Endophyte Diversity and Resistance to Pine Wilt Disease in Coniferous Trees
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Processing
2.3. Determination of Endophytic Microbial Diversity and Data Processing and Analysis
2.4. Isolation of Endophytic Bacteria and Fungi
2.5. Assay for Nematocidal Activity
2.6. Identification of Endophytic Bacteria
3. Results
3.1. Assessment of Sequencing Depth for Endophytic Microorganisms
3.2. Alpha Diversity Analysis of Endophytic Bacterial and Fungal Communities
3.3. Compositional Analysis of Endophytic Microbial Communities
3.4. Isolation and Nematocidal Analysis of Endophytic Bacteria and Fungi
3.5. Identification of Isolated Endophytic Bacteria
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nickle, W.R.; Golden, A.M.; Mamiya, Y.; Wergin, W.P. On the taxonomy and morphology of the pine wood nematode, Bursaphelenchus xylophilus (Steiner &Buhrer 1934) Nickle 1970. J. Nematol. 1981, 13, 385–392. [Google Scholar]
- Wang, X.; Wang, L.F.; Cao, Y.F.; Yuan, Y.Z.; Hu, J.; Chen, Z.H.; Zhu, F.; Wang, X.Z. Bursaphelenchus xylophilus detection and analysis system based on CRISPR-Cas12. Front. Plant Sci. 2022, 13, 1075838. [Google Scholar] [CrossRef]
- Jiang, M.; Huang, B.; Yu, X.; Zheng, W.T.; Jin, Y.L.; Liao, M.N.; Ni, J. Distribution, harm and control measures of pine wood nematode disease. J. Zhejiang For. Sci. Technol. 2018, 38, 83–91. [Google Scholar]
- Ye, J.R.; Huang, L. Several issues in the etiological study of pine wood nematode disease. For. Pest Dis. China 2012, 31, 13–21. [Google Scholar]
- Yang, Z.Q.; Wang, X.Y.; Zhang, Y.N.; Zhang, Y.L. Research progress on integrated control of major forest pests in China with biological control as the main measure. Chin. J. Biol. Control 2018, 34, 163–183. [Google Scholar]
- Zheng, Y.; Khan, M.R. Pine wood nematode in coniferous forests and their management by novel biological and biotechnological interventions. In Novel Biological and Biotechnological Applications in Plant Nematode Management; Springer: Singapore, 2023; pp. 489–514. [Google Scholar]
- Kim, B.N.; Kim, J.H.; Ahn, J.Y.; Kim, S.; Cho, B.K.; Kim, Y.H.; Min, J. A short review of the pinewood nematode, Bursaphelenchus xylophilus. Toxicol. Environ. Health Sci. 2020, 12, 297–304. [Google Scholar] [CrossRef]
- Futai, K. Pine wood nematode, Bursaphelenchus xylophilus. Annu. Rev. Phytopathol. 2013, 51, 61–83. [Google Scholar] [CrossRef]
- Ryss, A.Y.; Kulinich, O.A.; Sutherland, J.R. Pine wilt disease: A short review of worldwide research. For. Stud. China 2011, 13, 132–138. [Google Scholar] [CrossRef]
- Ye, J.R.; Wu, X.Q. Research progress of pine wilt disease. For. Pest Dis. China 2022, 41, 1–10. [Google Scholar]
- Choi, W.I.; Nam, Y.; Lee, C.Y.; Choi, B.K.; Shin, Y.J.; Lim, J.H.; Koh, S.H.; Park, Y.S. Changes in major insect pests of pine forests in Korea over the last 50 years. Forests 2019, 10, 692. [Google Scholar] [CrossRef]
- Cheng, H.R.; Lin, M.S.; Qian, R.J. A study on the morphological diagnosis and the pathogenicity of Bursaphelenchus mucronatus. J. Nanjing Agric. Univ. 1986, 2, 55–61. [Google Scholar]
- Zhang, J.J.; Zhang, R.Z.; Chen, J.Y. Species of vector insects of Bursaphelenchus xylophilus and their dispersal ability. J. Zhejiang For. Coll. 2007, 24, 350–356. [Google Scholar]
- Chen, Y.S.; Li, X.Y.; Yu, H.P.; Luo, G.D. Research on biological disinfestation technology for diseased wood of pine wilt disease. China Plant Prot. 2019, 39, 52,82–86. [Google Scholar]
- Espada, M.; Filipiak, A.; Li, H.; Vicente, C.S.L. Editorial: Global occurrence of pine wilt disease: Biological interactions and integrated management. Front. Plant Sci. 2022, 13, 993482. [Google Scholar] [CrossRef]
- Zhu, N.B. Revised and Issued: Technical scheme for prevention and control of pine wood nematode disease and measures for management of pine wood nematode disease epidemic areas and infected woods. For. Pest Dis. China 2019, 38, 47–48. [Google Scholar]
- Meng, Y.J. Monitoring, Identification and prevention of pine wood nematode disease in Dandong City, Liaoning Province. Agric. Technol. 2018, 38, 62–63. [Google Scholar]
- Xiong, H.L.; Wen, X.S. Test report on thiacloprid for controlling Monochamus alternatus, the vector insect of pine wood nematode disease. China Agricultural Industry Economic Development Association. In Proceedings of the 2009 Symposium on New Technologies, New Products of Environmental Protection Pesticides and Biopesticide Technology, Beijing, China, 4–6 November 2009; General Station of Forest Pest Management and Quarantine, State Forestry Administration: Shenyang, China; Jiangxi Provincial Bureau of Forestry Pest Control and Quarantine: Nanchang, China, 2009; pp. 72–76. [Google Scholar]
- Zhou, H.K. Control Effect of 2% Thiacloprid Microcapsule Powder on Monochamus alternatus. For. Sci. Technol. 2012, 37, 17–18. [Google Scholar]
- Gan, S.Z.; Wang, X.F.; Chen, X.H.; Zhu, F.; Yang, G.Y.; Wang, Y.C.; Wang, S.K.; Liu, S.M.; Xiao, Y.F.; Lin, C.Q. Study on the control of pine wood nematode disease by trunk injection of “Songxianjing” (5% Abamectin emulsifiable concentrate). J. Temp. For. Res. 2023, 6, 42–47. [Google Scholar]
- Min, S.F.; Huang, X.B.; Yao, Q.; Liu, Q.F.; Xu, S.D.; Wang, M.T. Field control effects of chlorpyrifos and abamectin-chlorbenzuron on Monochamus alternatus. Hubei Entomological Society, Hunan Entomological Society, Henan Entomological Society. In Central China Entomological Research (Volume V); Hubei General Station of Forest Pest Control and Quarantine; Yidu Station of Forest Pest Control, Hubei Province; College of Plant Science and Technology, Huazhong Agricultural University: Wuhan, China, 2008; pp. 275–277. [Google Scholar]
- Jing, Z.G.; Zhang, X.H.; Song, J.Q.; Hao, Y.D. Field experiment on controlling anoplophora chinensis with 8% Cypermethrin (Contact-breaking) microcapsule formulation. Shandong For. Sci. Technol. 2021, 51, 58–59. [Google Scholar]
- Kang, W.T.; Tang, C.S.; Liang, N.; Chen, S.Z.; Hang, J.S.; Chen, Q.L. Field Control of Monochamus alternatus with Sclerodermus guani. J. Fujian Agric. For. Univ. Nat. Sci. Ed. 2008, 37, 575–579. [Google Scholar]
- Li, L.L.; Sun, Y.F.; Chen, F.M.; Hao, D.J.; Tian, J.J. An alkaline protease from Bacillus cereus NJSZ-13 can act as a pathogenicity factor in infection of pine wood nematode. BMC Microbiol. 2023, 23, 10. [Google Scholar]
- Li, L.L.; Tan, J.J.; Chen, F.M. Bacillus pumilus strain LYMC-3 shows nematocidal activity against Bursaphelenchus xylophilus via the production of a guanidine compound. Biocontrol Sci. Technol. 2018, 28, 1128–1139. [Google Scholar] [CrossRef]
- Zhang, W.B.; Li, Y.L.; Zhou, L.; Hao, D.J.; Tian, J.J. Nematocidal activity of the representative plant rhizosphere probiotic strain Bacillus velezensis FZB42 against Bursaphelenchus xylophilus. Acta Microbiol. Sin. 2021, 61, 1287–1298. [Google Scholar]
- Sun, Y.X.; Wang, C.; Du, G.C.; Deng, W.J.; Yang, H.; Li, R.G.; Xu, Q. Two nematocidal compounds from lysinimonas m4 against the pine wood nematode, Bursaphelenchus xylophilus. Forests 2022, 13, 1191. [Google Scholar] [CrossRef]
- Batiha, G.; Alqahtani, A.; Ilesanmi, O.; Saati, A.A.; El-Mleeh, A.; Hetta, H.F.; Magdy Beshbishy, A. Avermectin derivatives, pharmacokinetics, therapeutic and toxic dosages, mechanism of action, and their biological effects. Pharmaceuticals 2020, 13, 196. [Google Scholar] [CrossRef]
- Kang, M.K.; Kim, J.H.; Liu, M.J.; Jin, C.Z.; Park, D.J.; Kim, J.; Sung, B.H.; Kim, C.J. New discovery on the nematode activity of aureothin and alloaureothin isolated from endophytic bacteria Streptomyces sp. AE170020. Sci. Rep. 2022, 12, 3947. [Google Scholar] [CrossRef]
- Siddiqui, I.A.; Haas, D.; Heeb, S. Extracellular protease of Pseudomonas fuorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl. Environ. Microbiol. 2005, 71, 5646–5649. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.M.; Wang, Y.T.; Zhu, J.C.; Zhou, G.; Liu, J. Screening and regulatory mechanisms of inter-root soil nematocidal bacteria of Pinus massoniana. Forests 2023, 14, 2230. [Google Scholar] [CrossRef]
- Niu, Q.H.; Huang, X.W.; Tian, B.Y.; Yang, J.K.; Liu, J.; Zhang, L.; Zhang, K.Q. Bacillus sp. B16 kills nematodes with a serine protease identified as a pathogenic factor. Appl. Microbiol. Biotechnol. 2006, 69, 722–730. [Google Scholar] [CrossRef]
- Liu, M.J.; Hwang, B.S.; Jin, C.Z.; Li, W.J.; Park, D.J.; Seo, S.T.; Kim, C.J. Screening, isolation and evaluation of a nematocidal compound from actinomycetes against the pine wood nematode, Bursaphelenchus xylophilus. Pest Manag. Sci. 2019, 75, 1585–1593. [Google Scholar] [CrossRef] [PubMed]
- Matsumori, K.; Izumi, S.; Watanabe, H. Hormone-like Action of 3-Octanol and 1-Octen-3-ol from Botrytis cinerea on the Pine Wood Nematode, Bursaphelenchus xylophilus. Agric. Biol. Chem. 1989, 53, 1777–1781. [Google Scholar] [CrossRef]
- Ye, J.R. Epidemic status, control technologies and countermeasures of pine wilt disease in China. Sci. Silvae Sin. 2019, 55, 1–10. [Google Scholar]
- Ju, Y.W.; Zhao, B.G.; Pu, C.H. Differences in pathogenicity to Cedrus deodara between pine wood nematodes from China and Japan. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2007, 31, 139–140. [Google Scholar]
- Dong, W.Y.; Du, G.C.; Zhang, T.T.; Yang, H.; Guo, Q.Q.; Li, R.G. Bacterial diversity and pathogenicity of pine wood nematode (Bursaphelenchus xylophilus) from two different sources. Chiang Mai J. Sci. 2022, 49, 284–298. [Google Scholar] [CrossRef]
- Han, Z.M.; Hong, Y.D.; Zhao, B.G. A study on pathogenicity of bacteria carried by pine wood nematodes. J. Phytopathol. 2010, 151, 683–689. [Google Scholar] [CrossRef]
- Liu, Y.J.; Han, S.C.; Gao, J.L.; Yu, X.F.; Qing, G.E.; Hu, S.P.; Guo, J.A.; Zhao, X.Y. Effects of different tillage methods combined with straw returning on the diversity of endophytic bacteria in maize. Acta Microbiol. Sin. 2024, 64, 2522–2538. [Google Scholar]
- Bullington, L.S.; Larkin, B.G. Using direct amplification and next-generation sequencing technology to explore foliar endophyte communities in experimentally inoculated western white pines. Fungal Ecol. 2015, 17, 170–178. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Wei, Z.; Gu, Y.; Friman, V.P.; Kowalchuk, G.A.; Xu, Y.C.; Shen, Q.R.; Jousset, A. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 2019, 5, eaaw0759. [Google Scholar] [CrossRef]
- Xiong, W.; Song, Y.; Yang, K.; Gu, Y.; Wei, Z.; Kowalchuk, G.A.; Xu, Y.C.; Jousset, A.; Shen, Q.R.; Stefan, G. Rhizosphere protists are key determinants of plant health. Microbiome 2020, 8, 27–35. [Google Scholar] [CrossRef]
- O’Reilly, F.J.; Mielke, P.W. Asymptotic normality of MRPP statistics from invariance principles of u-statistics. Commun. Stat.-Theory Methods 1980, 9, 629–637. [Google Scholar] [CrossRef]
- Dong, X.Z.; Cai, M.Y. Handbook for Systematic Identification of Common Bacteria; Science Press: Beijing, China, 2001. [Google Scholar]
- Zheng, D.W.; Zhou, Y.; Xie, F.L.; Xie, Z.B.; Liu, F.; Zhu, H.J. Screening, Identification and biocontrol potential of antagonistic bacteria against Phytophthora capsici. J. Hunan Agric. Univ. (Nat. Sci. Ed.) 2023, 49, 442–447. [Google Scholar]
- Abo-Elyousr, K.A.M.; Hassan, S.A. Biological control of Ralstonia solanacearum (Smith), the causal pathogen of bacterial wilt disease by using Pantoea spp. Egypt. J. Biol. Pest Control 2021, 31, 113. [Google Scholar]
- Sheng, Z.; Chen, K.; Li, X. Research progress on the biosynthesis of spinosad. Acta Microbiol. Sin. 2016, 56, 397–405. [Google Scholar]
- Northeast Forestry University. A Strain of Acinetobacter Pittii T-150 for Controlling Pine Wood Nematode Disease and Its Application; CN117210374A; Northeast Forestry University: Harbin, China, 2024. [Google Scholar]
- Tian, X.L.; Zhang, Q.L.; Chen, G.H.; Mao, Z.C.; Yang, J.R.; Xie, B.Y. Metagenomic Analysis of the Diversity of Bacteria Associated with Bursaphelenchus xylophilus. Acta Microbiol. Sin. 2010, 50, 909–916. [Google Scholar]
- Lin, F.; Zhao, B.G. Effect of bacteria on the reproduction of Bursaphelenchus xylophilus. J. Beijing For. Univ. 2006, 4, 135–138. [Google Scholar]
- Tang, X.B.; Ni, Y.J.; Hu, Y.C.; Bai, J.H.; Wang, L.; Chen, Q.X.; Wen, Z.F. Isolation, identification of pathogen causing leaf spot disease of Vitis davidii by Pestalotiopsis clavispora and screening of its control agents. Plant Prot. 2020, 46, 110–115+154. [Google Scholar]
- Zheng, Z.; Chai, S.; Chen, J.; Yang, H.; Chang, J.; Yang, G. Isolation and identification of flavonoid-producing endophytic fungi from Loranthus tanakae Franch. & Sav that exhibit antioxidant and antibacterial activities. J. Appl. Microbiol. 2022, 133, 1892–1904. [Google Scholar] [CrossRef]
- Ma, L.J.; Zhang, L.Q.; Lin, H.P.; Mao, S.F. Study on pathogens of Monochamus alternatus and their pathogenicity. Chin. J. Biol. Control 2009, 25, 220–225. [Google Scholar]
- Petersen-Silva, R.; Inácio, L.; Henriques, J.; Naves, P.; Sousa, E.; Pujade-Villar, J. Susceptibility of larvae and adults of Monochamus galloprovincialis to entomopathogenic fungi under controlled conditions. Int. J. Pest Manag. 2015, 61, 106–112. [Google Scholar] [CrossRef]
- Fukushige, H. Propagation of Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) on Fungi Growing in Pine-Shoot Segments. Appl. Entomol. Zool. 1991, 26, 371–376. [Google Scholar] [CrossRef]
Strain Designation | Bacterial Genus | Sequence Identity |
---|---|---|
PF1 | Pseudomonas sp. | 100% |
PM1 | Stenotrophomonas sp. | 100% |
PQ1 | Pantoea sp. | 100% |
PQ2 | Pantoea sp. | 99.93% |
PO1 | Pantoea sp. | 98.38% |
PO2 | Bacillus sp. | 97.29% |
PO3 | Acinetobacter sp. | 100% |
CD1 | Bacillus sp. | 100% |
PM1 | Stenotrophomonas sp. | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Wang, C.; Guo, Q.; Pan, Y.; Zhang, M.; Wang, H.; Yu, J.; Li, R.; Du, G. Endophyte Diversity and Resistance to Pine Wilt Disease in Coniferous Trees. Forests 2025, 16, 1403. https://doi.org/10.3390/f16091403
Zhao S, Wang C, Guo Q, Pan Y, Zhang M, Wang H, Yu J, Li R, Du G. Endophyte Diversity and Resistance to Pine Wilt Disease in Coniferous Trees. Forests. 2025; 16(9):1403. https://doi.org/10.3390/f16091403
Chicago/Turabian StyleZhao, Shuting, Chao Wang, Qunqun Guo, Yanxin Pan, Meng Zhang, Huiyu Wang, Jiayi Yu, Ronggui Li, and Guicai Du. 2025. "Endophyte Diversity and Resistance to Pine Wilt Disease in Coniferous Trees" Forests 16, no. 9: 1403. https://doi.org/10.3390/f16091403
APA StyleZhao, S., Wang, C., Guo, Q., Pan, Y., Zhang, M., Wang, H., Yu, J., Li, R., & Du, G. (2025). Endophyte Diversity and Resistance to Pine Wilt Disease in Coniferous Trees. Forests, 16(9), 1403. https://doi.org/10.3390/f16091403