vascular epiphyte Tillandsia usneoides. Oikos 2003, 94, 433–441. [Google Scholar] [CrossRef]
- Smith, L.B.; Downs, R.J. Tillandsioideae (Bromeliaceae). In Flora Neotropica. Monograph; Hafner Press: New York, NY, USA, 1977. [Google Scholar]
- Francisco, T.M.; Couto, D.R.; Garbin, M.L.; Misaki, F.; Ruiz-Miranda, C.R. Role of spatial and environmental factors in structuring vascular epiphyte communities in two neotropical ecosystems. Plant Ecol. Evol. Syst. 2021, 51, 125621. [Google Scholar] [CrossRef]
- Olesen, J.M.; Bascompte, J.; Dupont, Y.L.; Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. USA 2007, 104, 19891–19896. [Google Scholar] [CrossRef] [PubMed]
Vascular Epiphytes Species | Family | Acronyms | Cat | Abund | Degree |
---|---|---|---|---|---|
Aechmea phanerophlebia Baker | Bromeliaceae | AEPHA | Fac | 18 | 4 |
Alcantarea extensa (L.B.Sm.) J.R.Grant | Bromeliaceae | ALEXT | Aci | 7 | 2 |
Anemia sp. | Anemiaceae | ANESP | Aci | 5 | 2 |
Anthurium sp. | Araceae | ANTSP | Aci | 4 | 2 |
Begonia sp. | Begoniaceae | BESP | Aci | 1 | 1 |
Cereus fernambucensis Lem. | Cactaceae | CEFER | Aci | 6 | 3 |
Clibadium armanii (Balb.) Sch.Bip. ex O.E.Schulz | Asteraceae | CLARM | Aci | 1 | 1 |
Coleocephalocereus fluminensis (Miq.) Backeb. | Cactaceae | COFLU | Aci | 5 | 2 |
Cyclopogon argyrifolius Barb.Rodr. | Orchidaceae | CYARG | Aci | 1 | 1 |
Cyrtopodium glutiniferum Raddi | Orchidaceae | CYGLU | Aci | 2 | 1 |
Doryopteris collina (Raddi) J.Sm. | Pteridaceae | DOCOL | Aci | 15 | 3 |
Dracaena trifasciata (Prain) Mabb. | Asparagaceae | DRTRI | Aci | 2 | 1 |
Hemionitis tomentosa (Lam.) Raddi | Pteridaceae | HETOM | Aci | 1 | 1 |
Hylocereus setaceus (Salm-Dyck) R.Bauer | Cactaceae | HYSET | Epi | 6 | 3 |
Laelia gloriosa (Rchb.f.) L.O.Williams | Orchidaceae | LAGLO | Epi | 13 | 2 |
Microgramma vacciniifolia (Langsd. & Fisch.) Copel. | Polipodiaceae | MIVAC | Epi | 2 | 2 |
Pecluma plumula (Willd.) M.G.Price | Polypodiaceae | PEPLU | Epi | 22 | 4 |
Philodendron sp. | Araceae | PHSP | Hem | 13 | 5 |
Pitcairnia flammea Lindl. | Bromeliaceae | PIFLA | Aci | 36 | 2 |
Pleopeltis minima (Bory) J. Prado & R.Y. Hirai | Polypodiaceae | PLMIN | Epi | 20 | 2 |
Rhipsalis aff. lindbergiana K.Schum. | Cactaceae | RHLIN | Epi | 6 | 2 |
Selaginella convoluta (Arn.) Spring | Selaginellaceae | SECON | Aci | 81 | 3 |
Selaginella sellowii Hieron. | Selaginellaceae | SESEL | Aci | 4 | 1 |
Selaginella sp. | Selaginellaceae | SESP | Aci | 6 | 2 |
Tillandsia gardneri Lindl. | Bromeliaceae | TIGAR | Epi | 13 | 3 |
Tillandsia loliacea Mart. ex Schult. & Schult.f. | Bromeliaceae | TILOL | Epi | 2163 | 13 |
Tillandsia recurvata (L.) L. | Bromeliaceae | TIREC | Epi | 21 | 3 |
Tillandsia stricta Sol. | Bromeliaceae | TSTR | Epi | 4 | 2 |
Tillandsia usneoides (L.) L. | Bromeliaceae | TIUSN | Epi | 13 | 1 |
Vellozia plicata Mart. | Velloziaceae | VEPLI | Aci | 17 | 3 |
Phorophytes Species | Family | Acronyms | Abund | Degree | Species Strength |
---|---|---|---|---|---|
Aspidosperma gomezianum A.DC. | Apocynaceae | ASGOM | 3 | 2 | 0.16 |
Ceiba erianthos (Cav.) K.Schum. | Malvaceae | CEERI | 2 | 6 | 1.17 |
Clusia mexiae P.F.Stevens | Clusiaceae | CLMEX | 1 | 1 | 0.00 |
Cnidoscolus oligandrus (Müll.Arg.) Pax | Euphorbiaceae | CNOLI | 2 | 1 | 0.00 |
Eriotheca sp. | Malvaceae | ERSP | 1 | 3 | 0.64 |
Eugenia cf. bahiensis DC. | Myrtaceae | EUBAI | 20 | 6 | 1.79 |
Guapira opposita (Vell.) Reitz | Nyctaginaceae | GUOPP | 1 | 1 | 0.00 |
Kielmeyera membranacea Casar | Calophyllaceae | KIMEM | 1 | 1 | 0.00 |
Parapiptadenia pterosperma (Benth.) Brenan | Fabaceae | PAPTE | 7 | 8 | 1.30 |
Pseudobombax petropolitanum A.Robyns | Malvaceae | PSPET | 19 | 21 | 8.72 |
Tabebuia reticulata A.H.Gentry | Bignoniaceae | TARET | 47 | 25 | 16.20 |
Trichilia sp.1 | Meliaceae | TRSP1 | 3 | 1 | 0.01 |
Trichilia sp.2 | Meliaceae | TRSP2 | 2 | 1 | 0.01 |
Metric Network-Level | Observed | Null Model | p |
---|---|---|---|
Connectance | 0.19 | 0.27 | <0.001 |
H2′ | 0.11 | 0.03 | <0.001 |
Nestedness (NODF) | 57.50 | 34.36 | <0.001 |
Horizontal modularity | 0.05 | 0.02 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francisco, T.M.; Couto, D.R.; Garbin, M.L. Network Structure and Species Roles in Epiphyte–Phorophyte Interactions on a Neotropical Inselberg Woody Vegetation. Forests 2025, 16, 1300. https://doi.org/10.3390/f16081300
Francisco TM, Couto DR, Garbin ML. Network Structure and Species Roles in Epiphyte–Phorophyte Interactions on a Neotropical Inselberg Woody Vegetation. Forests. 2025; 16(8):1300. https://doi.org/10.3390/f16081300
Chicago/Turabian StyleFrancisco, Talitha Mayumi, Dayvid Rodrigues Couto, and Mário Luís Garbin. 2025. "Network Structure and Species Roles in Epiphyte–Phorophyte Interactions on a Neotropical Inselberg Woody Vegetation" Forests 16, no. 8: 1300. https://doi.org/10.3390/f16081300
APA StyleFrancisco, T. M., Couto, D. R., & Garbin, M. L. (2025). Network Structure and Species Roles in Epiphyte–Phorophyte Interactions on a Neotropical Inselberg Woody Vegetation. Forests, 16(8), 1300. https://doi.org/10.3390/f16081300