Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (348)

Search Parameters:
Journal = Catalysts
Section = Nanostructured Catalysts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3442 KiB  
Article
Generating Strongly Basic Sites on C/Fe3O4 Core–Shell Structure: Preparation of Magnetically Responsive Mesoporous Solid Strong Bases Catalysts
by Tiantian Li, Xiaowen Li, Guangxia Shi, Yajun Gao, Qiang Guan, Guodong Kang, Yizhi Zeng and Dingming Xue
Catalysts 2025, 15(8), 743; https://doi.org/10.3390/catal15080743 - 4 Aug 2025
Abstract
Novel solid strong base catalysts have attracted considerable attention in fine chemical synthesis owing to their unique advantages. In this work, a magnetic solid strong base catalyst with controlled morphology and porous carbon shell structure was successfully fabricated using low-cost carbon sources combined [...] Read more.
Novel solid strong base catalysts have attracted considerable attention in fine chemical synthesis owing to their unique advantages. In this work, a magnetic solid strong base catalyst with controlled morphology and porous carbon shell structure was successfully fabricated using low-cost carbon sources combined with Fe3O4 nanoparticles. KOH was used to introduce strong basic sites through ultrasonic-assisted impregnation. The carbon shell acted as a protective barrier to suppress detrimental interactions between basic species and the support while maintaining structural integrity after high-temperature activation without morphology degradation. The obtained K/C/Fe3O4 catalyst exhibits excellent catalytic performance and near-ideal superparamagnetic behavior. In the transesterification reaction for dimethyl carbonate (DMC) synthesis, the K/C/Fe3O4 catalyst provides superior performance than conventional solid base catalysts and maintains stable activity over six consecutive cycles. Notably, efficient solid–liquid separation was achieved successfully via magnetic separation, demonstrating practical applicability for the K/C/Fe3O4 catalyst. Full article
(This article belongs to the Special Issue Synthesis and Catalytic Applications of Advanced Porous Materials)
Show Figures

Graphical abstract

38 pages, 6778 KiB  
Review
Challenges and Opportunities for g-C3N4-Based Heterostructures in the Photodegradation of Environmental Pollutants
by Eduardo Estrada-Movilla, Jhonathan Castillo-Saenz, Benjamín Valdez-Salas, Álvaro Ortiz-Pérez, Ernesto Beltrán-Partida, Jorge Salvador-Carlos and Esneyder Puello-Polo
Catalysts 2025, 15(7), 653; https://doi.org/10.3390/catal15070653 - 4 Jul 2025
Viewed by 638
Abstract
Graphitic carbon nitride (g-C3N4) is emerging as one of the most promising non-metallic semiconductors for the degradation of pollutants in water by photocatalytic processes. Its exceptional reduction–oxidation (redox) potentials and adequate band gap of approximately 2.7 eV give it [...] Read more.
Graphitic carbon nitride (g-C3N4) is emerging as one of the most promising non-metallic semiconductors for the degradation of pollutants in water by photocatalytic processes. Its exceptional reduction–oxidation (redox) potentials and adequate band gap of approximately 2.7 eV give it the ability to absorb in the visible light range. However, the characteristic sensitivity to light absorption is limited, leading to rapid recombination of electron–hole pairs. Therefore, different strategies have been explored to optimize this charge separation, among which the formation of heterostructures based on g-C3N4 is highlighted. This review addresses recent advances in photocatalysis mediated by g-C3N4 heterostructures, considering the synthesis methods enabling the optimization of the morphology and active interface of these materials. Next, the mechanisms of charge transfer are discussed in detail, with special emphasis on type II, type S, and type Z classifications and their influence on the efficiency of photodegradation. Subsequently, the progress in the application of these photocatalysts for the degradation of water pollutants, such as toxic organic dyes, pharmaceutical pollutants, pesticides, and per- and polyfluoroalkyl substances (PFAS), are analyzed, highlighting both experimental advances and remaining challenges. Finally, future perspectives oriented towards the optimization of heterostructures, the efficiency of synthesis methods, and the practical application of these in photocatalytic processes for environmental remediation. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts, 3rd Edition)
Show Figures

Figure 1

19 pages, 5983 KiB  
Article
Fabrication of CoP@P, N-CNTs-Deposited Nickel Foam for Energy-Efficient Hydrogen Generation via Electrocatalytic Urea Oxidation
by Hany M. Youssef, Maged N. Shaddad, Saba A. Aladeemy and Abdullah M. Aldawsari
Catalysts 2025, 15(7), 652; https://doi.org/10.3390/catal15070652 - 4 Jul 2025
Viewed by 458
Abstract
The simultaneous generation of hydrogen fuel and wastewater remediation via electrocatalytic urea oxidation has emerged as a promising approach for sustainable energy and environmental solutions. However, the practical application of this process is hindered by the limited active sites and high charge-transfer resistance [...] Read more.
The simultaneous generation of hydrogen fuel and wastewater remediation via electrocatalytic urea oxidation has emerged as a promising approach for sustainable energy and environmental solutions. However, the practical application of this process is hindered by the limited active sites and high charge-transfer resistance of conventional anode materials. In this work, we introduce a novel CoP@P, N-CNTs/NF electrocatalyst, fabricated through a facile one-step thermal annealing technique. Comprehensive characterizations confirm the successful integration of CoP nanoparticles and phosphorus/nitrogen co-doped carbon nanotubes (P, N-CNTs) onto nickel foam, yielding a unique hierarchical structure that offers abundant active sites and accelerated electron transport. As a result, the CoP@P, N-CNTs/NF electrode achieves outstanding urea oxidation reaction (UOR) performance, delivering current densities of 158.5 mA cm−2 at 1.5 V and 232.95 mA cm−2 at 1.6 V versus RHE, along with exceptional operational stability exceeding 50 h with negligible performance loss. This innovative, multi-element-doped electrode design marks a significant advancement in the field, enabling highly efficient UOR and energy-efficient hydrogen production. Our approach paves the way for scalable, cost-effective solutions that couple renewable energy generation with effective wastewater treatment. Full article
Show Figures

Figure 1

14 pages, 1297 KiB  
Article
Insights into Ball Milling for the Production of Highly Active Zeolites for Catalytic Cracking of VGO
by Petr Kuznetsov, Vladislav Malyavin and Konstantin Dement’ev
Catalysts 2025, 15(6), 596; https://doi.org/10.3390/catal15060596 - 16 Jun 2025
Viewed by 491
Abstract
This research systematically investigates the influence of high-energy ball-milling (BM) parameters on the acidic and textural properties of zeolite Y. Among the BM parameters, the milling time (MT) exerted a more significant influence on the zeolite degradation than milling speed (MS), primarily affecting [...] Read more.
This research systematically investigates the influence of high-energy ball-milling (BM) parameters on the acidic and textural properties of zeolite Y. Among the BM parameters, the milling time (MT) exerted a more significant influence on the zeolite degradation than milling speed (MS), primarily affecting particle size and crystallinity. Milling produced nanozeolites with particle sizes ranging from 210 to 430 nm, and their activity was tested in the catalytic cracking of vacuum gas oil (VGO). The highest catalytic activity was observed for the zeolite with a particle size of 397 nm and a crystallinity of 75.9%: the VGO conversion was 69.0%, and the gasoline fraction yield was 33.9%, compared to the parent zeolite’s 62.7% and 22.1%, respectively. It was found that the activity of milled zeolites in catalytic cracking is determined by the accessibility of acid sites, which can be controlled by forming an optimal micro-mesoporous structure. Full article
(This article belongs to the Collection Nanotechnology in Catalysis)
Show Figures

Graphical abstract

14 pages, 2373 KiB  
Article
Isomeric Anthraquinone-Based Covalent Organic Frameworks for Boosting Photocatalytic Hydrogen Peroxide Generation
by Shengrong Yan, Songhu Shi, Wenhao Liu, Fang Duan, Shuanglong Lu and Mingqing Chen
Catalysts 2025, 15(6), 556; https://doi.org/10.3390/catal15060556 - 3 Jun 2025
Viewed by 580
Abstract
Utilizing isomeric monomers to construct covalent organic frameworks (COFs) could easily and precisely regulate their structure in order to raise the photocatalytic performance towards two-step single-electron oxygen reduction reaction (ORR) to hydrogen peroxide (H2O2). Herein, isomeric anthraquinone (AQ)-based COFs [...] Read more.
Utilizing isomeric monomers to construct covalent organic frameworks (COFs) could easily and precisely regulate their structure in order to raise the photocatalytic performance towards two-step single-electron oxygen reduction reaction (ORR) to hydrogen peroxide (H2O2). Herein, isomeric anthraquinone (AQ)-based COFs (designated as 1,4-DQTP and 2,6-DQTP) were successfully fabricated through a simple yet effective one-step solvothermal synthesis approach, only utilizing isomeric monomers with alterations in the catalysts. Specifically, the black 1,4-DQTP displayed a high photocatalytic H2O2 production rate of 865.4 µmol g−1 h−1, with 2.44-fold enhancement compared to 2,6-DQTP (354.7 µmol g−1 h−1). Through a series of experiments such as electron paramagnetic resonance (EPR) spectroscopy and the free radical quenching experiments, as well as density functional theory (DFT) calculations, the photocatalytic mechanism revealed that compared with 2,6-DQTP, 1,4-DQTP possessed a stronger and broader visible light absorption capacity, and thus generated more photogenerated e-h+ pairs. Ultimately, more photogenerated electrons were enriched on the AQ motif via a more apparent electron push–pull effect, which provided a stable transfer channel for e and thus facilitated the generation of superoxide anion radical intermediates (•O2). On the other hand, the negative charge region of AQ’s carbonyl group evidently overlapped with that of TP, indicating that 1,4-DQTP had a higher chemical affinity for the uptake of protons, and thus afforded a more favorable hydrogen donation for H+. As a consequence, the rational design of COFs utilizing isomeric monomers could synergistically raise the proton-coupled electron transfer (PCET) kinetics for two-step single-electron ORR to H2O2 under visible light illumination. This work provides some insights for the design and fabrication of COFs through rational isomer engineering to modulate their photocatalytic activities. Full article
(This article belongs to the Special Issue Nanostructured Photocatalysts for Hydrogen Production)
Show Figures

Graphical abstract

19 pages, 4832 KiB  
Article
Research on Dechlorination of Polyvinyl Chloride by Co-Hydrothermal Treatment with Lignin and Exploration of Mechanism
by Ruoxin Wang, Xingyu Li, Yichen Ji, Mingzhou Yang, Jiayi Rui and Xiaoya Guo
Catalysts 2025, 15(6), 536; https://doi.org/10.3390/catal15060536 - 27 May 2025
Viewed by 570
Abstract
This study proposes a co-hydrothermal method for the dechlorination of polyvinyl chloride (PVC) and the preparation of hydrothermal carbon. During the co-hydrothermal process, lignin was mixed with PVC, with ammonium carbonate serving as a supplementary additive. The effects of hydrothermal temperature, reaction time, [...] Read more.
This study proposes a co-hydrothermal method for the dechlorination of polyvinyl chloride (PVC) and the preparation of hydrothermal carbon. During the co-hydrothermal process, lignin was mixed with PVC, with ammonium carbonate serving as a supplementary additive. The effects of hydrothermal temperature, reaction time, and ammonium carbonate concentration on the dechlorination efficiency of PVC and the pH value of the system are discussed. The experimental results showed that the incorporation of lignin and ammonium nitrate manifested a remarkable synergistic effect, which substantially augmented the dechlorination process of polyvinyl chloride (PVC). Under optimal conditions (220 °C, 240 min), the dechlorination efficiency of PVC reached 99.43%. The hydrothermal carbon derived from the co-hydrothermal process exhibited a 73.9% higher calorific value (31.07 MJ/kg) compared with that obtained from pure PVC (17.87 MJ/kg). A physicochemical characterization demonstrated that lignin effectively enhanced the uniform dispersion of PVC particles during hydrothermal treatment. Concurrently, ammonium carbonate increased the solution’s alkalinity, facilitating a nucleophilic attack by OH on C-Cl bonds and accelerating dechlorination through intensified substitution reactions. Full article
(This article belongs to the Special Issue Nanostructured Materials for Photocatalysis and Electrocatalysis)
Show Figures

Graphical abstract

17 pages, 2309 KiB  
Article
Cerium-Doped Titanium Dioxide (CeT) Hybrid Material, Characterization and Spiramycin Antibiotic Photocatalytic Activity
by Hayat Khan
Catalysts 2025, 15(6), 512; https://doi.org/10.3390/catal15060512 - 23 May 2025
Viewed by 635
Abstract
Recently, aquatic life and human health are seriously threatened by the release of pharmaceutical drugs. For a sustainable ecosystem, emerging contaminants like antibiotics must be removed from drinking water and wastewater. To address this issue pure and cerium-doped titanium dioxide (CeT) nanoparticles were [...] Read more.
Recently, aquatic life and human health are seriously threatened by the release of pharmaceutical drugs. For a sustainable ecosystem, emerging contaminants like antibiotics must be removed from drinking water and wastewater. To address this issue pure and cerium-doped titanium dioxide (CeT) nanoparticles were produced with stable tetragonal (anatase) lattices by room temperature sol–gel method and employing the inorganic titanium oxysulfate (TiOSO4) as titanium precursor. The structural analysis by X-ray diffraction (XRD) revealed that at calcination temperature of 600 °C all (un and doped) powders were composed of crystalline anatase TiO2 with the crystallite sizes in the range of 13.5–11.3 nm. UV–vis DRS spectroscopy revealed that the most narrowed bandgap value of 2.75 eV was calculated for the 0.5CeT sample containing the optimum dopant content of 0.5 weight ratio. X-ray spectroscopy (XPS) confirmed the presence of the impurity level Ce3+/Ce4+, which became responsible for the decrease in bandgap as well as for the photoinduced carriers recombination rate. Photocatalytic tests showed that the maximum decomposition of the model spiramycin (SPR) antibiotic pollutant was 88.0% and 77.0%, under UV and visible light, respectively. According to the reaction kinetics, SPR decomposition adhered to the Langmuir–Hinshelwood (L–H) model and via ROS experiments mainly hydroxyl radicals (OH) followed by photogenerated holes (h+s) become responsible for the pollutant degradation. In summary, this study elaborates on the role of xCeT nanoparticles as an efficient photocatalyst for the elimination of organic contaminants in wastewater. Full article
Show Figures

Graphical abstract

18 pages, 4175 KiB  
Article
Co-Doped Ni@Ni(OH)2 Core–Shell Catalysts for Dual-Function Water and Urea Oxidation
by Saba A. Aladeemy, Maged N. Shaddad, Talal F. Qahtan, Abdulrahman I. Alharthi, Kamal Shalabi, Abdullah M. Al-Mayouf and Prabhakarn Arunachalam
Catalysts 2025, 15(5), 474; https://doi.org/10.3390/catal15050474 - 12 May 2025
Viewed by 630
Abstract
Crystalline–amorphous core–shell-like heterostructures have attracted considerable attention in electrocatalysis due to their unique electronic and structural properties; however, tuning the surface composition of the amorphous shell remains a major challenge. In this work, we report a simple, low-cost, one-pot hydrazine-assisted chemical deposition method [...] Read more.
Crystalline–amorphous core–shell-like heterostructures have attracted considerable attention in electrocatalysis due to their unique electronic and structural properties; however, tuning the surface composition of the amorphous shell remains a major challenge. In this work, we report a simple, low-cost, one-pot hydrazine-assisted chemical deposition method for synthesizing a series of Co-doped Ni@Ni(OH)2 catalysts with a crystalline Ni core and an amorphous Ni(OH)2 shell. Among the prepared catalysts, the sample containing 10 wt.% cobalt (denoted as b-Co-doped Ni@Ni(OH)2) exhibited the highest electrocatalytic activity toward both the oxygen evolution reaction (OER) and the urea oxidation reaction (UOR). In 1.0 M KOH, the b-Co-doped Ni@Ni(OH)2 catalyst achieved a 40 mV lower overpotential at 50 mA·cm−2 compared to undoped Ni@Ni(OH)2 for the OER. For the UOR in 0.33 M urea/1.0 M KOH, it delivered approximately twice the anodic current density relative to the undoped sample, along with improved reaction kinetics as evidenced by a Tafel slope of 70.7 mV·dec−1. This performance enhancement is attributed to the optimized core–shell-like architecture, cobalt doping-induced electronic modulation, increased electrochemically active surface area, and improved charge transfer efficiency. Overall, this study demonstrates a promising and scalable strategy for designing advanced Ni-based bifunctional catalysts for sustainable energy conversion and wastewater treatment applications. Full article
Show Figures

Figure 1

20 pages, 5814 KiB  
Article
Interfacial Engineering of 0D/2D Cu2S/Ti3C2 for Efficient Photocatalytic Synchronous Removal of Tetracycline and Hexavalent Chromium
by Zengyu Wang, Zhiwei Lv, Bowen Zeng, Fafa Wang, Xiaoyu Yang and Ping Mao
Catalysts 2025, 15(5), 458; https://doi.org/10.3390/catal15050458 - 7 May 2025
Viewed by 502
Abstract
With the advancement of industrialization and urbanization, the arbitrary emission of sewage containing TC-tetracycline and hexavalent chromium (Cr(VI)) possesses a serious threat to both ecological–environment and public health. However, developing a low-toxicity and cost-effective photocatalyst for the simultaneous elimination of these two pollutants [...] Read more.
With the advancement of industrialization and urbanization, the arbitrary emission of sewage containing TC-tetracycline and hexavalent chromium (Cr(VI)) possesses a serious threat to both ecological–environment and public health. However, developing a low-toxicity and cost-effective photocatalyst for the simultaneous elimination of these two pollutants remains a formidable task. This study devised a photocatalytic sample (CSMX-X) comprised of Copper(I) sulfide (Cu2S) and Titanium carbide (Ti3C2) through a simple solvothermal method and applied it to remove TC-tetracycline and Cr(VI). The CSMX-X not only increases the specific surface area from 2.7 m2·g−1 for pure Cu2S to 30.65 m2·g−1, but also effectively addresses the problems of insufficient separation efficiency of photogenerated holes and electrons and low carrier density. The photocatalytic efficiency for an individual pollutant (10 mg·L−1 Cr(VI) or 20 mg·L−1 TC-tetracycline) can reach more than 90%, while the removal efficiency for mixed Cr(VI) and TC-tetracycline pollutants only decreases by 12%. Meanwhile, copper leaching levels under different pH conditions (0.032–0.676 mg·L−1) are considerably lower than the 2 mg·L−1 safety standard set by the World Health Organization. This study provides valuable perspectives for constructing Cu2S-based composite photocatalysts to remove multiple contaminants in real aquatic environments. Full article
(This article belongs to the Special Issue Synthesis and Catalytic Applications of Advanced Porous Materials)
Show Figures

Figure 1

24 pages, 5828 KiB  
Article
Aluminum Microspheres Coated with Copper and Nickel Nanoparticles: Catalytic Activity in the Combustion of Ammonium Perchlorate
by Yi Wang and Xiaolan Song
Catalysts 2025, 15(4), 354; https://doi.org/10.3390/catal15040354 - 4 Apr 2025
Cited by 1 | Viewed by 619
Abstract
This study employed an in-situ displacement technique to eliminate the oxide layer present on the surface of micron aluminum (μAl). Utilizing the exposed metallic aluminum, we facilitated the displacement of copper and nickel nanoparticles. These nanoparticles, approximately 90 nanometers in size, were densely [...] Read more.
This study employed an in-situ displacement technique to eliminate the oxide layer present on the surface of micron aluminum (μAl). Utilizing the exposed metallic aluminum, we facilitated the displacement of copper and nickel nanoparticles. These nanoparticles, approximately 90 nanometers in size, were densely adhered to the surface of the μAl particles. The elemental composition and structural characteristics of the composite particles were meticulously analyzed using Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS), Vibrating Sample Magnetometry (VSM), and X-Ray Photoelectron Spectroscopy (XPS). Subsequently, thermal analysis and combustion performance assessments were conducted to elucidate the catalytic effects of the composite particles ([nCu+nNi]/μAl) on the thermal decomposition and combustion efficiency of ammonium perchlorate (AP). The results elucidate that the nanoparticles immobilized on the surface of μAl are unequivocally metallic copper (nCu) and metallic nickel (nNi). Following the application of nCu and nNi, the oxidation reaction of μAl accelerated by nearly 400 °C; furthermore, the incorporation of [nCu+nNi]/μAl raised the thermal decomposition peak temperature of AP by approximately 130 °C. Notably, the thermal decomposition activation energy of raw AP reached as high as 241.7 kJ/mol; however, upon doping with [nCu+nNi]/μAl, this activation energy significantly diminished to 161.4 kJ/mol. The findings of the combustion experiments revealed that both the raw AP and the AP modified solely with μAl were impervious to ignition via the hot wire method. In contrast, the AP doped with [nCu+nNi]/μAl demonstrated pronounced combustion characteristics, achieving an impressive peak flame temperature of 1851 °C. These results substantiate that the nCu and nNi, when deposited on the surface of μAl, not only facilitate the oxidation and combustion of μAl but also significantly enhance the thermal decomposition and combustion dynamics of ammonium perchlorate. Consequently, the [nCu+nNi]/μAl composite shows considerable promise for application in high-burn-rate hydroxyl-terminated polybutadiene (HTPB) propellants. Full article
(This article belongs to the Collection Nanotechnology in Catalysis)
Show Figures

Figure 1

21 pages, 4523 KiB  
Article
ZIF-67-Derived Co−N−C Supported Ni Nanoparticles as Efficient Recyclable Catalyst for Hydrogenation of 4-Nitrophenol
by Juti Rani Deka, Diganta Saikia, Jia-Cheng Lin, Wan-Yu Chen, Hsien-Ming Kao and Yung-Chin Yang
Catalysts 2025, 15(4), 343; https://doi.org/10.3390/catal15040343 - 1 Apr 2025
Viewed by 828
Abstract
In this study, a novel, highly efficient, environment friendly, and low-cost nanocatalyst, denoted as Ni(x)@Co−N−C, was successfully developed by encapsulating Ni nanoparticles into N-doped porous carbon derived from ZIF-67. A variety of techniques including powder X-ray diffraction (XRD), nitrogen adsorption/desorption, scanning electron microscopy [...] Read more.
In this study, a novel, highly efficient, environment friendly, and low-cost nanocatalyst, denoted as Ni(x)@Co−N−C, was successfully developed by encapsulating Ni nanoparticles into N-doped porous carbon derived from ZIF-67. A variety of techniques including powder X-ray diffraction (XRD), nitrogen adsorption/desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrometer (XPS) were used to characterize the prepared materials. The TEM images reveal that the nanoparticles were distributed homogeneously in the carbon support. The N atoms in the carbon support serve as the sites for the nucleation and uniform growth of Ni nanoparticles. The catalyst was used for the degradation of environmentally harmful 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Among all the catalysts investigated, Ni(10)@Co-N-C exhibited the highest catalytic activity for the hydrogenation of 4-NP, with a specific reaction rate of 6.1 × 10−3 s−1, activity parameter of 31 s−1g−1, and turn over frequency (TOF) of 1.78 × 1019 molecules gmetal−1s−1. On the other hand, the specific reaction rate and TOF value were 1.7 × 10−3 s−1 and 6.96 × 1018 molecules gmetal−1s−1, respectively, for Co−N−C. This suggests that Ni(10)@Co−N−C is about three times more catalytically active than the Co−N−C catalyst. The superb activity of Ni(10)@Co−N−C in comparison to Co−N−C can be ascribed to the homogeneous dispersion of small-sized Ni nanoparticles, the interconnected three-dimensional porous arrangement of the support Co−N−C, the presence of N atoms in the carbon framework that stabilize metal nanoparticles, and the synergistic electronic effect between Ni and Co. The Ni(10)@Co−N−C catalyst maintained consistent catalytic activity over multiple cycles, which suggests that porous N-containing carbon support can effectively prevent aggregation and leaching of metal nanoparticles. The ICP-AES analysis of the recycled Ni(10)@Co−N−C revealed a slight reduction in metal content compared to the fresh sample, suggesting almost negligible leaching of metal nanoparticles. Full article
Show Figures

Graphical abstract

20 pages, 4861 KiB  
Article
Improving the Catalytic Selectivity of Reverse Water–Gas Shift Reaction Catalyzed by Ru/CeO2 Through the Addition of Yttrium Oxide
by Alfredo Solís-García, Karina Portillo-Cortez, David Domínguez, Sergio Fuentes-Moyado, Jorge N. Díaz de León, Trino A. Zepeda and Uriel Caudillo-Flores
Catalysts 2025, 15(4), 301; https://doi.org/10.3390/catal15040301 - 23 Mar 2025
Cited by 1 | Viewed by 1047
Abstract
This study reports the synthesis, characterization, and catalytic performance of a series of catalysts of Ru supported on CeO2-Y2O3 composites (Ru/CeYX; X = 0, 33, 66, and 100 wt.% Y2O3) for CO2 hydrogenation. [...] Read more.
This study reports the synthesis, characterization, and catalytic performance of a series of catalysts of Ru supported on CeO2-Y2O3 composites (Ru/CeYX; X = 0, 33, 66, and 100 wt.% Y2O3) for CO2 hydrogenation. Supported material modification (Y2O3-CeO2), by the Y2O3 incorporation, allowed a change in selectivity from methane to RWGS of the CO2 hydrogenation reaction. This change in selectivity is correlated with the variation in the physicochemical properties caused by Y2O3 addition. X-ray diffraction (XRD) analysis confirmed the formation of crystalline fluorite-phase CeO2 and α-Y2O3. High-resolution transmission electron microscopy (HR-TEM) and energy-dispersive X-ray spectroscopy (EDS) elemental mapping revealed the formation of a homogeneous CeO2-Y2O3 nanocomposite. As the Y2O3 content increased, the specific surface area, measured by BET, showed a decreasing trend from 106.3 to 51.7 m2 g−1. X-ray photoelectron spectroscopy (XPS) of Ce3d indicated a similar Ce3+/Ce4+ ratio across all CeO2-containing materials, while the O1s spectra showed a reduction in oxygen vacancies with increasing Y2O3 content, which is attributed to the decreased surface area upon composite formation. Catalytically, the addition of Y2O3 influenced both conversion and selectivity. CO2 conversion decreased with increasing Y2O3 content, with the lowest conversion observed for Ru/CeY100. Regarding selectivity, methane was the dominant product for Ru/CeY0 (pure CeO2), while CO was the main product for Ru/CeY33, Ru/CeY66, and Ru/CeY100, indicating a shift towards the reverse water–gas shift (RWGS) reaction. The highest RWGS reaction rate was observed with the Ru/CeY33 catalyst under all tested conditions. The observed differences in conversion and selectivity are attributed to a reduction in active sites due to the decrease in surface area and oxygen vacancies, both of which are important for CO2 adsorption. In order to verify the surface species catalytically active for RWGS, the samples were characterized by FTIR spectroscopy under reaction conditions. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 5221 KiB  
Article
Efficient Hydrogenolysis of Lignin into Aromatic Monomers over N-Doped Carbon Supported Co and Dual-Phase MoxC Nanoparticles
by Lei Chen, Chuanxin Cao, Kai Chang, Yuying Zhao, Dongliang Hua, Laizhi Sun, Shuangxia Yang, Zhiguo Dong and Tianjin Li
Catalysts 2025, 15(4), 297; https://doi.org/10.3390/catal15040297 - 21 Mar 2025
Viewed by 652
Abstract
The key to selectively cleaving C–O bonds in lignin to produce high-value aromatic chemicals lies in the development of efficient and stable catalysts. In this study, a heterostructured catalyst with N-doped carbon-supported Co and dual-phase MoxC nanoparticles was prepared via the [...] Read more.
The key to selectively cleaving C–O bonds in lignin to produce high-value aromatic chemicals lies in the development of efficient and stable catalysts. In this study, a heterostructured catalyst with N-doped carbon-supported Co and dual-phase MoxC nanoparticles was prepared via the in situ pyrolysis of a Co–Mo–N precursor. The dual-phase α-MoC/β-Mo2C heterostructure is adjusted by varying the Co:Mo ratio to affect the structure and electronic properties of the catalyst. The heterostructures bring about enhanced electron transfer from Co to Mo, which promotes hydrogen dissociation over the Co sites, significantly improving the catalyst’s hydrogenolysis activity and stability. The optimal catalyst with Co1MoxC@NC exhibits excellent hydrogenolysis activity; under the optimal reaction conditions (260 °C, 1 MPa H2, 3 h), the yield of aromatic monomers reaches 28.5%. Such prominent performance not only benefits from the numerous α-MoC/β-Mo2C hetero-interfaces that offer abundant active sites for hydrogen dissociation, but also should be ascribed to the strong synergistic effect between Co and Mo. Full article
(This article belongs to the Special Issue Novel Nanocatalysts for Sustainable and Green Chemistry)
Show Figures

Graphical abstract

31 pages, 5746 KiB  
Review
Development of Electrochemical Water Splitting with Highly Active Nanostructured NiFe Layered Double Hydroxide Catalysts: A Comprehensive Review
by Aviraj M. Teli, Sagar M. Mane, Sonali A. Beknalkar, Rajneesh Kumar Mishra, Wookhee Jeon and Jae Cheol Shin
Catalysts 2025, 15(3), 293; https://doi.org/10.3390/catal15030293 - 20 Mar 2025
Cited by 1 | Viewed by 2203
Abstract
Electrochemical water splitting is a feasible and effective method for attaining hydrogen, offering a mechanism for renewable energy solutions to combat the world’s energy crises due to the scarcity of fossil fuels. Evidently, the viability and stability of the electrocatalysts are fundamental to [...] Read more.
Electrochemical water splitting is a feasible and effective method for attaining hydrogen, offering a mechanism for renewable energy solutions to combat the world’s energy crises due to the scarcity of fossil fuels. Evidently, the viability and stability of the electrocatalysts are fundamental to the electrochemical water-splitting process. However, the net efficiency of this process is noticeably hindered by the kinetic drawbacks related to the OER. Hence, NiFe LDH has been widely used as a highly efficient OER and HER catalyst material due to its unique nanostructure, tunable composition, and favorable electronic structure. This review offers a systematic analysis of the latest progress in the fabrication of functional NiFe LDH catalysts and associated fabrication strategies, structure optimizations, and performance improvements. Special emphasis is given to understanding the role of nanostructure engineering in increasing active site accessibility, enhancing the effectiveness of subsequent electron transfer, and boosting the intrinsic catalytic activity for HER and OER. Moreover, we discuss the influence of doping, defects, and the formation of heterostructures with other materials on the OER and HER activities of NiFe LDHs. Additional accounts of basic structures and the OER and HER catalytic activities are provided, along with an enhanced theoretical understanding based on DFT studies on the NiFe LDH. Moreover, the limitations and potential developments of the work focus on the need for existing synthesis approaches, the stability of the NiFe LDH catalysts, and their insertion into working electrochemical processes. This review is a comprehensive analysis of the current state of research and developments in the use of NiFe LDH catalysts for the electrochemical water-splitting process to foster improved development of sustainable hydrogen sources in the future. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electrocatalytic Applications)
Show Figures

Graphical abstract

17 pages, 2578 KiB  
Article
Sulfur-Doped CoFe/NF Catalysts for High-Efficiency Electrochemical Urea Oxidation and Hydrogen Production: Structure Optimization and Performance Enhancement
by Sirong Li, Lang Yao, Zhenlong Wang, Zhonghe Xu and Xuechun Xiao
Catalysts 2025, 15(3), 285; https://doi.org/10.3390/catal15030285 - 18 Mar 2025
Viewed by 850
Abstract
In this study, a sulfur-doped cobalt–iron catalyst (CoFeS/NF) was synthesized on a nickel foam (NF) substrate via a facile one-step electrodeposition method, and its performance in urea electrolysis for hydrogen production was systematically investigated. Sulfur doping induced significant morphology optimization, forming a highly [...] Read more.
In this study, a sulfur-doped cobalt–iron catalyst (CoFeS/NF) was synthesized on a nickel foam (NF) substrate via a facile one-step electrodeposition method, and its performance in urea electrolysis for hydrogen production was systematically investigated. Sulfur doping induced significant morphology optimization, forming a highly dispersed nanosheet structure, which enhanced the specific surface area increase by 1.9 times compared with the undoped sample, exposing abundant active sites. Meanwhile, the introduction of sulfur facilitated electron redistribution at the surface modulated the valence states of nickel and cobalt, promoted the formation of high-valence Ni3+/Co3+, optimized the adsorption energy of the reaction intermediates, and reduced the charge transfer resistance. Electrochemical evaluations revealed that CoFeS/NF achieves a current density of 10 mA cm−2 at a remarkably low potential of 1.18 V for the urea oxidation reaction (UOR), outperforming both the undoped catalyst (1.24 V) and commercial RuO2 (1.35 V). In addition, the catalyst also exhibited excellent catalytic activity and long-term stability in the total urea decomposition process, which was attributed to the amorphous structure and the synergistic enhancement of corrosion resistance by sulfur doping. This study provides a new idea for the application of sulfur doping strategy in the design of multifunctional electrocatalysts, which promotes the coupled development of urea wastewater treatment and efficient hydrogen production technology. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop