Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,402)

Search Parameters:
Authors = Xu Chen ORCID = 0000-0002-1006-0926

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6388 KiB  
Article
Spatial–Temporal Hotspot Management of Photovoltaic Modules Based on Fiber Bragg Grating Sensor Arrays
by Haotian Ding, Rui Guo, Huan Xing, Yu Chen, Jiajun He, Junxian Luo, Maojie Chen, Ye Chen, Shaochun Tang and Fei Xu
Sensors 2025, 25(15), 4879; https://doi.org/10.3390/s25154879 (registering DOI) - 7 Aug 2025
Abstract
Against the backdrop of an urgent energy crisis, solar energy has attracted sufficient attention as one of the most inexhaustible and friendly types of environmental energy. Faced with long service and harsh environment, the poor performance ratios of photovoltaic arrays and safety hazards [...] Read more.
Against the backdrop of an urgent energy crisis, solar energy has attracted sufficient attention as one of the most inexhaustible and friendly types of environmental energy. Faced with long service and harsh environment, the poor performance ratios of photovoltaic arrays and safety hazards are frequently boosted worldwide. In particular, the hot spot effect plays a vital role in weakening the power generation performance and reduces the lifetime of photovoltaic (PV) modules. Here, our research reports a spatial–temporal hot spot management system integrated with fiber Bragg grating (FBG) temperature sensor arrays and cooling hydrogels. Through finite element simulations and indoor experiments in laboratory conditions, a superior cooling effect of hydrogels and photoelectric conversion efficiency improvement have been demonstrated. On this basis, field tests were carried out in which the FBG arrays detected the surface temperature of the PV module first, and then a classifier based on an optimized artificial neural network (ANN) recognized hot spots with an accuracy of 99.1%. The implementation of cooling hydrogels as a feedback mechanism achieved a 7.7 °C reduction in temperature, resulting in a 5.6% enhancement in power generation efficiency. The proposed strategy offers valuable insights for conducting predictive maintenance of PV power plants in the case of hot spots. Full article
Show Figures

Figure 1

30 pages, 3534 KiB  
Article
I-YOLOv11n: A Lightweight and Efficient Small Target Detection Framework for UAV Aerial Images
by Yukai Ma, Caiping Xi, Ting Ma, Han Sun, Huiyang Lu, Xiang Xu and Chen Xu
Sensors 2025, 25(15), 4857; https://doi.org/10.3390/s25154857 - 7 Aug 2025
Abstract
UAV small target detection in urban security, disaster monitoring, agricultural inspection, and other fields faces the challenge of increasing accuracy and real-time requirements. However, existing detection algorithms still have weak small target representation ability, extensive computational resource overhead, and poor deployment adaptability. Therefore, [...] Read more.
UAV small target detection in urban security, disaster monitoring, agricultural inspection, and other fields faces the challenge of increasing accuracy and real-time requirements. However, existing detection algorithms still have weak small target representation ability, extensive computational resource overhead, and poor deployment adaptability. Therefore, this paper proposes a lightweight algorithm, I-YOLOv11n, based on YOLOv11n, which is systematically improved in terms of both feature enhancement and structure compression. The RFCBAMConv module that combines deformable convolution and channel–spatial attention is designed to adjust the receptive field and strengthen the edge features dynamically. The multiscale pyramid of STCMSP context and the lightweight Transformer–DyHead hybrid detection head are designed by combining the multiscale hole feature pyramid (DFPC), which realizes the cross-scale semantic modeling and adaptive focusing of the target area. A collaborative lightweight strategy is proposed. Firstly, the semantic discrimination ability of the teacher model for small targets is transferred to guide and protect the subsequent compression process by integrating the mixed knowledge distillation of response alignment, feature imitation, and structure maintenance. Secondly, the LAMP–Taylor channel pruning mechanism is used to compress the model redundancy, mainly to protect the key channels sensitive to shallow small targets. Finally, K-means++ anchor frame optimization based on IoU distance is implemented to adapt the feature structure retained after pruning and the scale distribution of small targets of UAV. While significantly reducing the model size (parameter 3.87 M, calculation 14.7 GFLOPs), the detection accuracy of small targets is effectively maintained and improved. Experiments on VisDrone, AI-TOD, and SODA-A datasets show that the mAP@0.5 and mAP@0.5:0.95 of I-YOLOv11n are 7.1% and 4.9% higher than the benchmark model YOLOv11 n, respectively, while maintaining real-time processing capabilities, verifying its comprehensive advantages in accuracy, light weight, and deployment. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

19 pages, 6784 KiB  
Article
Surface Temperature Assisted State of Charge Estimation for Retired Power Batteries
by Liangyu Xu, Wenxuan Han, Jiawei Dong, Ke Chen, Yuchen Li and Guangchao Geng
Sensors 2025, 25(15), 4863; https://doi.org/10.3390/s25154863 - 7 Aug 2025
Abstract
Accurate State of Charge (SOC) estimation for retired power batteries remains a critical challenge due to their degraded electrochemical properties and heterogeneous aging mechanisms. Traditional methods relying solely on electrical parameters (e.g., voltage and current) exhibit significant errors, as aged batteries experience altered [...] Read more.
Accurate State of Charge (SOC) estimation for retired power batteries remains a critical challenge due to their degraded electrochemical properties and heterogeneous aging mechanisms. Traditional methods relying solely on electrical parameters (e.g., voltage and current) exhibit significant errors, as aged batteries experience altered internal resistance, capacity fade, and uneven heat generation, which distort the relationship between electrical signals and actual SOC. To address these limitations, this study proposes a surface temperature-assisted SOC estimation method, leveraging the distinct thermal characteristics of retired batteries. By employing infrared thermal imaging, key temperature feature regions—the positive/negative tabs and central area—are identified, which exhibit strong correlations with SOC dynamics under varying operational conditions. A Gated Recurrent Unit (GRU) neural network is developed to integrate multi-region temperature data with electrical parameters, capturing spatial–temporal thermal–electrical interactions unique to retired batteries. The model is trained and validated using experimental data collected under constant current discharge conditions, demonstrating superior accuracy compared to conventional methods. Specifically, our method achieves 64.3–68.1% lower RMSE than traditional electrical-parameter-only approaches (V-I inputs) across 0.5 C–2 C discharge rates. Results show that the proposed method reduces SOC estimation errors compared to traditional voltage-based models, achieving RMSE values below 1.04 across all tested rates. This improvement stems from the model’s ability to decode localized heating patterns and their hysteresis effects, which are particularly pronounced in aged batteries. The method’s robustness under high-rate operations highlights its potential for enhancing the reliability of retired battery management systems in secondary applications such as energy storage. Full article
Show Figures

Figure 1

28 pages, 1748 KiB  
Review
Neutrophil Dynamics in Response to Cancer Therapies
by Huazhen Xu, Xiaojun Chen, Yuqing Lu, Nihao Sun, Karis E. Weisgerber, Manzhu Xu and Ren-Yuan Bai
Cancers 2025, 17(15), 2593; https://doi.org/10.3390/cancers17152593 - 7 Aug 2025
Abstract
Neutrophils are increasingly recognized as key players in the tumor microenvironment (TME), displaying functional plasticity that enables them to either promote or inhibit cancer progression. Depending on environmental cues, tumor-associated neutrophils (TANs) may polarize toward antitumor “N1” or protumor “N2” phenotypes, exerting diverse [...] Read more.
Neutrophils are increasingly recognized as key players in the tumor microenvironment (TME), displaying functional plasticity that enables them to either promote or inhibit cancer progression. Depending on environmental cues, tumor-associated neutrophils (TANs) may polarize toward antitumor “N1” or protumor “N2” phenotypes, exerting diverse effects on tumor growth, metastasis, immune modulation, and treatment response. While previous studies have focused on the pathological roles of TANs in cancer, less attention has been given to how cancer therapies themselves influence the behavior of TANs. This review provides a comprehensive synthesis of current knowledge regarding the dynamics of TANs in response to major cancer treatment modalities, including chemotherapy, radiotherapy, cell-based immunotherapies, and oncolytic viral and bacterial therapies. We discuss how these therapies influence TAN recruitment, polarization, and effector functions within the TME, and highlight key molecular regulators involved. By consolidating mechanistic and translational insights, this review emphasizes the potential to therapeutically reprogram TANs to enhance treatment efficacy. A deeper understanding of context-dependent TAN roles will be essential for developing more effective, neutrophil-informed cancer therapies. Full article
(This article belongs to the Special Issue The Role of Neutrophils in Tumor Progression and Metastasis)
Show Figures

Figure 1

20 pages, 3734 KiB  
Review
Microbial Community and Metabolic Pathways in Anaerobic Digestion of Organic Solid Wastes: Progress, Challenges and Prospects
by Jiachang Cao, Chen Zhang, Xiang Li, Xueye Wang, Xiaohu Dai and Ying Xu
Fermentation 2025, 11(8), 457; https://doi.org/10.3390/fermentation11080457 - 7 Aug 2025
Abstract
Anaerobic digestion (AD) is a sustainable and widely adopted technology for the treatment of organic solid wastes (OSWs). However, AD efficiency varies significantly across different substrates, primarily due to differences in the microbial community and metabolic pathways. This review provides a comprehensive summary [...] Read more.
Anaerobic digestion (AD) is a sustainable and widely adopted technology for the treatment of organic solid wastes (OSWs). However, AD efficiency varies significantly across different substrates, primarily due to differences in the microbial community and metabolic pathways. This review provides a comprehensive summary of the AD processes for four types of typical OSWs (i.e., sewage sludge, food waste, livestock manure, and straw), with an emphasis on their universal characteristics across global contexts, focusing mainly on the electron transfer mechanisms, essential microbial communities, and key metabolic pathways. Special attention was given to the mechanisms by which substrate-specific structural differences influence anaerobic digestion efficiency, with a focused analysis and discussion on how different components affect microbial communities and metabolic pathways. This study concluded that the hydrogenotrophic methanogenesis pathway, TCA cycle, and the Wood–Ljungdahl pathway serve as critical breakthrough points for enhancing methane production potential. This research not only provides a theoretical foundation for optimizing AD efficiency, but also offers crucial scientific insights for resource recovery and energy utilization of OSWs, making significant contributions to advancing sustainable waste management practices. Full article
(This article belongs to the Special Issue Feature Review Papers in Industrial Fermentation, 2nd Edition)
Show Figures

Figure 1

19 pages, 2805 KiB  
Article
An Energy System Modeling Approach for Power Transformer Oil Temperature Prediction Based on CEEMD and Robust Deep Ensemble RVFL
by Yan Xu, Haohao Li, Xianyu Meng, Jialei Chen, Xinyu Zhang and Tian Peng
Processes 2025, 13(8), 2487; https://doi.org/10.3390/pr13082487 - 6 Aug 2025
Abstract
Accurate prediction of transformer oil temperature is crucial for load optimization scheduling and timely early warning of thermal faults in power transformers. This paper proposes a transformer oil temperature prediction method based on Complementary Ensemble Empirical Mode Decomposition (CEEMD), Outlier-Robust Ensemble Deep Random [...] Read more.
Accurate prediction of transformer oil temperature is crucial for load optimization scheduling and timely early warning of thermal faults in power transformers. This paper proposes a transformer oil temperature prediction method based on Complementary Ensemble Empirical Mode Decomposition (CEEMD), Outlier-Robust Ensemble Deep Random Vector Functional Link Network (ORedRVFL), and error correction. CEEMD is used to decompose the oil temperature data into multiple subsequences, enhancing the regularity and predictability of the data. Regularization and norm improvements are introduced to edRVFL to obtain a more robust ORedRVFL model. The Tent initialization-based Differential Evolution algorithm (TDE) is employed to optimize the model parameters and predict each subsequence. Finally, error correction is applied to the prediction results. Taking the main transformer of a hydropower station in Yunnan, China as an example, the experimental results show that the proposed method improves the prediction accuracy by 5.05% and 4.13% in winter and summer oil temperature predictions, respectively. Moreover, the model’s degradation is significantly reduced when random noise is added, which verifies its robustness. This method provides an efficient and accurate solution for transformer oil temperature prediction. Full article
Show Figures

Figure 1

20 pages, 5638 KiB  
Article
Influence of Heat Treatment on Precipitate and Microstructure of 38CrMoAl Steel
by Guofang Xu, Shiheng Liang, Bo Chen, Jiangtao Chen, Yabing Zhang, Xiaotan Zuo, Zihan Li, Bo Song and Wei Liu
Materials 2025, 18(15), 3703; https://doi.org/10.3390/ma18153703 - 6 Aug 2025
Abstract
To address the central cracking problem in continuous casting slabs of 38CrMoAl steel, high-temperature tensile tests were performed using a Gleeble-3800 thermal simulator to characterize the hot ductility of the steel within the temperature range of 600–1200 °C. The phase transformation behavior was [...] Read more.
To address the central cracking problem in continuous casting slabs of 38CrMoAl steel, high-temperature tensile tests were performed using a Gleeble-3800 thermal simulator to characterize the hot ductility of the steel within the temperature range of 600–1200 °C. The phase transformation behavior was computationally analyzed via the Thermo-Calc software, while the microstructure, fracture morphology, and precipitate characteristics were systematically investigated using a metallographic microscope (MM), a field-emission scanning electron microscope (FE-SEM), and transmission electron microscopy (TEM). Additionally, the effects of different holding times and cooling rates on the microstructure and precipitates of 38CrMoAl steel were also studied. The results show that the third brittle temperature region of 38CrMoAl steel is 645–1009 °C, and the fracture mechanisms can be classified into three types: (I) in the α single-phase region, the thickness of intergranular proeutectoid ferrite increases with rising temperature, leading to reduced hot ductility; (II) in the γ single-phase region, the average size of precipitates increases while the number density decreases with increasing temperature, thereby improving hot ductility; and (III) in the α + γ two-phase region, the precipitation of proeutectoid ferrite promotes crack propagation and the dense distribution of precipitates at grain boundaries causes stress concentration, further deteriorating hot ductility. Heat treatment experiments indicate that the microstructures of the specimen transformed under water cooling, air cooling, and furnace cooling conditions as follows: martensite + proeutectoid ferrite → bainite + ferrite → ferrite. The average size of precipitates first decreased, then increased, and finally decreased again with increasing holding time, while the number density exhibited the opposite trend. Therefore, when the holding time was the same, reducing the cooling rate could increase the average size of the precipitates and decrease their number density, thereby improving the hot ductility of 38CrMoAl steel. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, 3rd Edition)
Show Figures

Figure 1

23 pages, 12563 KiB  
Article
Optimization of Grouser–Track Structural Parameters for Enhanced Tractive Performance in Unmanned Amphibious Tracked Vehicles
by Yaoyao Chen, Xiaojun Xu, Wenhao Wang, Xue Gao and Congnan Yang
Actuators 2025, 14(8), 390; https://doi.org/10.3390/act14080390 - 6 Aug 2025
Abstract
This study focuses on optimizing track and grouser structural parameters to enhance UATV drawbar pull, particularly under soft soil conditions. A numerical soil thrust model for single-track shoes was developed based on track–soil interaction mechanics, revealing distinct mechanistic roles: track structural parameters (length/width) [...] Read more.
This study focuses on optimizing track and grouser structural parameters to enhance UATV drawbar pull, particularly under soft soil conditions. A numerical soil thrust model for single-track shoes was developed based on track–soil interaction mechanics, revealing distinct mechanistic roles: track structural parameters (length/width) govern pressure–sinkage relationships at the track base, while grouser structural parameters (height, spacing, V-shaped angle) dominate shear stress–displacement dynamics on grouser shear planes. A novel DEM-MBD coupling simulation framework was established through soil parameter calibration and multi-body dynamics modeling, demonstrating that soil thrust increases with grouser height and V-shaped angle, but decreases with spacing, with grouser height exhibiting the highest sensitivity. A soil bin test validated the numerical model’s accuracy and the coupling method’s efficacy. Parametric optimization via the Whale Optimization Algorithm (WOA) achieved a 55.86% increase in drawbar pull, 40.38% reduction in ground contact pressure and 57.33% improvement in maximum gradability. These advancements substantially improve the tractive performance of UATVs in soft beach terrains. The proposed methodology provides a systematic framework for amphibious vehicle design, integrating numerical modeling, high-fidelity simulation, and experimental validation. Full article
Show Figures

Figure 1

20 pages, 1414 KiB  
Article
Awareness, Preference, and Acceptance of HPV Vaccine and Related Influencing Factors Among Guardians of Adolescent Girls in China: A Health Belief Model-Based Cross-Sectional Study
by Shuhan Zheng, Xuan Deng, Li Li, Feng Luo, Hanqing He, Ying Wang, Xiaoping Xu, Shenyu Wang and Yingping Chen
Vaccines 2025, 13(8), 840; https://doi.org/10.3390/vaccines13080840 - 6 Aug 2025
Abstract
Background: Cervical cancer poses a threat to the health of women globally. Adolescent girls are the primary target population for HPV vaccination, and guardians’ attitude towards the HPV vaccine plays a significant role in determining the vaccination status among adolescent girls. Objectives: This [...] Read more.
Background: Cervical cancer poses a threat to the health of women globally. Adolescent girls are the primary target population for HPV vaccination, and guardians’ attitude towards the HPV vaccine plays a significant role in determining the vaccination status among adolescent girls. Objectives: This study aimed to explore the factors influencing guardians’ HPV vaccine acceptance for their girls and provide clues for the development of health intervention strategies. Methods: Combining the health belief model as a theoretical framework, a questionnaire-based survey was conducted. A total of 2157 adolescent girls and their guardians were recruited. The multivariable logistic model was applied to explore associated factors. Results: The guardians had a high HPV vaccine acceptance rate (86.7%) for their girls, and they demonstrated a relatively good level of awareness regarding HPV and HPV vaccines. Factors influencing guardians’ HPV vaccine acceptance for girls included guardians’ education background (OR = 0.57, 95%CI = 0.37–0.87), family income (OR = 1.94, 95%CI = 1.14–3.32), risk of HPV infection (OR = 3.15, 95%CI = 1.40–7.10) or importance of the HPV vaccine for their girls (OR = 6.70, 95%CI = 1.61–27.83), vaccination status surrounding them (OR = 2.03, 95%CI = 1.41–2.92), awareness of negative information about HPV vaccines (OR = 0.59, 95%CI = 0.43–0.82), and recommendations from medical staff (OR = 2.32, 95%CI = 1.65–3.25). Also, guardians preferred to get digital information on vaccines via government or CDC platforms, WeChat platforms, and medical knowledge platforms. Conclusions: Though HPV vaccine willingness was high among Chinese guardians, they preferred to vaccinate their daughters at the age of 17–18 years, later than WHO’s recommended optimal age period (9–14 years old), coupled with safety concerns. Future work should be conducted based on these findings to explore digital intervention effects on girls’ vaccination compliance. Full article
(This article belongs to the Special Issue Prevention of Human Papillomavirus (HPV) and Vaccination)
Show Figures

Figure 1

22 pages, 6201 KiB  
Article
SOAM Block: A Scale–Orientation-Aware Module for Efficient Object Detection in Remote Sensing Imagery
by Yi Chen, Zhidong Wang, Zhipeng Xiong, Yufeng Zhang and Xinqi Xu
Symmetry 2025, 17(8), 1251; https://doi.org/10.3390/sym17081251 - 6 Aug 2025
Abstract
Object detection in remote sensing imagery is critical in environmental monitoring, urban planning, and land resource management. However, the task remains challenging due to significant scale variations, arbitrary object orientations, and complex background clutter. To address these issues, we propose a novel orientation [...] Read more.
Object detection in remote sensing imagery is critical in environmental monitoring, urban planning, and land resource management. However, the task remains challenging due to significant scale variations, arbitrary object orientations, and complex background clutter. To address these issues, we propose a novel orientation module (SOAM Block) that jointly models object scale and directional features while exploiting geometric symmetry inherent in many remote sensing targets. The SOAM Block is constructed upon a lightweight and efficient Adaptive Multi-Scale (AMS) Module, which utilizes a symmetric arrangement of parallel depth-wise convolutional branches with varied kernel sizes to extract fine-grained multi-scale features without dilation, thereby preserving local context and enhancing scale adaptability. In addition, a Strip-based Context Attention (SCA) mechanism is introduced to model long-range spatial dependencies, leveraging horizontal and vertical 1D strip convolutions in a directionally symmetric fashion. This design captures spatial correlations between distant regions and reinforces semantic consistency in cluttered scenes. Importantly, this work is the first to explicitly analyze the coupling between object scale and orientation in remote sensing imagery. The proposed method addresses the limitations of fixed receptive fields in capturing symmetric directional cues of large-scale objects. Extensive experiments are conducted on two widely used benchmarks—DOTA and HRSC2016—both of which exhibit significant scale variations and orientation diversity. Results demonstrate that our approach achieves superior detection accuracy with fewer parameters and lower computational overhead compared to state-of-the-art methods. The proposed SOAM Block thus offers a robust, scalable, and symmetry-aware solution for high-precision object detection in complex aerial scenes. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

35 pages, 8516 KiB  
Article
Study on Stress Monitoring and Risk Early Warning of Flexible Mattress Deployment in Deep-Water Sharp Bend Reaches
by Chu Zhang, Ping Li, Zebang Cui, Kai Wu, Tianyu Chen, Zhenjia Tian, Jianxin Hao and Sudong Xu
Water 2025, 17(15), 2333; https://doi.org/10.3390/w17152333 - 6 Aug 2025
Abstract
This study addresses the complex challenges associated with flexible mattress (soft mattress) installation in the sharply curved and deep-water sections of the Yangtze River, particularly in the Yaozui revetment reconstruction project. Under extreme hydrodynamic conditions—water depths exceeding 30 m and velocities over 2.5 [...] Read more.
This study addresses the complex challenges associated with flexible mattress (soft mattress) installation in the sharply curved and deep-water sections of the Yangtze River, particularly in the Yaozui revetment reconstruction project. Under extreme hydrodynamic conditions—water depths exceeding 30 m and velocities over 2.5 m/s—the risk of structural failures such as displacement, flipping, or tearing of the mattress becomes significant. To improve construction safety and stability, the study integrates numerical modeling and on-site strain monitoring to analyze the mechanical response of flexible mattresses during deployment. A three-dimensional finite element model based on the catenary theory was developed to simulate stress distributions under varying flow velocities and angles, revealing stress concentrations at the mattress’s upper edge and reinforcement junctions. Concurrently, a real-time monitoring system using high-precision strain sensors was deployed on critical shipboard components, with collected data analyzed through a remote IoT platform. The results demonstrate strong correlations between mattress strain, flow velocity, and water depth, enabling the identification of high-risk operational thresholds. The proposed monitoring and early-warning framework offers a practical solution for managing construction risks in extreme riverine environments and contributes to the advancement of intelligent construction management for underwater revetment works. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

18 pages, 2839 KiB  
Article
Detection of Maize Pathogenic Fungal Spores Based on Deep Learning
by Yijie Ren, Ying Xu, Huilin Tian, Qian Zhang, Mingxiu Yang, Rongsheng Zhu, Dawei Xin, Qingshan Chen, Qiaorong Wei and Shuang Song
Agriculture 2025, 15(15), 1689; https://doi.org/10.3390/agriculture15151689 - 5 Aug 2025
Abstract
Timely detection of pathogen spores is fundamental to ensuring early intervention and reducing the spread of corn diseases, like northern corn leaf blight, corn head smut, and corn rust. Traditional spore detection methods struggle to identify spore-level targets within complex backgrounds. To improve [...] Read more.
Timely detection of pathogen spores is fundamental to ensuring early intervention and reducing the spread of corn diseases, like northern corn leaf blight, corn head smut, and corn rust. Traditional spore detection methods struggle to identify spore-level targets within complex backgrounds. To improve the recognition accuracy of various maize disease spores, this study introduced the YOLOv8s-SPM model by incorporating the space-to-depth and convolution (SPD-Conv) layers, the Partial Self-Attention (PSA) mechanism, and Minimum Point Distance Intersection over Union (MPDIoU) loss function. First, we combined SPD-Conv layers into the Backbone of the YOLOv8s to enhance recognition performance on small targets and low-resolution images. To improve computational efficiency, the PSA mechanism was incorporated within the Neck layer of the network. Finally, MPDIoU loss function was applied to refine the localization performance of bounding boxes. The results revealed that the YOLOv8s-SPM model achieved 98.9% accuracy on the mixed spore dataset. Relative to the baseline YOLOv8s, the YOLOv8s-SPM model yielded a 1.4% gain in accuracy. The improved model significantly improved spore detection accuracy and demonstrated superior performance in recognizing diverse spore types under complex background conditions. It met the demands for high-precision spore detection and filled a gap in intelligent spore recognition for maize, offering an effective starting point and practical path for future research in this field. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

18 pages, 3342 KiB  
Article
Sphingolipid Metabolism Remodels Immunity and Metabolic Network in the Muscle of Female Chinese Mitten Crab (Eriocheir sinensis)
by Miaomiao Xue, Changyou Song, Hongxia Li, Jiyan He, Jianxiang Chen, Changxin Kong, Xiaowei Li, Hang Wang, Jie He and Pao Xu
Int. J. Mol. Sci. 2025, 26(15), 7562; https://doi.org/10.3390/ijms26157562 - 5 Aug 2025
Abstract
Numerous studies have demonstrated the positive effects of formulated feeds on gonadal and hepatopancreatic development of Eriocheir sinensis. However, there are limited studies on the effects of formulated feeds on the immune homeostasis and metabolism of muscle tissue in E. sinensis during [...] Read more.
Numerous studies have demonstrated the positive effects of formulated feeds on gonadal and hepatopancreatic development of Eriocheir sinensis. However, there are limited studies on the effects of formulated feeds on the immune homeostasis and metabolism of muscle tissue in E. sinensis during the fattening period. Therefore, this study used metabolomic and lipidomic to systematically analyze the effects of formulated diets on muscle metabolism in female E. sinensis. The results indicate that the formulated feeds improved immune performance by inhibiting inflammatory responses, apoptosis and autophagy. In addition, the feed promoted amino acid metabolism and protein synthesis while decreasing muscle fatty acid metabolism. Metabolomic analysis reveal that pyrimidine metabolism is involved in the regulation of muscle physiological health in fattening female crabs. Lipidomic analysis revealed that the formulated feeds play a role in muscle immune homeostasis, amino acid and fatty acid metabolism by regulating the level of ceramide (Cer (d18:1/22:0)) in sphingolipid metabolism. Through subnetwork analysis, the functional interactions of sphingolipid metabolism with the pathways of sphingolipid signaling, apoptosis regulation, inflammatory response and lipid dynamic homeostasis were identified, which further defined the important role of sphingolipid metabolism in the regulation of muscle physiological health and metabolic homeostasis was further identified. In summary, the formulated feeds effectively promote immune homeostasis and metabolism in the muscle of female E. sinensis during the fattening period. These findings provide a solid theoretical foundation for feed formulation optimization and application in fattening practices. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

14 pages, 1536 KiB  
Article
Control Strategy of Multiple Battery Energy Storage Stations for Power Grid Peak Shaving
by Peiyu Chen, Wenqing Cui, Jingan Shang, Bin Xu, Chao Li and Danyang Lun
Appl. Sci. 2025, 15(15), 8656; https://doi.org/10.3390/app15158656 - 5 Aug 2025
Viewed by 13
Abstract
In order to achieve the goals of carbon neutrality, large-scale storage of renewable energy sources has been integrated into the power grid. Under these circumstances, the power grid faces the challenge of peak shaving. Therefore, this paper proposes a coordinated variable-power control strategy [...] Read more.
In order to achieve the goals of carbon neutrality, large-scale storage of renewable energy sources has been integrated into the power grid. Under these circumstances, the power grid faces the challenge of peak shaving. Therefore, this paper proposes a coordinated variable-power control strategy for multiple battery energy storage stations (BESSs), improving the performance of peak shaving. Firstly, the strategy involves constructing an optimization model incorporating load forecasting, capacity constraints, and security indices to design a coordination mechanism tracking the target load band with the equivalent power. Secondly, it establishes a quantitative evaluation system using metrics such as peak–valley difference and load standard deviation. Comparison based on typical daily cases shows that, compared with the constant power strategy, the coordinated variable-power control strategy has a more obvious and comprehensive improvement in overall peak-shaving effects. Furthermore, it employs a “dynamic dispatch of multiple BESS” mode, effectively mitigating the risks and flexibility issues associated with single BESSs. This strategy provides a reliable new approach for large-scale energy storage to participate in high-precision peaking. Full article
Show Figures

Figure 1

22 pages, 6187 KiB  
Article
Device Modeling Method for the Entire Process of Energy-Saving Retrofit of a Refrigeration Plant
by Xuanru Xu, Lun Zhang, Jun Chen, Qingbin Lin and Junjie Chen
Energies 2025, 18(15), 4147; https://doi.org/10.3390/en18154147 - 5 Aug 2025
Viewed by 26
Abstract
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the [...] Read more.
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the equipment within the chiller plants of central air-conditioning systems. Traditional modeling approaches have been static and have focused on modeling within narrow time frames when a certain amount of equipment operating data has accumulated, thus prioritizing the precision of the model itself while overlooking the fact that energy-saving retrofits are a long-term process. This study proposes a modeling scheme for the equipment within chiller plants throughout the energy-saving retrofit process. Based on the differences in the amount of available operating data for the equipment and the progress of retrofit implementation, the retrofit process was divided into three stages, each employing different modeling techniques and ensuring smooth transitions between the stages. The equipment within the chiller plants is categorized into two types based on the clarity of their operating characteristics, and two modeling schemes are proposed accordingly. Based on the proposed modeling scheme, chillers and chilled-water pumps were selected to represent the two types of equipment. Real operating data from actual retrofit projects was used to model the equipment and evaluate the accuracy of the model predictions. The results indicate that the models established by the proposed modeling scheme exhibit good accuracy at each stage of the retrofit, with the coefficients of variation (CV) remaining below 6.88%. Furthermore, the prediction accuracy improved as the retrofitting process progressed. The modeling scheme performs better on equipment with simpler and clearer operating characteristics, with a CV as low as 0.67% during normal operation stages. This underscores the potential application of the proposed modeling scheme throughout the energy-saving retrofit process and provides a model foundation for the subsequent optimization of the refrigeration system. Full article
Show Figures

Figure 1

Back to TopTop