Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (486)

Search Parameters:
Authors = Yue Meng

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10446 KiB  
Article
Transient Vortex Dynamics in Tip Clearance Flow of a Novel Dishwasher Pump
by Chao Ning, Yalin Li, Haichao Sun, Yue Wang and Fan Meng
Machines 2025, 13(8), 681; https://doi.org/10.3390/machines13080681 - 2 Aug 2025
Viewed by 189
Abstract
Blade tip leakage vortex (TLV) is a critical phenomenon in hydraulic machinery, which can significantly affect the internal flow characteristics and deteriorate the hydraulic performance. In this paper, the blade tip leakage flow and TLV characteristics in a novel dishwasher pump were investigated. [...] Read more.
Blade tip leakage vortex (TLV) is a critical phenomenon in hydraulic machinery, which can significantly affect the internal flow characteristics and deteriorate the hydraulic performance. In this paper, the blade tip leakage flow and TLV characteristics in a novel dishwasher pump were investigated. The correlation between the vorticity distribution in various directions and the leakage vortices was established within a rotating coordinate system. The results show that the TLV in a composite impeller can be categorized into initial and secondary leakage vortices. The initial leakage vortex originates from the evolution of two corner vortices that initially form at different locations within the blade tip clearance. This vortex induces pressure fluctuations at the impeller inlet; its shedding is identified as the primary contributor to localized energy loss within the flow passage. These findings provide insights into TLVs in complex pump geometries and provide solutions for future pump optimization strategies. Full article
Show Figures

Figure 1

18 pages, 1519 KiB  
Article
Static and Vibration Analysis of Imperfect Thermoelastic Laminated Plates on a Winkler Foundation
by Jiahuan Liu, Yunying Zhou, Yipei Meng, Hong Mei, Zhijie Yue and Yan Liu
Materials 2025, 18(15), 3514; https://doi.org/10.3390/ma18153514 - 26 Jul 2025
Viewed by 253
Abstract
This study introduces an analytical framework that integrates the state-space method with generalized thermoelasticity theory to obtain exact solutions for the static and dynamic behaviors of laminated plates featuring imperfect interfaces and resting on a Winkler foundation. The model comprehensively accounts for the [...] Read more.
This study introduces an analytical framework that integrates the state-space method with generalized thermoelasticity theory to obtain exact solutions for the static and dynamic behaviors of laminated plates featuring imperfect interfaces and resting on a Winkler foundation. The model comprehensively accounts for the foundation-structure interaction, interfacial imperfection, and the coupling between the thermal and mechanical fields. A parametric analysis explores the impact of the dimensionless foundation coefficient, interface flexibility coefficient, and thermal conductivity on the static and dynamic behaviors of the laminated plates. The results indicate that a lower foundation stiffness results in higher sensitivity of structural deformation with respect to the foundation parameter. Furthermore, an increase in interfacial flexibility significantly reduces the global stiffness and induces discontinuities in the distribution of stress and temperature. Additionally, thermal conductivity governs the continuity of interfacial heat flux, while thermo-mechanical coupling amplifies the variations in specific field variables. The findings offer valuable insights into the design and reliability evaluation of composite structures operating in thermally coupled environments. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

17 pages, 6827 KiB  
Article
Deep Learning-Based Min-Entropy-Accelerated Evaluation for High-Speed Quantum Random Number Generation
by Xiaomin Guo, Wenhe Zhou, Yue Luo, Xiangyu Meng, Jiamin Li, Yaoxing Bian, Yanqiang Guo and Liantuan Xiao
Entropy 2025, 27(8), 786; https://doi.org/10.3390/e27080786 - 24 Jul 2025
Viewed by 179
Abstract
Secure communication is critically dependent on high-speed and high-security quantum random number generation (QRNG). In this work, we present a responsive approach to enhance the efficiency and security of QRNG by leveraging polarization-controlled heterodyne detection to simultaneously measure the quadrature amplitude and phase [...] Read more.
Secure communication is critically dependent on high-speed and high-security quantum random number generation (QRNG). In this work, we present a responsive approach to enhance the efficiency and security of QRNG by leveraging polarization-controlled heterodyne detection to simultaneously measure the quadrature amplitude and phase fluctuations of vacuum shot noise. To address the practical non-idealities inherent in QRNG systems, we investigate the critical impacts of imbalanced heterodyne detection, amplitude–phase overlap, finite-size effects, and security parameters on quantum conditional min-entropy derived from the entropy uncertainty principle. It effectively mitigates the overestimation of randomness and fortifies the system against potential eavesdropping attacks. For a high-security parameter of 1020, QRNG achieves a true random bit extraction ratio of 83.16% with a corresponding real-time speed of 37.25 Gbps following a 16-bit analog-to-digital converter quantization and 1.4 GHz bandwidth extraction. Furthermore, we develop a deep convolutional neural network for rapid and accurate entropy evaluation. The entropy evaluation of 13,473 sets of quadrature data is processed in 68.89 s with a mean absolute percentage error of 0.004, achieving an acceleration of two orders of magnitude in evaluation speed. Extracting the shot noise with full detection bandwidth, the generation rate of QRNG using dual-quadrature heterodyne detection exceeds 85 Gbps. The research contributes to advancing the practical deployment of QRNG and expediting rapid entropy assessment. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

20 pages, 4701 KiB  
Article
Effect of Rubber Particle Size and Content on the Mechanical Properties of Rubber–Clay Mixtures Solidified by EICP
by Qiang Ma, Meng Li, Chen Zeng, Hang Shu, Lei Xi, Yue Tao and Xuesong Lu
Materials 2025, 18(15), 3429; https://doi.org/10.3390/ma18153429 - 22 Jul 2025
Viewed by 265
Abstract
Using the enzyme-induced carbonate precipitation (EICP) technique to solidify rubber and clay mixtures as lightweight backfill is a feasible way to reduce waste tire impacts and boost rubber recycling in geotech engineering. In this study, a comprehensive laboratory investigation, including triaxial compression, oedometer, [...] Read more.
Using the enzyme-induced carbonate precipitation (EICP) technique to solidify rubber and clay mixtures as lightweight backfill is a feasible way to reduce waste tire impacts and boost rubber recycling in geotech engineering. In this study, a comprehensive laboratory investigation, including triaxial compression, oedometer, permeability, and nuclear magnetic resonance (NMR) tests, was conducted on EICP-reinforced rubber particle solidified clay (hereafter referred to as EICP-RC solidified clay) to evaluate the effects of rubber particle content and size on the mechanical behavior of the improved soil under various solidification conditions and to elucidate the solidification mechanism. The results show that although rubber particles inhibit EICP, they significantly enhance the mechanical properties of the samples. The addition of 5% rubber particles (rubber A) increased cohesion by 11% and the internal friction angle by 18% compared to EICP-treated clay without rubber. Additionally, incorporating smaller-sized tire particles facilitated pore filling, resulting in lower compression and swelling indices and reduced permeability coefficients, making these materials suitable for use behind retaining walls and in embankment construction. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 2939 KiB  
Article
Investigations of Dongyue Series Perfluorosulfonic Acid Membranes for Applications in Proton Exchange Membrane Fuel Cells (PEMFCs)
by Ge Meng, Xiang Li, Mengjie Liu, Sergey A. Grigoriev, Ivan Tolj, Jiaqi Shen, Chaonan Yue and Chuanyu Sun
Batteries 2025, 11(7), 277; https://doi.org/10.3390/batteries11070277 - 20 Jul 2025
Viewed by 404
Abstract
This study systematically investigated the physicochemical properties and proton exchange membrane fuel cell (PEMFC) performance of perfluorosulfonic acid (PFSA) membranes with different thicknesses, which were prepared based on the resins produced by Dongyue (China) in comparison with commercial Nafion membranes. It was found [...] Read more.
This study systematically investigated the physicochemical properties and proton exchange membrane fuel cell (PEMFC) performance of perfluorosulfonic acid (PFSA) membranes with different thicknesses, which were prepared based on the resins produced by Dongyue (China) in comparison with commercial Nafion membranes. It was found that the water uptake of Dongyue membranes is significantly higher than that of Nafion, showing a significant upward trend with the thickness increase. The ion exchange capacity (IEC) of these membranes is ca. 1 mmol·g−1. Moreover, the tensile strength of the Dongyue membrane was positively correlated with the thickness and was significantly higher than that of recast Nafion. Under 80 °C, all Dongyue membranes with various thicknesses (15~45 μm) exhibited PEMFC single-cell performance superior to that of Nafion. The maximum power density is observed with a thickness of 25 μm, reaching 851.76 mW·cm−2, which is higher than that of Nafion (635.99 mW·cm−2). However, the oxidative stability of the prepared Dongyue PFSA series membranes exhibits a slight deficit compared to commercial Nafion membranes. Subsequently, the modification and optimization of preparation processes can be employed to improve the mechanical and chemical stability of Dongyue PFSA membranes. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Figure 1

15 pages, 2591 KiB  
Article
Adding Ethanol to the Batch and Continuous Transplantation Co-Culture of Maize Straw Fermented by Rumen Fluid for the Production of Caproic Acid
by Zhiqiang Cheng, Zitong Meng, Yue Shen, Wengboyang Liu, Li Liu, Guoqi Zhao, Lin Wang and Miao Lin
Fermentation 2025, 11(7), 413; https://doi.org/10.3390/fermentation11070413 - 18 Jul 2025
Viewed by 352
Abstract
In this study, to enhance the concentration of caproic acid generated from maize straw fermentation and clarify the structures of bacterial and fungal communities within the serially subcultured rumen microbial fermentation system, maize straw was used as the substrate. In a continuous subculture [...] Read more.
In this study, to enhance the concentration of caproic acid generated from maize straw fermentation and clarify the structures of bacterial and fungal communities within the serially subcultured rumen microbial fermentation system, maize straw was used as the substrate. In a continuous subculture system, the impacts of ethanol addition on pH and gas production were explored, with a focus on the caproic acid yield in the final (eighth generation) generation and alterations in bacterial and fungal communities. The results showed that the relative abundances of unidentified_Clostridiales, Shuttleworthia, and Syntrophococcus in ethanol-driven caproic acid production were enriched by 5.36-fold, 2.61-fold, and 2.25-fold, respectively. This consequently increased the concentration of caproic acid in the fermentation broth to 1492 mg/L, representing a 3.7-fold increase. These findings are highly significant for the high-value utilization of maize straw waste to produce caproic acid via the carboxylic acid platform using rumen microorganisms in industrial processing. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

14 pages, 3277 KiB  
Article
The Role of Non-Catalytic Region in Determining the Difference in Efficiency Between Two Cellobiohydrolases Revealed Through a Genetic Approach
by Xinyuan Yan, Pankajkumar Ramdas Waghmare, Xiaoli Meng, Jianhui Zhang, Shaoming Ding, Yu Lei, Jun Yue and Guodong Liu
J. Fungi 2025, 11(7), 536; https://doi.org/10.3390/jof11070536 - 18 Jul 2025
Viewed by 366
Abstract
The cellulose-binding domain and inter-domain linker play crucial roles in the degradation of crystalline cellulose by cellulases. Although significant differences exist in the degradation efficiency of cellobiohydrolase I (CBH I) derived from different fungal sources, the relationship between this efficiency diversity and variations [...] Read more.
The cellulose-binding domain and inter-domain linker play crucial roles in the degradation of crystalline cellulose by cellulases. Although significant differences exist in the degradation efficiency of cellobiohydrolase I (CBH I) derived from different fungal sources, the relationship between this efficiency diversity and variations in the non-catalytic region remains poorly understood. In this study, we found significant differences in the length and amino acid composition of the linker region of CBH I derived from Sordariomycetes and Eurotiomycetes. By replacing the non-catalytic region of Penicillium oxalicum CBH I with the corresponding segment from Trichoderma reesei, the cellulose conversion efficiency of the extracellular enzyme system doubled under the same protein dosage, and the adsorption of CBH I onto cellulose was improved. While replacing only the cellulose-binding domain improved the degradation efficiency of the enzyme system, additional replacement of the linker region resulted in greater enhancement. Improved degradation efficiency due to non-catalytic region replacement was observed under various conditions, including higher cellulose substrate concentration, reduced cellulose crystallinity, use of pretreated straw as a substrate, and degradation at physiological temperature. These findings provide novel insights into the molecular mechanisms underlying crystalline cellulose degradation by filamentous fungi. Full article
(This article belongs to the Special Issue Innovative Applications and Biomanufacturing of Fungi)
Show Figures

Figure 1

22 pages, 4482 KiB  
Article
Cu-Doping Induced Structural Transformation and Magnetocaloric Enhancement in CoCr2O4 Nanoparticles
by Ming-Kang Ho, Yun-Tai Yu, Hsin-Hao Chiu, K. Manjunatha, Shih-Lung Yu, Bing-Li Lyu, Tsu-En Hsu, Heng-Chih Kuo, Shuan-Wei Yu, Wen-Chi Tu, Chiung-Yu Chang, Chia-Liang Cheng, H. Nagabhushana, Tsung-Te Lin, Yi-Ru Hsu, Meng-Chu Chen, Yue-Lin Huang and Sheng Yun Wu
Nanomaterials 2025, 15(14), 1093; https://doi.org/10.3390/nano15141093 - 14 Jul 2025
Viewed by 338
Abstract
This study systematically investigates the impact of Cu2+ doping on the structural, magnetic, and magnetocaloric properties of CuxCo1−xCr2O4 nanoparticles synthesized via a solution combustion method. Cu incorporation up to x = 20% induces a [...] Read more.
This study systematically investigates the impact of Cu2+ doping on the structural, magnetic, and magnetocaloric properties of CuxCo1−xCr2O4 nanoparticles synthesized via a solution combustion method. Cu incorporation up to x = 20% induces a progressive structural transformation from a cubic spinel to a trigonal corundum phase, as confirmed by X-ray diffraction and Raman spectroscopy. The doping process also leads to increased particle size, improved crystallinity, and reduced agglomeration. Magnetic measurements reveal a transition from hard to soft ferrimagnetic behavior with increasing Cu content, accompanied by a notable rise in the Curie temperature from 97.7 K (x = 0) to 140.2 K (x = 20%). The magnetocaloric effect (MCE) is significantly enhanced at higher doping levels, with the 20% Cu-doped sample exhibiting a maximum magnetic entropy change (−ΔSM) of 2.015 J/kg-K and a relative cooling power (RCP) of 58.87 J/kg under a 60 kOe field. Arrott plot analysis confirms that the magnetic phase transitions remain second-order in nature across all compositions. These results demonstrate that Cu doping is an effective strategy for tuning the magnetostructural response of CoCr2O4 nanoparticles, making them promising candidates for low-temperature magnetic refrigeration applications. Full article
Show Figures

Figure 1

24 pages, 18258 KiB  
Article
An Integrated Approach for Emergency Response and Long-Term Prevention for Rainfall-Induced Landslide Clusters
by Wenxin Zhao, Yajun Li, Yunfei Huang, Guowei Li, Fukang Ma, Jun Zhang, Mengyu Wang, Yan Zhao, Guan Chen, Xingmin Meng, Fuyun Guo and Dongxia Yue
Remote Sens. 2025, 17(14), 2406; https://doi.org/10.3390/rs17142406 - 12 Jul 2025
Viewed by 308
Abstract
Under the background of global climate change, shallow landslide clusters induced by extreme rainfall are occurring with increasing frequency, causing severe casualties and economic losses. To address this challenge, this study proposes an integrated approach to support both emergency response and long-term mitigation [...] Read more.
Under the background of global climate change, shallow landslide clusters induced by extreme rainfall are occurring with increasing frequency, causing severe casualties and economic losses. To address this challenge, this study proposes an integrated approach to support both emergency response and long-term mitigation for rainfall-induced shallow landslides. The workflow includes (1) rapid landslide detection based on time-series image fusion and threshold segmentation on the Google Earth Engine (GEE) platform; (2) numerical simulation of landslide runout using the R.avaflow model; (3) landslide susceptibility assessment based on event-driven inventories and machine learning; and (4) delineation of high-risk slopes by integrating simulation outputs, susceptibility results, and exposed elements. Applied to Qugaona Township in Zhouqu County, Bailong River Basin, the framework identified 747 landslides. The R.avaflow simulations captured the spatial extent and depositional features of landslides, assisting post-disaster operations. The Gradient Boosting-based susceptibility model achieved an accuracy of 0.870, with 8.0% of the area classified as highly susceptible. In Cangan Village, high-risk slopes were delineated, with 31.08%, 17.85%, and 22.42% of slopes potentially affecting buildings, farmland, and roads, respectively. The study recommends engineering interventions for these areas. Compared with traditional methods, this approach demonstrates greater applicability and provides a more comprehensive basis for managing rainfall-induced landslide hazards. Full article
Show Figures

Figure 1

20 pages, 4487 KiB  
Article
Coupled Productivity Prediction Model for Multi-Stage Fractured Horizontal Wells in Low-Permeability Reservoirs Considering Threshold Pressure Gradient and Stress Sensitivity
by Long Xiao, Ping Yue, Hongnan Yang, Wei Guo, Simin Qu, Hui Yao and Lingqiang Meng
Energies 2025, 18(14), 3654; https://doi.org/10.3390/en18143654 - 10 Jul 2025
Viewed by 281
Abstract
Multi-stage fractured horizontal wells (MSFHWs) represent a crucial development approach for low-permeability reservoirs, where accurate productivity prediction is essential for production operations. However, existing models suffer from limitations such as inadequate characterization of complex flow mechanisms within the reservoir or computational complexity. This [...] Read more.
Multi-stage fractured horizontal wells (MSFHWs) represent a crucial development approach for low-permeability reservoirs, where accurate productivity prediction is essential for production operations. However, existing models suffer from limitations such as inadequate characterization of complex flow mechanisms within the reservoir or computational complexity. This study subdivides the flow process into three segments: matrix, fracture, and wellbore. By employing discretization concepts, potential distribution theory, and the principle of potential superposition, a productivity prediction model tailored for MSFHWs in low-permeability reservoirs is established. Moreover, this model provides a clearer characterization of fluid seepage processes during horizontal well production, which aligns more closely with the actual production process. Validated against actual production data from an offshore oilfield and benchmarked against classical models, the proposed model demonstrates satisfactory accuracy and reliability. Sensitivity analysis reveals that a lower Threshold Pressure Gradient (TPG) corresponds to higher productivity; a production pressure differential of 10 MPa yields an average increase of 22.41 m3/d in overall daily oil production compared to 5 MPa, concurrently reducing the overall production decline rate by 26.59% on average. Larger stress-sensitive coefficients lead to reduced production, with the fracture stress-sensitive coefficient exerting a more significant influence; for an equivalent increment, the matrix stress-sensitive coefficient causes a production decrease of 1.92 m3/d (a 4.32% decline), while the fracture stress-sensitive coefficient results in a decrease of 4.87 m3/d (a 20.93% decline). Increased fracture half-length and number enhance production, with an initial productivity increase of 21.61% (gradually diminishing to 7.1%) for longer fracture half-lengths and 24.63% (gradually diminishing to 5.22%) for more fractures; optimal critical values exist for both parameters. Full article
Show Figures

Figure 1

17 pages, 4198 KiB  
Article
Proteomic Analysis of Protein Ubiquitination Events in Dairy Goats with Fatty Liver
by Yuli Zhu, Zhenhua Liu, Yuming Zhang, Yao Meng, Xunuo Song, Jinyu Li, Yue Zhang, Junkang Zhao, Liyin Du and Qinghua Deng
Animals 2025, 15(14), 2010; https://doi.org/10.3390/ani15142010 - 8 Jul 2025
Viewed by 316
Abstract
Fatty liver is a major metabolic disease in periparturient dairy goats. Protein ubiquitination, a type of dynamic and multifaceted post-translational modification, plays an important role in metabolism by regulating the stability and function of target proteins. However, the hepatic protein ubiquitination profile in [...] Read more.
Fatty liver is a major metabolic disease in periparturient dairy goats. Protein ubiquitination, a type of dynamic and multifaceted post-translational modification, plays an important role in metabolism by regulating the stability and function of target proteins. However, the hepatic protein ubiquitination profile in dairy goats with fatty liver is yet to be elucidated. In this study, we collected liver and blood samples from healthy dairy goats (Con, n = 3) and dairy goats with fatty liver (FL, n = 3). Then, we analyzed the overall ubiquitination of hepatic proteins in dairy goats with fatty liver through quantitative ubiquitin label-free proteomics and bioinformatics. Proteins showing significantly altered levels of ubiquitination were identified via bioinformatics, and related regulatory pathways were screened. The results showed that the blood levels of beta-hydroxybutyric acid and non-esterified fatty acids were significantly upregulated in dairy goats with fatty liver, and a total of 238 ubiquitination sites across 921 proteins were found to be differentially altered in the fatty liver group. Among them, ubiquitination was upregulated at 351 sites across 93 proteins and downregulated at 570 sites across 145 proteins. In addition, GO and KEGG pathway analysis revealed that the differentially ubiquitinated proteins were enriched in pathways regulating lipid metabolism, such as the PPAR signaling pathway, fatty acid degradation, and peroxisome activity. Notably, by observing the overlap among these three sub-networks, we found that proteins with downregulated ubiquitination—such as ACSL1, ACSL5, EHHADH, and ACAA1—were transcriptionally upregulated in dairy goats with fatty liver. This study reveals the key ubiquitinated proteins in dairy goats with fatty liver and provides a more comprehensive understanding of the pathogenesis of fatty liver in dairy goats. Full article
Show Figures

Figure 1

19 pages, 7369 KiB  
Article
Freezing Behavior of Clayey Sand and Spatiotemporal Evolution of Seasonally Frozen Soil Distribution in the Qinghai–Tibet Plateau
by Yunlei Xu, Haiyan Yang, Jianhua Yue, He Wei, Rongqi Che, Qibao Duan, Shulong Zhou and Meng Sun
Appl. Sci. 2025, 15(13), 7498; https://doi.org/10.3390/app15137498 - 3 Jul 2025
Viewed by 320
Abstract
Seasonally frozen soils are widely distributed across the Qinghai–Tibet Plateau and play a crucial role in regional hydrological processes, ecosystem stability, and infrastructure development. In this study, a custom-designed freeze–thaw apparatus was employed to investigate the freezing behavior of clayey sand with varying [...] Read more.
Seasonally frozen soils are widely distributed across the Qinghai–Tibet Plateau and play a crucial role in regional hydrological processes, ecosystem stability, and infrastructure development. In this study, a custom-designed freeze–thaw apparatus was employed to investigate the freezing behavior of clayey sand with varying initial volumetric water contents. The relationship between electrical resistivity and unfrozen water content was examined through laboratory tests, while six-month resistivity monitoring tests were conducted in a representative frozen soil region of the plateau. The results show that the freezing points for samples with initial volumetric water contents of 30%, 18.5%, and 10% were −2.34 °C, −4.69 °C, and −6.48 °C, respectively, whereas the thawing temperature remained approximately −4 °C across all cases. A strong inverse correlation between resistivity and unfrozen water content was observed during the freezing process. Moreover, the resistivity exhibited a typical U-shaped trend with increasing initial water content, with a minimum level observed at 6~10%. Field resistivity profiles demonstrated limited variation between July and September, while in December, a pronounced thickening of the transition zone and an upward shift in the high-resistivity layer were evident. These findings enhance the understanding of the freeze–thaw mechanisms and the spatiotemporal evolution of frozen soils in high-altitude environments. Full article
Show Figures

Figure 1

23 pages, 3357 KiB  
Article
Enhancing the Thermostability of a New Tannase Through Rational Design and Site-Directed Mutagenesis: A Quality Improvement Strategy for Green Tea Infusion
by Hai-Xiang Zhou, Shi-Ning Cao, Chu-Shu Zhang, Mian Wang, Yue-Yi Tang, Jing Chen, Li-Fei Zhu, Jie Sun, Qing-Biao Meng, Jing Chen and Jian-Cheng Zhang
Beverages 2025, 11(4), 99; https://doi.org/10.3390/beverages11040099 - 1 Jul 2025
Viewed by 583
Abstract
Tea has become one of the most popular drinks worldwide thanks to its pleasant sensory attributes and diverse health benefits. However, tannin-rich compositions have several negative effects and significantly impact the quality of tea beverages. Among various detannification methods, tannase treatment appears to [...] Read more.
Tea has become one of the most popular drinks worldwide thanks to its pleasant sensory attributes and diverse health benefits. However, tannin-rich compositions have several negative effects and significantly impact the quality of tea beverages. Among various detannification methods, tannase treatment appears to be the most secure and environmentally friendly strategy. Although numerous microbial tannases have been identified and used in food processing, they are predominantly mesophilic with compromised heat tolerance, which limit their application in high-temperature tea extraction processing. Computer-assisted rational design and site-directed mutagenesis has emerged as a promising strategy in enzyme engineering to improve the thermostability of industrial enzymes. Nevertheless, relevant studies for tannase thermostability improvement remain lacking. In the present study, a novel thermophilic tannase called TanPL1 from marine fungus Penicillium longicatenatum strain SM102 was expressed in the food-grade host Yarrowia lipolytica. After purification and characterization, the thermostability of this enzyme was improved through site-directed mutagenesis guided by computer-aided rational design and molecular dynamics simulations. Then the thermostable mutant MuTanPL1 was applied in green tea processing for both polyphenol extraction and ester catechin hydrolysis. The tannase yield and specific activity values of 166.4 U/mL and 1059.3 U/mg, respectively, were achieved. The optimum pH and temperature of recombinant TanPL1 were determined to be 5.5 and 55 °C, respectively, and the enzyme exhibited high activity toward various gallic acid ester substrates. The site-directed mutagenesis method successfully generated a single-point mutant, MuTanPL1, with significantly enhanced thermostability and a higher optimum temperature of 60 °C. After 2 h of detannification by MuTanPL1, nearly all gallated catechins in green tea infusion were biotransformed. This resulted in a 202.4% and 12.1-fold increase in non-ester catechins and gallic acid levels, respectively. Meanwhile, the quality of the tea infusion was also markedly improved. Sensory evaluation and antioxidant activity assays revealed notable enhancements in these properties, while turbidity was reduced considerably. Additionally, the α-amylase inhibition activity of the tannase-treated tea infusion declined from 50.49% to 8.56%, revealing a significantly lower anti-nutritional effect. These findings suggest that the thermostable tannase MuTanPL1 holds strong application prospects in tea beverage processing. Full article
Show Figures

Figure 1

23 pages, 1842 KiB  
Article
Soil-Driven Coupling of Plant Community Functional Traits and Diversity in Desert–Oasis Transition Zone
by Zhuopeng Fan, Tingting Xie, Lishan Shan, Hongyong Wang, Jing Ma, Yuanzhi Yue, Meng Yuan, Quangang Li, Cai He and Yonghua Zhao
Plants 2025, 14(13), 1997; https://doi.org/10.3390/plants14131997 - 30 Jun 2025
Viewed by 332
Abstract
Understanding the relationships between diversity and functional traits in plant communities is essential for elucidating ecosystem functions, forecasting community succession, and informing ecological restoration efforts in arid regions. Although the current research on plant functional traits and diversity has improved our ability to [...] Read more.
Understanding the relationships between diversity and functional traits in plant communities is essential for elucidating ecosystem functions, forecasting community succession, and informing ecological restoration efforts in arid regions. Although the current research on plant functional traits and diversity has improved our ability to predict ecological functions, there are still many problems, such as how environmental changes affect the relationship between species diversity and plant functional traits, and how these interactions affect plant community functions. We examined the relationships among leaf and fine root functional traits, species diversity, and functional diversity at the community level, along with their environmental interpretations, in a plant community within the desert–oasis transition zone of the Hexi Corridor, where habitats are undergoing significant small-scale changes. During dune succession, plant community composition and diversity exhibited significant variation. Plants are adapted to environmental changes through synergistic combinations of above-ground and below-ground traits. Specifically, plants in fixed dunes adopted a “slow investment” strategy, while those in semi-fixed and mobile dunes employed a “fast investment” approach to resource acquisition. A strong coupling was observed between plant community functional traits and species diversity. Soil phosphorus content and compactness emerged as primary factors influencing differences in plant community functional traits and composition. These soil factors indirectly regulated fine root functional traits and diversity by affecting species diversity, thereby driving community succession. Our study elucidates the “soil—diversity—community functional trait” linkage mechanisms in the successional process of desert plants. This research provides scientific support for the restoring and reconstruction of degraded ecosystems in arid zones. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

28 pages, 9321 KiB  
Article
In Situ Vaccination with a Vpr-Derived Peptide Elicits Systemic Antitumor Immunity by Improving Tumor Immunogenicity
by Danjie Pan, Ling Du, Jiayang Liu, Kudelaidi Kuerban, Xuan Huang, Yue Wang, Qiuyu Guo, Huaning Chen, Songna Wang, Li Wang, Pinghong Zhou, Zhefeng Meng and Li Ye
Vaccines 2025, 13(7), 710; https://doi.org/10.3390/vaccines13070710 - 30 Jun 2025
Viewed by 650
Abstract
Background: Cancer vaccines represent a groundbreaking advancement in cancer immunotherapy, utilizing tumor antigens to induce tumor-specific immune responses. However, challenges like tumor-induced immune resistance and technical barriers limit the widespread application of predefined antigen vaccines. Here, we investigated the potential of viral protein [...] Read more.
Background: Cancer vaccines represent a groundbreaking advancement in cancer immunotherapy, utilizing tumor antigens to induce tumor-specific immune responses. However, challenges like tumor-induced immune resistance and technical barriers limit the widespread application of predefined antigen vaccines. Here, we investigated the potential of viral protein R (Vpr) peptides as effective candidates for constructing anonymous antigen vaccines in situ by directly injecting at the tumor site and releasing whole-tumor antigens, inducing robust anti-tumor immune responses to overcome the limitations of predefined antigen vaccines. Methods: The cytotoxic effects of Vpr peptides were evaluated using the CCK8 reagent kit. Membrane penetration ability of Vpr peptides was observed using a confocal laser scanning microscope and quantitatively analyzed using flow cytometry. EGFR levels in the cell culture supernatants of cells treated with Vpr peptides were evaluated using an ELISA. Surface exposure of CRT on the tumor cell surface was observed using a confocal laser scanning microscope and quantitatively analyzed using flow cytometry. The secretion levels of ATP from tumor cells were evaluated using an ATP assay kit. HMGB1 release was evaluated using an ELISA. Mouse (Male C57BL/6 mice aged 4 weeks) MC38 and LLC bilateral subcutaneous tumor models were established to evaluate the therapeutic effects of Vpr peptides through in situ vaccination. Proteomic analysis was performed to explore the mechanism of anti-tumor activity of Vpr peptides. Results: Four Vpr peptides were designed and synthesized, with P1 and P4 exhibiting cytotoxic effects on tumor cells, inducing apoptosis and immunogenic cell death. In mouse tumor models, in situ vaccination with Vpr peptide significantly inhibited tumor growth and activated various immune cells. High-dose P1 monotherapy demonstrated potent anti-tumor effects, activating DCs, T cells, and macrophages. Combining ISV of P1 with a CD47 inhibitor SIRPαFc fusion protein showed potent distant tumor suppression effects. Proteomic analysis suggested that Vpr peptides exerted anti-tumor effects by disrupting tumor cell morphology, movement, and adhesion, and promoting immune cell infiltration. Conclusions: The designed Vpr peptides show promise as candidates for in situ vaccination, with significant anti-tumor effects, immune activation, and favorable safety profiles observed in mouse models. In situ vaccination with Vpr-derived peptides represents a potential approach for cancer immunotherapy. Full article
(This article belongs to the Special Issue New Approaches to Vaccine Development and Delivery)
Show Figures

Figure 1

Back to TopTop