Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (304)

Search Parameters:
Authors = Ye Xiang

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1194 KiB  
Article
A Benzimidazole-Based Fluorescent Probe for the Selective Recognition of Cobalt (II) Ions
by Jing Zhu, Hua-Fen Wang, Jia-Xiang Zhang, Man Wang, Yu-Wei Zhuang, Zhi-Guang Suo, Ye-Wu He, Yan-Chang Zhang, Min Wei and Hai-Yan Zhang
Molecules 2025, 30(15), 3309; https://doi.org/10.3390/molecules30153309 (registering DOI) - 7 Aug 2025
Abstract
Cobalt, a rare element in the Earth’s crust, is widely used in industries due to its hardness and antioxidant properties. It also plays a vital role in physiological functions, being a key component of vitamin B12. However, excessive cobalt intake can [...] Read more.
Cobalt, a rare element in the Earth’s crust, is widely used in industries due to its hardness and antioxidant properties. It also plays a vital role in physiological functions, being a key component of vitamin B12. However, excessive cobalt intake can cause health issues. Detecting cobalt ions, especially Co2+, in food is crucial due to potential contamination from various sources. Fluorescent probes offer high sensitivity, selectivity, a rapid response, and ease of use, making them ideal for the accurate and efficient recognition of Co2+ in complex samples. In this context, a highly selective fluorescent probe, 2,2′-((3-(1H-benzo[d]imidazol-2-yl)-1,2-phenylene) bis(oxy)) bis(N-(quinolin-8-yl) acetamide) (DQBM-B), was synthesized using chloroacetyl chloride, 8-aminoquinoline, 2,3-dihydroxybenzaldehyde, and benzidine as raw materials for the recognition of Co2+. Probe DQBM-B can exhibit fluorescence alone in DMF. However, as the concentration of Co2+ increased, Photoinduced Electron Transfer (PET) occurred, which quenched the original fluorescence of the probe. Probe DQBM-B shows better selectivity for Co2+ than other ions with high sensitivity (detection limit: 3.56 μmol L−1), and the reaction reaches equilibrium within 30 min. Full article
Show Figures

Graphical abstract

15 pages, 3444 KiB  
Article
A LiDAR-Driven Approach for Crop Row Detection and Navigation Line Extraction in Soybean–Maize Intercropping Systems
by Mingxiong Ou, Rui Ye, Yunfei Wang, Yaoyao Gu, Ming Wang, Xiang Dong and Weidong Jia
Appl. Sci. 2025, 15(13), 7439; https://doi.org/10.3390/app15137439 - 2 Jul 2025
Viewed by 231
Abstract
Crop row identification and navigation line extraction are essential components for enabling autonomous operations of agricultural machinery. Aiming at the soybean–maize strip intercropping system, this study proposes a LiDAR-based algorithm for crop row detection and navigation line extraction. The proposed method consists of [...] Read more.
Crop row identification and navigation line extraction are essential components for enabling autonomous operations of agricultural machinery. Aiming at the soybean–maize strip intercropping system, this study proposes a LiDAR-based algorithm for crop row detection and navigation line extraction. The proposed method consists of four primary stages: point cloud preprocessing, crop row region identification, feature point clustering, and navigation line extraction. Specifically, a combination of K-means and Euclidean clustering algorithms is employed to extract feature points representing crop rows. The central lines of the crop rows are then fitted using the least squares method, and a stable navigation path is constructed based on angle bisector principles. Field experiments were conducted under three representative scenarios: broken rows with missing plants, low occlusion, and high occlusion. The results demonstrate that the proposed method exhibits strong adaptability and robustness across various environments, achieving over 80% accuracy in navigation line extraction, with up to 90% in low-occlusion settings. The average navigation angle was controlled within 0.28°, with the minimum reaching 0.17°, and the average processing time remained below 75.62 ms. Moreover, lateral deviation tests confirmed the method’s high precision and consistency in path tracking, validating its feasibility and practicality for application in strip intercropping systems. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

19 pages, 7541 KiB  
Article
Design and Performance Verification of Bionic Octopus Sucker Sealing Structure for Solenoid Valves
by Zhihong Wang, Xinbin Zhang, Zhengzhi Mu, Xiang Guan, Junchi Liu, Zhipeng Pan, Junchong Wang, Xiangrui Ye, Zhenghai Qi, Jianyang Dong, Yongming Yao and Liucheng Zhou
Biomimetics 2025, 10(7), 425; https://doi.org/10.3390/biomimetics10070425 - 1 Jul 2025
Viewed by 306
Abstract
Aiming at the problem of the insufficient sealing performance of the solenoid valve poppet under a high working load and inspired by the multilevel groove structure of the octopus sucker and the adaptive sealing mechanism, a bionics-based design scheme for an annular groove [...] Read more.
Aiming at the problem of the insufficient sealing performance of the solenoid valve poppet under a high working load and inspired by the multilevel groove structure of the octopus sucker and the adaptive sealing mechanism, a bionics-based design scheme for an annular groove sealing structure is proposed. By extracting the microscopic groove morphology features of the octopus sucker, we designed a multilayer rectangular cross-section groove structure at the annular interface, combined the designed structure with the Abaqus cohesive model to simulate the interface stripping behavior, and verified its mechanical properties by the pull-out test. The results show that the bionic groove structure significantly improves the bearing capacity of the sealing ring by enhancing the interface contact stress distribution and delaying the crack extension. Under the same working condition, the bionic structure increases the pull-out force by 46.1% compared with the traditional planar sealing ring. This study provides bionic theoretical support and an engineering practice reference for the design of sealing structures in complex working conditions, such as the solenoid valve poppet. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Figure 1

17 pages, 7173 KiB  
Article
Inhibition of Matrix Metalloproteinase-7 Attenuates Subpleural Fibrosis in Rheumatoid Arthritis-Associated Interstitial Lung Disease
by Li Xiong, Li-Mei Liang, Shu-Yi Ye, Xiao-Lin Cui, Shi-He Hu, Chen-Yue Lian, Wen-Jia Sun, Yang-Ping Lv, He-De Zhang, Meng Wang, Fei Xiang, Liang Xiong, Hong Ye, Wan-Li Ma and Lin-Jie Song
Biomedicines 2025, 13(7), 1581; https://doi.org/10.3390/biomedicines13071581 - 27 Jun 2025
Viewed by 642
Abstract
Background: Rheumatoid arthritis-related interstitial lung disease (RA-ILD) is a significant complication of RA which lacks effective treatments with high mortality. This study aimed to investigate the role of matrix metalloproteinase-7 (MMP-7) in mediating RA-ILD. Methods: Based on the database of RA-ILD [...] Read more.
Background: Rheumatoid arthritis-related interstitial lung disease (RA-ILD) is a significant complication of RA which lacks effective treatments with high mortality. This study aimed to investigate the role of matrix metalloproteinase-7 (MMP-7) in mediating RA-ILD. Methods: Based on the database of RA-ILD patients, a bioinformatics analysis was performed. A protein–protein interaction (PPI) network focusing on MMP-7 was simulated. Pleural mesothelial cells (PMCs) were treated with RA-ILD patients’ serum or RA-ILD-related inflammatory factors, and the protein expressions of collagen-I and MMP-7 were examined. An arthritis model was established using complete Freund’s adjuvant (CFA). Changes in the weight and joints of mice were recorded, and lung tissues were evaluated by Masson staining and Sirius red stain techniques. MMP-7 inhibitor, MMP-7 siRNA and MMP shRNA lentivirus were used to inhibit MMP-7 and investigate changes in collagen-I and fibrosis in vivo and in vitro. Results: MMP-7 was found to be significantly expressed in RA-ILD lung tissue by bioinformatics analysis, and MMP-7 to maybe interact with collagen-I. In vitro experiments indicated cytokines IL-1β, IL-6 and TNF-α promoted MMP-7 and collagen-I expression in PMCs. Serum obtained from patients with RA-ILD also upregulated MMP-7 and collagen-I expression in PMCs. Inhibition of MMP-7 with MMP-7 siRNA or MMP inhibitor prevented collagen-I synthesis in PMCs. In vivo, CFA induced arthritis and subpleural lung inflammation in rats, but the MMP-7 inhibitor and MMP-7 siRNA attenuated CFA-induced lung inflammation and subpleural lung fibrosis. Conclusions: MMP-7 mediated subpleural lung inflammation as well as fibrosis in RA-ILD. It provided theoretical and experimental support for MMP-7 being a therapeutic target in RA-ILD. Full article
(This article belongs to the Special Issue Pathogenesis, Diagnostics, and Therapeutics for Rheumatic Diseases)
Show Figures

Figure 1

21 pages, 3208 KiB  
Article
Inhibitory Effect and Potential Mechanism of Trans-2-Hexenal Treatment on Postharvest Rhizopus Rot of Peach Fruit
by Xuanyi Cai, Wen Xiang, Liangyi Zhao, Ziao Liu, Ye Li, Yuan Zeng, Xinyan Shen, Yinqiu Bao, Yonghua Zheng and Peng Jin
Foods 2025, 14(13), 2265; https://doi.org/10.3390/foods14132265 - 26 Jun 2025
Viewed by 390
Abstract
Peach fruit faces severe postharvest losses due to thin epidermis and susceptibility to Rhizopus stolonifer-induced soft rot. Chemical control risks residue and resistance issues, demanding eco-friendly alternatives. This study elucidated the mechanism by which trans-2-hexenal (E2H) mitigated postharvest soft rot caused by [...] Read more.
Peach fruit faces severe postharvest losses due to thin epidermis and susceptibility to Rhizopus stolonifer-induced soft rot. Chemical control risks residue and resistance issues, demanding eco-friendly alternatives. This study elucidated the mechanism by which trans-2-hexenal (E2H) mitigated postharvest soft rot caused by Rhizopus stolonifer in peach (Prunus persica cv. Hujing Milu) fruit. The results demonstrated that E2H treatment significantly delayed lesion expansion by 44.7% and disease incidence by 23.9% while effectively maintaining fruit quality by delaying firmness loss, reducing juice leakage, and suppressing malondialdehyde (MDA) accumulation. E2H treatment upregulated phenylpropanoid pathway gene expression, enhancing key phenylpropanoid metabolism enzymes activities (phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), polyphenol oxidase (PPO), peroxidase (POD)), leading to the increase of total phenolics by 7.9%. E2H treatment analysis revealed significant enhancements in both chitinolytic activity (CHI) and β-1,3-glucanase (GLU) activity by 85.7% and 12.9%, indicating potentiation of the enzymatic defense system. Concurrently, E2H treatment could improve the redox modulation capacity of peach fruits through promoting catalytic efficiency of redox-regulating enzymes, increasing the accumulation of ascorbic acid (AsA) by 8.1%, inhibiting the synthesis of dehydroascorbic acid (DHA) by 18.6%, as well as suppressing the biosynthesis of reactive oxygen species (ROS). These coordinated enhancements in pathogenesis-related proteins (CHI, GLU), phenylpropanoid metabolism activation, and antioxidant systems are strongly associated with E2H-induced resistance against Rhizopus stolonifer, though contributions from other factors may also be involved. Full article
(This article belongs to the Special Issue Postharvest Technologies and Applications in Food and Its Products)
Show Figures

Figure 1

23 pages, 3858 KiB  
Article
Research on the Flexural Behavior of Profiled Steel Sheet–Hollow Concrete Composite Floor Slab
by Guangshan Zhu, Xiang Wang, Weinan Wang, Jinshan Wang and Ye Yang
Buildings 2025, 15(12), 2140; https://doi.org/10.3390/buildings15122140 - 19 Jun 2025
Viewed by 416
Abstract
In order to reduce the self-weight of steel sheet–concrete composite slabs and fully apply the superior performance of the composite slabs, this paper proposes a kind of open-profiled steel sheet–hollow concrete composite floor slab. Flexural behavior tests are conducted to five pieces of [...] Read more.
In order to reduce the self-weight of steel sheet–concrete composite slabs and fully apply the superior performance of the composite slabs, this paper proposes a kind of open-profiled steel sheet–hollow concrete composite floor slab. Flexural behavior tests are conducted to five pieces of composite floor slabs with different parameters, and numerical simulation methods were applied to perform finite element analysis on the composite slabs with different hollow rates, reinforcement ratios, and steel sheet thicknesses. At the same time, the calculation methods were discussed for the flexural bearing capacities under different anchorage conditions. The results indicate that, when the profiled steel sheet is in a low anchorage degree, end debonding is one of the important failure modes for the composite floor slabs, and the flexural bearing capacity of the composite floor slabs is significantly reduced. The reinforcement arrangement in the tensile zone has a significant impact on the bearing capacity, deflection, and ductility coefficient of the composite floor slabs. When the reinforcement ratio increases from 0% to 0.6%, the ultimate bearing capacity is increased by 182.5%, and the ductility coefficient is increased by 246.0%. The ultimate deflection of specimens with a reinforcement ratio of 0.6% is 22.4 times of that of the specimens without reinforcement arrangement. When the hollow rate is less than 20%, the influence of the concrete hollow radius on the flexural bearing capacity, ductility coefficient, and maximum crack width is relatively small. As the thickness of the steel sheet increases, the increasing range in ultimate bearing capacity gradually decreases, the deflection gradually decreases, and the ductility coefficient gradually increases; increasing the thickness of composite floor slabs can help reduce deformation. The theoretical calculation values obtained by applying the flexural bearing capacity calculation method proposed in the paper match with the test results, and the method has a certain reference value for the engineering practice. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 1638 KiB  
Review
L-3-[18F]-Fluoro-α-Methyl Tyrosine as a PET Tracer for Tumor Diagnosis: A Systematic Review from Mechanisms to Clinical Applications
by Mei Bao, Xiang Gu, Kai Tong, Fei Chu, Pinmao Ye, Kazuko Kaneda-Nakashima, Wenbin Hou, Yiliang Li and Ling Wei
Int. J. Mol. Sci. 2025, 26(12), 5848; https://doi.org/10.3390/ijms26125848 - 18 Jun 2025
Viewed by 650
Abstract
L-3-[18F]-fluoro-α-methyl tyrosine ([18F]FAMT) is an amino acid positron emission tomography (PET) tracer with high specificity for malignant tumors through its selective transport via L-type amino acid transporter (LAT) 1. Although extensively studied for its diagnostic performance, a comprehensive review [...] Read more.
L-3-[18F]-fluoro-α-methyl tyrosine ([18F]FAMT) is an amino acid positron emission tomography (PET) tracer with high specificity for malignant tumors through its selective transport via L-type amino acid transporter (LAT) 1. Although extensively studied for its diagnostic performance, a comprehensive review of its molecular and clinical characteristics remains lacking. A systematic literature review (1997–2025) was conducted using PubMed and Web of Science, with keywords including “L-3-[18F]-fluoro-α-methyl tyrosine”, “[18F]FAMT”, “amino acid PET”, and “tumor imaging”. The review covered aspects of synthesis, structural properties, pharmacokinetics, and clinical applications. Notably, while research on [18F]FAMT has declined significantly in recent years, [18F]FAMT PET demonstrates superior specificity to [18F]FDG PET in distinguishing malignancies from inflammatory lesions and offers distinct advantages in lung, esophageal, and oral cancers, though with slightly lower sensitivity. Its key features include tumor-specific uptake patterns, rapid blood clearance, and a significant correlation between its uptake levels and both LAT1 expression and tumor proliferation. In conclusion, [18F]FAMT is a promising PET tracer with notable advantages in tumor imaging, particularly due to its LAT1 selectivity and favorable pharmacokinetics. Despite challenges in production, these characteristics underscore its clinical value in cancers requiring precise imaging. Future research should focus on optimizing synthesis, expanding clinical validation, and exploring theranostic applications. Full article
(This article belongs to the Special Issue The Activity and Underlying Mechanisms of Anticancer Drugs)
Show Figures

Figure 1

31 pages, 10891 KiB  
Review
Development of Positron Emission Tomography Radiotracers for Imaging α-Synuclein Aggregates
by Xiaodi Guo, Jie Xiang, Keqiang Ye and Zhentao Zhang
Cells 2025, 14(12), 907; https://doi.org/10.3390/cells14120907 - 16 Jun 2025
Cited by 1 | Viewed by 977
Abstract
Neurodegenerative diseases (NDDs) that are characterized by the accumulation of alpha-synuclein (α-syn) aggregates in both neurons and the non-neuronal cells of the brain are called synucleinopathies. The most common synucleinopathies includes Parkinson’s disease (PD), Parkinson’s disease dementia (PDD), multiple system atrophy (MSA), and [...] Read more.
Neurodegenerative diseases (NDDs) that are characterized by the accumulation of alpha-synuclein (α-syn) aggregates in both neurons and the non-neuronal cells of the brain are called synucleinopathies. The most common synucleinopathies includes Parkinson’s disease (PD), Parkinson’s disease dementia (PDD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB). Significant progress has been made in the development of positron emission tomography (PET) radiotracers for synucleinopathies, yielding several α-syn tracers that have entered clinical studies. However, selective α-syn imaging still faces inherent challenges. This review provides a comprehensive overview of the progress in α-syn PET radiotracers from three angles: Alzheimer’s disease (AD)-derived scaffolds, representative compound scaffolds and analogs, and the identification of α-syn tracers through high-throughput screening (HTS). We discuss the characteristics, advantages, and limitations of the tracers for preclinical and clinical application. Finally, future directions in the development of radioligands for proteinopathies are discussed. There is no clinical available PET radiotracer for imaging α-syn aggregates, but these advances have laid a key foundation for non-invasive α-syn imaging and early diagnosis of synucleinopathies. Full article
(This article belongs to the Special Issue Development of PET Radiotracers for Imaging Alpha-Synuclein)
Show Figures

Graphical abstract

19 pages, 3098 KiB  
Article
SHROOM3 Deficiency Aggravates Adriamycin-Induced Nephropathy Accompanied by Focal Adhesion Disassembly and Stress Fiber Disorganization
by Li-Nan Xu, Ying-Ying Sun, Yan-Feng Tan, Xin-Yue Zhou, Tian-Chao Xiang, Ye Fang, Fei Li, Qian Shen, Hong Xu and Jia Rao
Cells 2025, 14(12), 895; https://doi.org/10.3390/cells14120895 - 13 Jun 2025
Viewed by 547
Abstract
SHROOM3 encodes an actin-binding protein involved in kidney development and has been associated with chronic kidney disease through genome-wide association studies. However, its regulatory role in proteinuric kidney diseases and its mechanistic contributions to podocyte homeostasis remain poorly defined. Here, we analyzed single-cell [...] Read more.
SHROOM3 encodes an actin-binding protein involved in kidney development and has been associated with chronic kidney disease through genome-wide association studies. However, its regulatory role in proteinuric kidney diseases and its mechanistic contributions to podocyte homeostasis remain poorly defined. Here, we analyzed single-cell transcriptomic datasets and the Nephroseq database to delineate SHROOM3 expression patterns in proteinuric kidney diseases. Using podocyte-specific SHROOM3 knockout mice and an Adriamycin (ADR)-induced nephropathy mouse model, we demonstrated that glomerular SHROOM3, specifically in podocytes, was upregulated following ADR treatment during the acute injury phase but downregulated in chronic kidney disease. Clinically, the glomerular SHROOM3 expression positively correlated with glomerular filtration rates in focal segmental glomerulosclerosis patients. Genetic ablation of SHROOM3 in podocytes exacerbated ADR-induced proteinuria, diminished podocyte markers (nephrin, podocin, and WT1), and accelerated glomerulosclerosis. In vitro, SHROOM3 deficiency impaired podocyte size and adhesion, concomitant with the downregulation of focal adhesion molecules (talin1, vinculin, and paxillin) and stress fiber regulators (synaptopodin and RhoA), as well as calpain activation and RhoA inactivation. Our findings reveal a critical role for SHROOM3 in maintaining podocyte integrity and suggest its therapeutic potential in mitigating proteinuric kidney disease progression. Full article
(This article belongs to the Special Issue Cellular and Molecular Basis in Chronic Kidney Disease)
Show Figures

Graphical abstract

12 pages, 1861 KiB  
Article
Growth Factors and the Choroid Plexus: Their Role in Posthemorrhagic Hydrocephalus
by Hong Ye, Wei Miao, Richard F. Keep and Jianming Xiang
Biomedicines 2025, 13(6), 1366; https://doi.org/10.3390/biomedicines13061366 - 3 Jun 2025
Viewed by 526
Abstract
Background/Objectives: Intraventricular hemorrhage (IVH) frequently occurs in premature infants and adults with intracerebral or subarachnoid hemorrhage. It is a major cause of cerebral palsy in premature infants and a risk factor for poor outcome in adult cerebral hemorrhage. Posthemorrhagic hydrocephalus is a common [...] Read more.
Background/Objectives: Intraventricular hemorrhage (IVH) frequently occurs in premature infants and adults with intracerebral or subarachnoid hemorrhage. It is a major cause of cerebral palsy in premature infants and a risk factor for poor outcome in adult cerebral hemorrhage. Posthemorrhagic hydrocephalus is a common complication of IVH and aggravates brain damage. Hemoglobin (Hb), released from the hemorrhage after IVH, has been implicated in IVH-induced hydrocephalus. The aim of the current study was to examine the impact of Hb on the choroid plexuses (CPs) that reside in the ventricular system. Methods: Experiments were performed in freshly isolated CPs, in primary cultures of CP epithelial cells (CPECs), and in the Z310 cell line exposed to Hb with MTT assay, scratch wound healing assay, cell counting/total cell protein measurement and RT-qPCR. Results: We found that Hb significantly induced CPEC proliferation (e.g., 37–65% higher than control by MTT assay and 56% higher than control by cell counting), and upregulated mRNA expression of growth factors in isolated CP tissue (e.g., IGF-2 and NGF were 39% and 79% higher than control by RT-PCR). Hb also remarkably induced mRNA expression of NKCC1 (50%) and claudin-2 (154%), two proteins involved in CSF secretion, in isolated CP tissue. Conclusions: These results indicate that Hb-induced growth factor-mediated CP proliferation and upregulation of CSF secretion-related proteins might contribute to PHH and suggest there may be alternate therapeutic targets for PHH. Full article
Show Figures

Graphical abstract

21 pages, 832 KiB  
Article
Examining the Formation of Resident Support for Tourism: An Integration of Social Exchange Theory and Tolerance Zone Theory
by Xue Qin, Shun Ye, Fuhua Xiang and Chunyan Wang
Sustainability 2025, 17(11), 4921; https://doi.org/10.3390/su17114921 - 27 May 2025
Viewed by 536
Abstract
Resident support toward tourism is often analyzed through the lens of the “benefits vs. costs” paradigm within social exchange theory. However, empirical observations have shown instances where residents remain supportive despite costs outweighing benefits, challenging the conventional social exchange logic. To address this [...] Read more.
Resident support toward tourism is often analyzed through the lens of the “benefits vs. costs” paradigm within social exchange theory. However, empirical observations have shown instances where residents remain supportive despite costs outweighing benefits, challenging the conventional social exchange logic. To address this paradox, this study introduces the Tolerance Zone Theory. A conceptual framework has been constructed wherein the influence of negative tourism factors is contingent upon residents’ level of tolerance. This tolerance is, in turn, molded by the presence of positive outcomes derived from tourism. This framework was tested using survey data gathered from 514 residents in ethnic villages in Guizhou Province, China. The results validate the moderating effect of tolerance, demonstrating that high tolerance can mitigate the impact of negative tourism outcomes on resident support. Theoretical and practical implications are discussed. Full article
Show Figures

Figure 1

12 pages, 3003 KiB  
Article
Locally Freezing Control via Superhydrophobic Patterns on Hydrophilic Substrates
by Dong Song, Jiacheng Zhang, Changsheng Xu, Xiang Wang, Sihan Huang and Pengcheng Ye
J. Mar. Sci. Eng. 2025, 13(6), 1009; https://doi.org/10.3390/jmse13061009 - 22 May 2025
Viewed by 339
Abstract
Ice accumulation on cold surfaces presents significant operational and safety challenges in various fields such as power transmission, aviation, and polar marine transportation. This study investigates the effectiveness of selectively applied superhydrophobic patterns on hydrophilic substrates to locally control freezing behaviors. The freezing [...] Read more.
Ice accumulation on cold surfaces presents significant operational and safety challenges in various fields such as power transmission, aviation, and polar marine transportation. This study investigates the effectiveness of selectively applied superhydrophobic patterns on hydrophilic substrates to locally control freezing behaviors. The freezing dynamics of water droplets impacting surfaces with hybrid wettability patterns were investigated experimentally under cold conditions. The results demonstrate that superhydrophobic surfaces significantly reduce the freezing rate due to decreased contact time and the contact region. By selectively placing superhydrophobic patterns on hydrophilic surfaces, the location of ice formation could be effectively manipulated. The use of multiple superhydrophobic stripes was found to segment the impacting droplets into several parts, implying the ability to selectively avoid ice accumulation at specific areas. Furthermore, experiments identified critical temperature thresholds at which the effectiveness of superhydrophobic stripes diminishes. When the temperature of the substrate is higher than −25 °C, the superhydrophobic stripes can sufficiently divide an impacting droplet leaving no ice at the superhydrophobic region. In the tested temperature range between −25 °C and −40 °C, the ice coverage ratio at the superhydrophobic region increases as temperature decreases, with a maximum value of 25.6 ± 2.33% at −40 °C. Superhydrophobic patterns also exhibited improved deicing efficiency during melting processes, highlighting their potential for robust ice management applications. Full article
(This article belongs to the Special Issue Development of Superhydrophobic Materials for Maritime Applications)
Show Figures

Figure 1

17 pages, 2733 KiB  
Article
Study on the Mechanism and Control Technology of Biodeterioration at the Sanyangzhuang Earthen Site
by Xiang Chang, Yu Ye, Qingwen Ma, Haitao Yan, Zhining Li and Fang Guo
Coatings 2025, 15(5), 617; https://doi.org/10.3390/coatings15050617 - 21 May 2025
Viewed by 438
Abstract
Biodeterioration poses a significant challenge in the conservation of cultural heritage, particularly for earthen sites in humid environments, which are highly susceptible due to their inherent material properties. To address the diverse biological threats affecting such sites, we developed a novel broad-spectrum biocide, [...] Read more.
Biodeterioration poses a significant challenge in the conservation of cultural heritage, particularly for earthen sites in humid environments, which are highly susceptible due to their inherent material properties. To address the diverse biological threats affecting such sites, we developed a novel broad-spectrum biocide, FACA, formulated by combining phenylcarbamoylthiazoles and isothiaquinolones to achieve triple efficacy: antimicrobial, anti-algal, and anti-lichen effects. Laboratory assessments demonstrated FACA’s rapid efficacy in eliminating molds, algae, and lichens. A 12-month field application at the Sanyangzhuang earthen site (Neihuang, Henan) yielded excellent results, confirming long-term protection against biological colonization without recurrence. Crucially, the treatment exhibited no adverse effects on the earthen sites, enabling sustainable coexistence between the heritage site and its surrounding ecosystem. These findings support the applicability of FACA for surface treatment across various humid earthen archeological sites. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

3 pages, 740 KiB  
Correction
Correction: Wen et al. Central Place Theory Based on Mobile Signal Data: The Case of Urban Parks in Beijing and Changsha. Land 2025, 14, 673
by Ning Wen, Hang Yin, Zhanhong Ma, Jiajie Peng, Kai Tang, Deyi Yao, Guangxin Xiang, Liyan Xu, Junyan Ye and Hongbin Yu
Land 2025, 14(5), 1113; https://doi.org/10.3390/land14051113 - 20 May 2025
Viewed by 235
Abstract
Error in Figure [...] Full article
Show Figures

Figure 11

13 pages, 8698 KiB  
Article
Octopus-Inspired Biomimetic Annular Sealing Grooves: Design and Performance Optimization Under Extreme Conditions
by Zhipeng Pan, Shijun Xu, Xiang Guan, Zhihong Wang, Zhenghai Qi, Xiangrui Ye, Jianyang Dong, Yongming Yao and Zhengzhi Mu
Biomimetics 2025, 10(5), 322; https://doi.org/10.3390/biomimetics10050322 - 16 May 2025
Viewed by 569
Abstract
This study introduces an innovative annular sealing groove design inspired by the hierarchical structure of octopus suckers, addressing the limitations of conventional seals under extreme conditions in aerospace engineering. Using finite element analysis, eight bionic configurations with varying groove parameters (width, depth, number) [...] Read more.
This study introduces an innovative annular sealing groove design inspired by the hierarchical structure of octopus suckers, addressing the limitations of conventional seals under extreme conditions in aerospace engineering. Using finite element analysis, eight bionic configurations with varying groove parameters (width, depth, number) were systematically evaluated under cryogenic (−196.25 °C) and high-pressure (2 MPa) scenarios. Results show that the optimized bionic6 configuration (seven grooves, 0.4 mm width, 0.4 mm depth) achieved a 21.71% improvement in average von Mises stress compared to the original design, demonstrating enhanced leakage resistance. Parameter interaction analysis revealed groove number as the most significant factor affecting performance, followed by width, while depth showed minimal influence. The hierarchical groove architecture effectively mimicked the multi-level sealing mechanism of octopus suckers, reducing leakage paths and improving adaptability to irregular surfaces. This work bridges biological inspiration and engineering application, providing a scalable solution for extreme environments. The identified optimal parameters lay a theoretical foundation for designing high-performance seals in aerospace, cryogenic storage, and advanced manufacturing. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Figure 1

Back to TopTop