Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (311)

Search Parameters:
Journal = CivilEng

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3743 KiB  
Article
Mechanical and Performance Characteristics of Warm Mix Asphalt Modified with Phase Change Materials and Recycled Cigarette Filters
by Zahraa Ahmed al-Mammori, Israa Mohsin Kadhim Al-Janabi, Ghadeer H. Abbas, Doaa Hazim Aziz, Fatin H. Alaaraji, Elaf Salam Abbas, Beshaer M. AL-shimmery, Tameem Mohammed Hashim, Ghanim Q. Al-Jameel, Ali Shubbar and Mohammed Salah Nasr
CivilEng 2025, 6(3), 41; https://doi.org/10.3390/civileng6030041 - 5 Aug 2025
Abstract
With rising global temperatures and increasing sustainability demands, the need for advanced pavement solutions has never been greater. This study breaks new ground by integrating phase change materials (PCMs), including paraffin-based wax (Rubitherm RT55), hydrated salt (Climator Salt S10), and fatty acid (lauric [...] Read more.
With rising global temperatures and increasing sustainability demands, the need for advanced pavement solutions has never been greater. This study breaks new ground by integrating phase change materials (PCMs), including paraffin-based wax (Rubitherm RT55), hydrated salt (Climator Salt S10), and fatty acid (lauric acid), as binder modifiers within warm mix asphalt (WMA) mixtures. Moving beyond the traditional focus on binder-only modifications, this research utilizes recycled cigarette filters (CFs) as a dual-purpose fiber additive, directly reinforcing the asphalt mixture while simultaneously transforming a major urban waste stream into valuable infrastructure. The performance of the developed WMA mixture has been evaluated in terms of stiffness behavior using an Indirect Tensile Strength Modulus (ITSM) test, permanent deformation using a static creep strain test, and rutting resistance using the Hamburg wheel-track test. Laboratory tests demonstrated that the incorporation of PCMs and recycled CFs into WMA mixtures led to remarkable improvements in stiffness, deformation resistance, and rutting performance. Modified mixes consistently outperformed the control, achieving up to 15% higher stiffness after 7 days of curing, 36% lower creep strain after 4000 s, and 64% reduction in rut depth at 20,000 passes. Cost–benefit analysis and service life prediction show that, despite costing USD 0.71 more per square meter with 5 cm thickness, the modified WMA mixture delivers much greater durability and rutting resistance, extending service life to 19–29 years compared to 10–15 years for the control. This highlights the value of these modifications for durable, sustainable pavements. Full article
Show Figures

Figure 1

16 pages, 3236 KiB  
Article
Study on Stabilization Mechanism of Silt by Using a Multi-Source Solid Waste Soil Stabilizer
by Xiaohua Wang, Chonghao Sun, Junjie Dong, Xiangbo Du, Yuan Lu, Qianqing Zhang and Kang Sun
CivilEng 2025, 6(3), 40; https://doi.org/10.3390/civileng6030040 - 24 Jul 2025
Viewed by 275
Abstract
In this study, to solidify the silt in an expressway, a stabilizing agent composed of industrial wastes, such as ordinary Portland cement (OPC), calcium based alkaline activator (CAA), silicate solid waste material (SISWM) and sulfate solid waste material (SUSWM) was developed. Orthogonal experiments [...] Read more.
In this study, to solidify the silt in an expressway, a stabilizing agent composed of industrial wastes, such as ordinary Portland cement (OPC), calcium based alkaline activator (CAA), silicate solid waste material (SISWM) and sulfate solid waste material (SUSWM) was developed. Orthogonal experiments and comparative experiments were carried out to analyze the strength and water stability of the stabilized silt, and get the optimal proportion of each component in the stabilizing agent. A series of laboratory tests, including unconfined compressive strength (UCS), water stability (WS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analyses, were conducted on solidified silt samples treated with the stabilizing agent at optimal mixing ratios of OPC, CAA, SISWM, and SUSWM to elucidate the evolution of mineral composition and microstructure. Full article
(This article belongs to the Section Geotechnical, Geological and Environmental Engineering)
Show Figures

Figure 1

14 pages, 2394 KiB  
Article
Digital-Twin-Based Structural Health Monitoring of Dikes
by Marike Bornholdt, Martin Herbrand, Kay Smarsly and Gerhard Zehetmaier
CivilEng 2025, 6(3), 39; https://doi.org/10.3390/civileng6030039 - 18 Jul 2025
Viewed by 400
Abstract
Earthen flood protection structures are planned and constructed with an expected service life of several decades while being exposed to environmental impacts that may lead to structural or hydraulic failure. Current maintenance procedures involve only repairing external damage, leaving internal processes contributing to [...] Read more.
Earthen flood protection structures are planned and constructed with an expected service life of several decades while being exposed to environmental impacts that may lead to structural or hydraulic failure. Current maintenance procedures involve only repairing external damage, leaving internal processes contributing to structural damage often undetected. Through structural health monitoring (SHM), structural deficits can be detected before visible damage occurs. To improve maintenance workflows and support predictive maintenance of dikes, this paper reports on the integration of digital twin concepts with SHM strategies, referred to as “digital-twin-based SHM”. A digital twin concept, including a standard-compliant building information model, is proposed and implemented in terms of a digital twin environment. For integrating monitoring and sensor data into the digital twin environment, a customized webform is designed. A communication protocol links preprocessed sensor data stored on a server with the digital twin environment, enabling model-based visualization and contextualization of the sensor data. As will be shown in this paper, a digital twin environment is set up and managed in the context of SHM in compliance with technical standards and using well-established software tools. In conclusion, digital-twin-based SHM, as proposed in this paper, has proven to advance predictive maintenance of dikes, contributing to the resilience of critical infrastructure against environmental impacts. Full article
(This article belongs to the Section Water Resources and Coastal Engineering)
Show Figures

Figure 1

20 pages, 1618 KiB  
Article
The Influence of the Water–Cement Ratio on Concrete Resistivity: A Temperature and Saturation Dependent Analysis Using an Experimental and Predictive Approach
by Teuku Ferdiansyah, Romaynoor Ismy, Shaban Shahzad, Waqas Rafiq and Kashif Nadeem
CivilEng 2025, 6(3), 38; https://doi.org/10.3390/civileng6030038 - 15 Jul 2025
Viewed by 315
Abstract
Concrete resistivity is a critical parameter for assessing durability and monitoring the structural health of reinforced concrete. This study systematically evaluates the effects of the water-to-cement (w/c) ratio, saturation ratio (SR), and temperature on concrete resistivity using three different predictive models: linear regression, [...] Read more.
Concrete resistivity is a critical parameter for assessing durability and monitoring the structural health of reinforced concrete. This study systematically evaluates the effects of the water-to-cement (w/c) ratio, saturation ratio (SR), and temperature on concrete resistivity using three different predictive models: linear regression, cubic Support Vector Machine (SVM), and Gaussian Process Regression (GPR). Each model was independently trained and tested to assess its ability to capture the nonlinear relationships between these key parameters. Experimental results show that resistivity decreases significantly under increasing load due to geometrical effects. For a w/c ratio of 0.4, resistivity decreases by −12.48% at 100% SR and by −6.68% at 60% SR under 20% loading. Higher w/c ratios (0.5 and 0.6) exhibit more pronounced resistivity reductions due to increased porosity and ion mobility, with a maximum decrease of −13.68% for w/c = 0.6. Among the developed predictive models, the Matern 5/2 Gaussian process regression (GPR) model demonstrated the highest accuracy, achieving an RMSE of 5.21, R2 of 0.99, MSE of 27.19, and MAE of 3.40, significantly outperforming the other approaches. Additionally, a permutation importance analysis revealed that the saturation ratio (SR) is the most critical variable influencing resistivity, followed by the water–cement ratio, while temperature has the least impact. These findings provide valuable insights into the durability assessment and corrosion prevention of reinforced concrete, offering practical implications for the optimization of material design and structural health monitoring in civil engineering. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

21 pages, 918 KiB  
Article
Analysis of Ultrasonic Wave Dispersion in Presence of Attenuation and Second-Gradient Contributions
by Nicola De Fazio, Luca Placidi, Francesco Fabbrocino and Raimondo Luciano
CivilEng 2025, 6(3), 37; https://doi.org/10.3390/civileng6030037 - 14 Jul 2025
Viewed by 157
Abstract
In this study, we aim to analyze the dispersion of ultrasonic waves due to second-gradient contributions and attenuation within the framework of continuum mechanics. To investigate dispersive behavior and attenuation effects, we consider the influence of both higher-order gradient terms (second gradients) and [...] Read more.
In this study, we aim to analyze the dispersion of ultrasonic waves due to second-gradient contributions and attenuation within the framework of continuum mechanics. To investigate dispersive behavior and attenuation effects, we consider the influence of both higher-order gradient terms (second gradients) and Rayleigh-type viscoelastic contributions. To this end, we employ the extended Rayleigh–Hamilton principle to derive the governing equations of the problem. Using a wave-form solution, we establish the relationship between the phase velocity and the material’s constitutive parameters, including those related to the stiffness of both standard (first-gradient) and second-gradient types, as well as viscosity. To validate the model, we use data available in the literature to identify all the material parameters. Based on this identification, we observe that our model provides a good approximation of the experimentally measured trends of both phase velocity and attenuation versus frequency. In conclusion, this result not only confirms that our model can accurately describe both wave dispersion and attenuation in a material, as observed experimentally, but also highlights the necessity of simultaneously considering both second-gradient and viscosity parameters for a proper mechanical characterization of materials. Full article
(This article belongs to the Section Mathematical Models for Civil Engineering)
Show Figures

Figure 1

31 pages, 1153 KiB  
Article
Monetizing Environmental Impacts into Environmental Costs During Prefabricated Building Construction: A 5D BIM-Enabled Analysis
by Xian Gao, Xilong Chen, Kun Lu and Xueyuan Deng
CivilEng 2025, 6(3), 36; https://doi.org/10.3390/civileng6030036 - 2 Jul 2025
Viewed by 540
Abstract
Although prefabricated buildings offer environmental advantages, their construction process inevitably generates environmental impacts. However, current research on prefabricated buildings focuses on the environmental impact level, and there is a lack of intelligent tools for analyzing their spatial and temporal dimensions. Therefore, this study [...] Read more.
Although prefabricated buildings offer environmental advantages, their construction process inevitably generates environmental impacts. However, current research on prefabricated buildings focuses on the environmental impact level, and there is a lack of intelligent tools for analyzing their spatial and temporal dimensions. Therefore, this study develops a framework using 5D building information modeling (BIM) to monetize environmental impacts into environmental costs for prefabricated building construction. This framework includes defining boundaries and indicators, obtaining a resource inventory using the 5D BIM coding system, calculating environmental impact results, and converting environmental impacts into environmental costs. Taking a prefabricated substation as a case study, its environmental costs are 172.81 CNY/m2, with these costs caused by climate change accounting for the largest proportion (91.2%). This study unifies different environmental impacts into a single monetary form, providing stakeholders with intuitive indicators. It also expands 5D BIM applications from conventional costs to environmental costs, which can display their spatiotemporal changes. Full article
Show Figures

Figure 1

15 pages, 3155 KiB  
Article
Study on Bearing Characteristics of DMJ Group Pile Composite Foundation Under Embankment Loading
by Haining Wang, Yuhe Zhang, Yang Wang, Weizhe Feng, Jie Li, Kaixing Zhang, Yu Rong, Zhanyong Yao and Kai Yao
CivilEng 2025, 6(3), 35; https://doi.org/10.3390/civileng6030035 - 30 Jun 2025
Viewed by 294
Abstract
The Deep Cement Mixing Integrated Drilling, Mixing, and Jetting (DMJ) technique was innovatively developed by incorporating high-pressure jetting apertures into the mixing blades to enhance the bearing capacity of deep cement-mixed piles. In this study, the bearing characteristics of DMJ pile composite foundations [...] Read more.
The Deep Cement Mixing Integrated Drilling, Mixing, and Jetting (DMJ) technique was innovatively developed by incorporating high-pressure jetting apertures into the mixing blades to enhance the bearing capacity of deep cement-mixed piles. In this study, the bearing characteristics of DMJ pile composite foundations under embankment loading are investigated using numerical simulation. Through comparative simulations involving various pile configurations, the results demonstrate that DMJ pile composite foundations exhibit significantly enhanced settlement control compared to conventional deep mixing piles. Notably, under identical area replacement ratios, the use of DMJ piles reduces total foundation settlement by approximately 30%. Furthermore, the findings indicate that larger pile diameters and smaller spacing are particularly effective in minimizing settlement. In terms of load transfer efficiency, DMJ piles are capable of transmitting embankment loads to depths of up to 15 m, surpassing the 10 m transfer depth observed in conventional pile systems. An analysis of excess pore water pressure further reveals that DMJ piles promote more effective dissipation, highlighting their superior performance in maintaining foundation stability under embankment loading. Full article
(This article belongs to the Section Geotechnical, Geological and Environmental Engineering)
Show Figures

Figure 1

19 pages, 3656 KiB  
Article
Analytical and Numerical Methods for Estimating the Deformation Capacity of RC Shear Walls
by Konstantinos I. Christidis
CivilEng 2025, 6(3), 34; https://doi.org/10.3390/civileng6030034 - 28 Jun 2025
Viewed by 300
Abstract
The present research aims to the evaluation of the deformation capacity of existing reinforced concrete shear walls designed with past non-conforming seismic regulations. A refined analytical model (referred to as the Proposed Model) is presented for generating Load–displacement (P-d) curves for RC shear [...] Read more.
The present research aims to the evaluation of the deformation capacity of existing reinforced concrete shear walls designed with past non-conforming seismic regulations. A refined analytical model (referred to as the Proposed Model) is presented for generating Load–displacement (P-d) curves for RC shear walls. The model is applicable to medium-rise walls designed with or without modern seismic provisions and incorporates shear effects in both deformation and strength capacity. The application of the Proposed Model is assessed through comparison with numerical models implemented in the widely accepted OpenSees platform. Specifically, two types of elements are examined: the widely used flexural element Force-Based Beam-Column Element (FBE) and the Flexure-Shear Interaction Displacement-Based Beam-Column Element (FSI), which accounts for the interaction between flexure and shear. The results of both analytical and numerical approaches are compared with experimental data from four RC shear wall specimens reported in previous studies. Full article
(This article belongs to the Section Structural and Earthquake Engineering)
Show Figures

Figure 1

17 pages, 4222 KiB  
Article
Optimizing the Use of Fly Ash as Partial Replacement of Fine Aggregate and Cement in Portland Cement Concrete Mixes
by M. A. Karim, Youngguk Seo, Ibrahim Alamayreh and Stuart Suttle
CivilEng 2025, 6(3), 33; https://doi.org/10.3390/civileng6030033 - 20 Jun 2025
Viewed by 612
Abstract
This study is a preliminary investigation of the independent utilization of two types of fly ash (FA)–FA Type C and FA Type F-as partial replacement of fine aggregate (sand) and cement in Portland cement concrete (PCC) mixes. The main objective was to determine [...] Read more.
This study is a preliminary investigation of the independent utilization of two types of fly ash (FA)–FA Type C and FA Type F-as partial replacement of fine aggregate (sand) and cement in Portland cement concrete (PCC) mixes. The main objective was to determine an optimum substitution range for each type of FA that would offer well-performing concrete in terms of workability, compressive strength, and durability. To this end, multiple concrete batches were prepared, incorporating each type of FA at four different levels: 5%, 10%, 15%, and 20% by weight of fine aggregate replacement and 10%, 20%, 30%, and 40% by weight for cement replacement. Then, concrete samples (100 mm diameter × 200 mm tall cylinders) were cast from each batch and were moisture-cured for 7, 14, and 28 days prior to testing. The addition of FA contributed positively to the strength development at specific replacement levels: all percentages for both FA Type C and Type F for fine aggregate replacement and up to 30% FA content for both Type C and F for cement replacement, 10% for both FA Type C and Type F provided the higher strength for aggregate replacement, and 10–20% for both types of FA provided the higher strength for cement replacement. Furthermore, these additions of FA exhibited comparable workability and durability except for FA Type F, which did not exhibit comparable workability for aggregate replacement. FA Type C can be recommended for both early and long-term strength for fine aggregate replacement, whereas FA Type C is suggested to be used for early strength and Type F provides for long-term strength for cement replacement. Type C provides better durability and Type F provides better workability for cement replacement. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

28 pages, 909 KiB  
Article
Applications of UAV Technologies in Assessment of Transportation Infrastructure Systems
by Ahmad Akib Uz Zaman, Ahmed Abdelaty and Mohamed S. Yamany
CivilEng 2025, 6(2), 32; https://doi.org/10.3390/civileng6020032 - 18 Jun 2025
Viewed by 448
Abstract
As transportation infrastructure systems continue to expand, the demand for unmanned aerial vehicle (UAV) technologies in the assessment of urban infrastructure is expected to grow substantially, due to their strong potential for efficient data collection and post-processing. UAVs offer numerous advantages in infrastructure [...] Read more.
As transportation infrastructure systems continue to expand, the demand for unmanned aerial vehicle (UAV) technologies in the assessment of urban infrastructure is expected to grow substantially, due to their strong potential for efficient data collection and post-processing. UAVs offer numerous advantages in infrastructure assessment, including enhanced time and cost efficiency, improved safety, and the ability to capture high-quality data. Furthermore, integrating various data-collecting sensors enhances the versatility of UAVs, enabling the acquisition of diverse data types to support comprehensive infrastructure evaluations. Numerous post-processing software applications utilizing various structure-from-motion (SfM) techniques have been developed, significantly facilitating the assessment process. However, researchers’ efforts to find the potentialities of this technology will be in vain if its applications are not utilized effectively in the practical field. Therefore, this study aims to determine the adaptation condition of UAV technologies in different Department of Transportation (DOT) and Federal Highway Administration (FHWA) agencies to assess transportation infrastructure systems. This study also explores the quantitative analysis of benefits and challenges/barriers, expectations for every UAV and post-processing software, and the cutting-edge features that should be integrated with UAVs to effectively evaluate transportation infrastructure systems. A comprehensive survey form was distributed to all 50 DOTs and the FHWA, and 35 complete responses were recorded from 27 DOTs and the FHWA. The survey results show that 25 agencies currently use UAVs for roads or highways, and 23 DOTs for bridges, confirming these as the most commonly assessed infrastructure systems. The top benefits found in this study include safety, cost effectiveness, and time efficiency (mean ratings: 3.95–4.28), while weather, FAA regulations, and airspace restrictions are the main challenges. Respondents emphasize the need for longer flight times, better automation, and advanced data tools, underscoring growing adoption and highlighting the need to overcome technical, regulatory, and data privacy challenges for optimal UAV integration within transportation infrastructure systems management. Full article
Show Figures

Figure 1

20 pages, 2594 KiB  
Article
Plasticity, Flow Liquefaction, and Cyclic Mobility in Liquefiable Soils with Low to Moderate Plasticity
by Carmine P. Polito and James R. Martin
CivilEng 2025, 6(2), 31; https://doi.org/10.3390/civileng6020031 - 12 Jun 2025
Cited by 1 | Viewed by 1048
Abstract
Over the past several decades, extensive research has advanced the understanding of liquefaction in clean sands and sand–silt mixtures under seismic loading. However, the influence of plastic (i.e., clayey) fines on the liquefaction behavior of sandy soils remains less well understood. This study [...] Read more.
Over the past several decades, extensive research has advanced the understanding of liquefaction in clean sands and sand–silt mixtures under seismic loading. However, the influence of plastic (i.e., clayey) fines on the liquefaction behavior of sandy soils remains less well understood. This study investigates how the quantity and plasticity of fines affect both the susceptibility to liquefaction and the resulting failure mode. A series of stress-controlled cyclic triaxial tests were conducted on sand specimens containing varying proportions of non-plastic silt, kaolinite, and bentonite. Specimens were prepared at a constant relative density with fines content ranging from 0% to 37%. Two liquefaction modes were examined: flow liquefaction, characterized by sudden and large strains under undrained conditions, and cyclic mobility, which involves gradual strain accumulation without complete strength loss. The results revealed a clear relationship between soil plasticity and liquefaction mode. Specimens containing non-plastic fines or fines with a liquid limit (LL) below 20% and a plasticity index (PI) of 0 exhibited flow liquefaction. In contrast, specimens with LL > 20% and PI ≥ 7% consistently displayed cyclic mobility behavior. These findings help reconcile the apparent contradiction between laboratory studies, which often show increased liquefaction susceptibility with plastic fines, and field observations, where clayey soils frequently appear non-liquefiable. The study emphasizes the critical role of plasticity in determining liquefaction type, providing essential insight for seismic risk assessments and design practices involving fine-containing sandy soils. Full article
Show Figures

Graphical abstract

13 pages, 2529 KiB  
Article
Exploring the Potential of Lateritic Aggregates in Pervious Concrete: A Study on Mechanical Properties and Predictive Techniques
by Pushparaj A. Naik and Shriram Marathe
CivilEng 2025, 6(2), 30; https://doi.org/10.3390/civileng6020030 - 10 Jun 2025
Cited by 1 | Viewed by 576
Abstract
This study investigates the mechanical properties of pervious concrete incorporating river lateritic and quarry lateritic aggregates as sustainable alternatives to conventional aggregates. The research aims to evaluate the compressive strength, split tensile strength, and permeability of pervious concrete mixes with varying void ratios [...] Read more.
This study investigates the mechanical properties of pervious concrete incorporating river lateritic and quarry lateritic aggregates as sustainable alternatives to conventional aggregates. The research aims to evaluate the compressive strength, split tensile strength, and permeability of pervious concrete mixes with varying void ratios (20% and 24%) and aggregate sizes. The results indicate that pervious concrete containing quarry lateritic aggregates exhibits superior permeability due to its inherent porosity, while river lateritic aggregates provide relatively better compressive strength than quarry aggregates. However, both lateritic aggregates show lower mechanical strength than conventional pervious concrete. Additionally, Python-based predictive models employing multi-linear regression were developed to estimate compressive strength based on independent variables such as binder quantity, coarse aggregate content, water-to-cement ratio, and curing duration. The predictive models achieved R2 values of 0.69 for 7-day compressive strength and 0.82 for 28-day compressive strength, indicating strong predictive capabilities. This research highlights the potential of locally sourced materials in enhancing the sustainability of construction practices while offering valuable insights into the mechanical performance of pervious concrete and the utility of computational modeling for predicting concrete properties. Full article
Show Figures

Figure 1

16 pages, 3334 KiB  
Article
Burnt Building Material Carbonation Evaluation Using Primary Color Analysis
by Ali Alhakim, Shen-En Chen, Nicole L. Braxtan, Brett Tempest, Qiang Sun, Wala’a Almakhadmeh and Yuchun Zhang
CivilEng 2025, 6(2), 29; https://doi.org/10.3390/civileng6020029 - 23 May 2025
Viewed by 714
Abstract
When exposed to events such as fires or elevated temperatures, carbonation is an eventual outcome in cementitious building materials and can compromise the structural integrity of the material. Monitoring the pH levels in cement-based materials using color dyes, such as phenolphthalein, can offer [...] Read more.
When exposed to events such as fires or elevated temperatures, carbonation is an eventual outcome in cementitious building materials and can compromise the structural integrity of the material. Monitoring the pH levels in cement-based materials using color dyes, such as phenolphthalein, can offer insights into their chemical stability and the potential for early aging. These chemicals are traditionally used to detect carbonation depth in concrete, and recently, it has been suggested that they be applied to the concrete surface to determine the pH levels and the associated changes within these materials after heat treatment. This study utilizes image processing techniques to analyze the extent of fire damage by evaluating the primary color changes induced by phenolphthalein in cemented clay-based building materials. The primary color analysis can reduce the complexity in image processing, and while analyzing the color changes, it is found that the CMYK color model is superior to the RGB model for the cemented clay brick samples analyzed. The objective of this study is to develop rapid image processing techniques to automate the detection of carbonation in heat-treated cementitious materials. This study highlighted significant color transformations across different temperature exposures, providing valuable insights into the carbonation processes in burnt building materials. This study also identified the temperature range limitation (100 °C to 400 °C) of phenolphthalein indicators, which was not previously identified, and suggested the need for more robust carbonation indicators. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

37 pages, 7855 KiB  
Article
Disturbance Sensitivity of Proximity Construction in Subway Protection Zone
by Zhi-Qun Gong, Yong-Zhi Wang, Wei-Ke Zhou, Shao-Ming Liao, Yan-Qing Men and Song-Chao Lin
CivilEng 2025, 6(2), 28; https://doi.org/10.3390/civileng6020028 - 21 May 2025
Viewed by 1262
Abstract
The analysis of the impact of the construction of the subway protection zone on the adjacent subway tunnel has become the premise on which to ensure the safe operation of the tunnel. The need for expert members to carry out safety assessments based [...] Read more.
The analysis of the impact of the construction of the subway protection zone on the adjacent subway tunnel has become the premise on which to ensure the safe operation of the tunnel. The need for expert members to carry out safety assessments based on specific calculations to determine the impact of construction on the safety of protected tunnels is extremely inconvenient for safety management and significantly reduces management efficiency. This paper analyzes and qualitatively judges the influence range and disturbance size of pile foundation construction, shallow foundation engineering, and foundation pit excavation. Based on relevant research results from scholars and numerical simulation methods, quantitative analysis and comparison are performed on the parameter sensitivity of pile foundation engineering, shallow foundation engineering, and foundation pit engineering along the subway line, and the influence of multi-factor combination is studied and discussed to obtain the influence sensitivity of each factor. The results show that the increase in pile spacing can effectively reduce the pile group effect. The sensitivity of subway tunnel settlement displacement is mainly controlled by the settlement displacement value. The larger the settlement displacement is, the stronger the sensitivity is. The loaded pile foundation arranged along the direction of the subway tunnel has more obvious disturbance to the subway tunnel than that arranged perpendicular to the direction of the subway tunnel. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

17 pages, 3455 KiB  
Article
An Automated Safety Checking for Staircase Hazards on Construction Sites: A BIM Approach
by Shalaka Hire, Sayali Sandbhor and Kirti Ruikar
CivilEng 2025, 6(2), 27; https://doi.org/10.3390/civileng6020027 - 21 May 2025
Viewed by 1033
Abstract
Automation is revolutionizing a number of sectors, including construction, by bringing about important technological breakthroughs that increase productivity and efficiency. Automation in safety procedures is still scarce though. In India, the majority of safety procedures are still reactive, manual, and paper-based. This study [...] Read more.
Automation is revolutionizing a number of sectors, including construction, by bringing about important technological breakthroughs that increase productivity and efficiency. Automation in safety procedures is still scarce though. In India, the majority of safety procedures are still reactive, manual, and paper-based. This study is a component of a broader research project on automated safety screening for fall risks enabled by BIM. It entails codification of OSHA rules to perform safety checks, placing corrective actions into location, and generating reports in a virtual environment. As part of the broader risk lifecycle, these tasks are typically completed on-site during the various stages of construction. This study, on the other hand, executes these steps in a virtual environment in the preconstruction phase. The model has been assessed in a pilot study in India and was developed especially to address fall hazards from staircases. Through early hazard identification and mitigation, the system assists professionals in enhancing overall safety performance. Full article
Show Figures

Figure 1

Back to TopTop