Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Authors = Muhammad Ajmal Bashir ORCID = 0000-0002-3556-4362

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 655 KiB  
Review
Postharvest Chemical Treatment of Physiologically Induced Stem End Blockage Improves Vase Life and Water Relation of Cut Flowers
by Ayesha Manzoor, Muhammad Ajmal Bashir, Muhammad Saqib Naveed, Muhammad Tanveer Akhtar and Shaista Saeed
Horticulturae 2024, 10(3), 271; https://doi.org/10.3390/horticulturae10030271 - 11 Mar 2024
Cited by 7 | Viewed by 3759
Abstract
Wound-induced xylem occlusion significantly affects the vase life of cut flowers, as oxidative stress and the polymerization of phenolic compounds lead to the deposition of phenolic compounds/secondary metabolites in the stem ends of cut flowers to heal open tissues of freshly cut stems [...] Read more.
Wound-induced xylem occlusion significantly affects the vase life of cut flowers, as oxidative stress and the polymerization of phenolic compounds lead to the deposition of phenolic compounds/secondary metabolites in the stem ends of cut flowers to heal open tissues of freshly cut stems and prevent microbial invasion. However, this deposition causes blockage of vessels, reduced water uptake, and shortened vase life. The physiological plugging of vessels is linked with various oxidative enzymes’ (PAL, PPOs, LACs, and COs) actions taken to increase the synthesis of different compounds, e.g., lignin, suberin, tyloses, gel, and latex, in wounded areas. The use of chemical preservatives/enzyme inhibitors is one of the safest and most efficient techniques employed to minimize vascular blockage and inhibit phenolic compounds deposition and exudation. This review mainly discusses the types of oxidative enzymes, their pathways and biochemistry along with production of secondary metabolites, their biosynthesis, and their modes of action involved in vascular blockage. It also summarizes the different types of preservatives used in postharvest treatments to improve relative water uptake, flower fresh weight, petal protein content, and hydraulic conductance and prolong the vase life of cut flowers during storage. It is hoped that this elaborate study will help researchers in designing new studies concerning occlusion caused by the accumulation of phenolic compounds in vessels. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

30 pages, 12733 KiB  
Article
Impact of Green Energy Transportation Systems on Urban Air Quality: A Predictive Analysis Using Spatiotemporal Deep Learning Techniques
by Rafia Mumtaz, Arslan Amin, Muhammad Ajmal Khan, Muhammad Daud Abdullah Asif, Zahid Anwar and Muhammad Jawad Bashir
Energies 2023, 16(16), 6087; https://doi.org/10.3390/en16166087 - 21 Aug 2023
Cited by 6 | Viewed by 4767
Abstract
Transitioning to green energy transport systems, notably electric vehicles, is crucial to both combat climate change and enhance urban air quality in developing nations. Urban air quality is pivotal, given its impact on health, necessitating accurate pollutant forecasting and emission reduction strategies to [...] Read more.
Transitioning to green energy transport systems, notably electric vehicles, is crucial to both combat climate change and enhance urban air quality in developing nations. Urban air quality is pivotal, given its impact on health, necessitating accurate pollutant forecasting and emission reduction strategies to ensure overall well-being. This study forecasts the influence of green energy transport systems on the air quality in Lahore and Islamabad, Pakistan, while noting the projected surge in electric vehicle adoption from less than 1% to 10% within three years. Predicting the impact of this change involves analyzing data before, during, and after the COVID-19 pandemic. The lockdown led to minimal fossil fuel vehicle usage, resembling a green energy transportation scenario. The novelty of this work is twofold. Firstly, remote sensing data from the Sentinel-5P satellite were utilized to predict air quality index (AQI) trends before, during, and after COVID-19. Secondly, deep learning models, including long short-term memory (LSTM) and bidirectional LSTM, and machine learning models, including decision tree and random forest regression, were utilized to forecast the levels of NO2, SO2, and CO in the atmosphere. Our results demonstrate that implementing green energy transportation systems in urban centers of developing countries can enhance air quality by approximately 98%. Notably, the bidirectional LSTM model outperformed others in predicting NO2 and SO2 concentrations, while the LSTM model excelled in forecasting CO concentration. These results offer valuable insights into predicting air pollution levels and guiding green energy policies to mitigate the adverse health effects of air pollution. Full article
(This article belongs to the Special Issue Challenges and Research Trends of Exhaust Emissions)
Show Figures

Figure 1

13 pages, 2442 KiB  
Article
LED Lighting Effects on Plant Growth and Quality of Pyrus communis L. Propagated In Vitro
by Michela Lupo, Muhammad Ajmal Bashir, Cristian Silvestri, Elena Brunori, Aniello Luca Pica and Valerio Cristofori
Agronomy 2022, 12(10), 2531; https://doi.org/10.3390/agronomy12102531 - 17 Oct 2022
Cited by 14 | Viewed by 6499
Abstract
Fluorescent lights are typically used as light source in indoor horticultural production, including micropropagation. However, light emitting diodes (LEDs) have been recently used for plant growth under controlled environment. Major advantage of LEDs is wavelength specificity, that allows to adequately adjust the spectra [...] Read more.
Fluorescent lights are typically used as light source in indoor horticultural production, including micropropagation. However, light emitting diodes (LEDs) have been recently used for plant growth under controlled environment. Major advantage of LEDs is wavelength specificity, that allows to adequately adjust the spectra according to plant needs. The possibility of using LED as primary light source for the micropropagation of Pyrus communis L. has been investigated in this work. It was proceeded to the optimization of a protocol of micropropagation using a LED lamp as the primary light source inside of the growth chamber with specific wavelengths, to reduce energy consumption and increase the quality of the micro propagated plants. Explants were maintained in a growth chamber and exposed to three different continuous spectrum LED lamps (AP67, NS1, G2) as a primary light source and fluorescent lamps (control) for 4 weeks. At the end of four weeks period, it was proceeded to the morphometric and biochemical analysis. Shoot and leaf growths were more influenced by LED lamps as compared to fluorescent lamps (control) in both cultivars. The results showed that the shoots of William and San Giovanni cultivars showed significant differences in morphological and physiological traits, as well as in chlorophyll, carotenoid, and MDA contents. Highest number of neo-formed shoots and nodes were observed in the plantlets of cv William under AP67 LED followed by NS1 and G2 LED lights respectively as compared to the white light (control), whereas same trend was observed in cv San Giovanni under AP67 LED, but it showed higher shoots and node numbers under control LED lamps as compared to both NS1 and G2. The photosynthetic pigments were significantly decreased in leaves of both cultivars when grown under LEDs as compared to the control fluorescent lamps. Moreover, the AP67 LED light had also significant effects on the protein and MDA contents in the leaves of both cultivars in comparison to all other treatments. This work underlines the importance of the modulation of light sources in relation with different species and varieties, allowing optimizing the proliferation phase and the efficiency of Pyrus communis L. micropropagation protocol. Moreover, this protocol can be improved with further studies to examine the response of the plantlets to the ex-vitro acclimatization because the possibility of using LED light for the micropropagation of pear can be considered as a valuable alternative for its ecologically sustainable production. Full article
Show Figures

Figure 1

10 pages, 946 KiB  
Article
In Vitro Polyploid Induction of Highbush Blueberry through De Novo Shoot Organogenesis
by Federico Marangelli, Vera Pavese, Giuseppe Vaia, Michela Lupo, Muhammad Ajmal Bashir, Valerio Cristofori and Cristian Silvestri
Plants 2022, 11(18), 2349; https://doi.org/10.3390/plants11182349 - 8 Sep 2022
Cited by 22 | Viewed by 3571
Abstract
Polyploid induction is of utmost importance in horticultural plants for the development of new varieties with desirable morphological and physiological traits. Polyploidy may occur naturally due to the formation of unreduced gametes or can be artificially induced by doubling the number of chromosomes [...] Read more.
Polyploid induction is of utmost importance in horticultural plants for the development of new varieties with desirable morphological and physiological traits. Polyploidy may occur naturally due to the formation of unreduced gametes or can be artificially induced by doubling the number of chromosomes in somatic cells. In this experiment, a protocol for in vitro polyploid induction of highbush blueberry (Vaccinium corymbosum L.) leaf tissues was studied by using different concentrations of colchicine and oryzalin. Oryzalin was found to be highly toxic to this species, while the adventitious shoot organogenesis media enriched with 25 and 250 µM colchicine was able to induce polyploidization, with significant differences among the treatments used. Higher concentrations of both antimitotic agents led to the browning and death of the leaf tissues. The polyploids obtained showed several morphological differences when compared with the diploid shoots. Flow cytometry analysis was used to confirm the ploidy level of the regenerated shoots, demonstrating that a total of 15 tetraploids and 34 mixoploids were obtained. The stomatal sizes (length and width) of the tetraploids were larger than those of the diploids, but a reduced stomatal density was observed as compared to the controls. These shoots will be acclimatized and grown until they reach the reproductive phase in order to test their potential appeal as new varieties or their use for breeding and genetic improvement. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

10 pages, 1199 KiB  
Article
Can Ethylene Inhibitors Enhance the Success of Olive Somatic Embryogenesis?
by Muhammad Ajmal Bashir, Cristian Silvestri, Amelia Salimonti, Eddo Rugini, Valerio Cristofori and Samanta Zelasco
Plants 2022, 11(2), 168; https://doi.org/10.3390/plants11020168 - 9 Jan 2022
Cited by 13 | Viewed by 2887
Abstract
An efficient in vitro morphogenesis, specifically through somatic embryogenesis, is considered to be a crucial step for the application of modern biotechnological tools for genetic improvement in olive (Olea europaea L.). The effects of different ethylene inhibitors, i.e., cobalt chloride (CoCl2 [...] Read more.
An efficient in vitro morphogenesis, specifically through somatic embryogenesis, is considered to be a crucial step for the application of modern biotechnological tools for genetic improvement in olive (Olea europaea L.). The effects of different ethylene inhibitors, i.e., cobalt chloride (CoCl2), salicylic acid (SA), and silver nitrate (AgNO3), were reported in the cyclic somatic embryogenesis of olive. Embryogenic callus derived from the olive immature zygotic embryos of the cultivar Leccino, was transferred to the expression ECO medium, supplemented with the ethylene inhibitors at 20 and 40 µM concentrations. Among these, the maximum number of somatic embryos (18.6) was obtained in media containing silver nitrate (40 µM), followed by cobalt chloride (12.2 somatic embryos @ 40 µM) and salicylic acid (40 µM), which produced 8.5 somatic embryos. These compounds interfered on callus traits: white friable embryogenic calli were formed in a medium supplemented with 40 µM cobalt chloride and salicylic acid; in addition, a yellow-compact embryogenic callus appeared at 20 µM of all the tested ethylene inhibitors. The resulting stimulatory action of silver nitrate among all the tested ethylene inhibitors on somatic embryogenesis, clearly demonstrates that our approach can efficiently contribute to the improvement of the current SE protocols for olive. Full article
Show Figures

Figure 1

15 pages, 11420 KiB  
Review
Role of Different Abiotic Factors in Inducing Pre-Harvest Physiological Disorders in Radish (Raphanus sativus)
by Ayesha Manzoor, Muhammad Ajmal Bashir, Muhammad Saqib Naveed, Kaiser Latif Cheema and Mariateresa Cardarelli
Plants 2021, 10(10), 2003; https://doi.org/10.3390/plants10102003 - 24 Sep 2021
Cited by 17 | Viewed by 13267
Abstract
Radish, one of the important root vegetables, is widely grown in the world due to its easy cultivation, short duration, growing habit, and adaptability to various growing conditions. However, it is still extremely difficult to produce good quality radish roots due to its [...] Read more.
Radish, one of the important root vegetables, is widely grown in the world due to its easy cultivation, short duration, growing habit, and adaptability to various growing conditions. However, it is still extremely difficult to produce good quality radish roots due to its vulnerability to different preharvest physiological disorders. Important physiological disorders that significantly reduce the yield and quality of radish are forking, pithiness/sponginess, cracking/splitting, hollowness, and internal browning. Different abiotic factors like moisture stress, temperature fluctuation, growing medium, nutrient imbalance, plant density and harvesting time cause a disturbance in the metabolic activities of root tissues that produce non-marketable roots. Therefore, this review provides a detail insight on the causes, physiology of these disorders, and the management practices to prevent them to produce commercial quality roots. This comprehensive knowledge will not only help the growers, but it will provide relative information for researchers as well to control these disorders through breeding innovations and biotechnological tools. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

16 pages, 6253 KiB  
Article
Phenotypic Characterization and RT-qPCR Analysis of Flower Development in F1 Transgenics of Chrysanthemum × grandiflorum
by Saba Haider, Muhammad Ajmal Bashir, Umer Habib, Yike Gao, Muhammad Rashid Shaheen, Rashid Hussain and Fan Min
Plants 2021, 10(8), 1681; https://doi.org/10.3390/plants10081681 - 16 Aug 2021
Cited by 2 | Viewed by 3733
Abstract
Gene silencing is the epigenetic regulation of any gene in order to prevent gene expression at the transcription or translation levels. Among various gene silencing techniques, RNA silencing (RNAi) is notable gene regulation technique that involves sequence-specific targeting and RNA degradation. However, the [...] Read more.
Gene silencing is the epigenetic regulation of any gene in order to prevent gene expression at the transcription or translation levels. Among various gene silencing techniques, RNA silencing (RNAi) is notable gene regulation technique that involves sequence-specific targeting and RNA degradation. However, the effectiveness of transgene-induced RNAi in F1 generation of chrysanthemum has not been studied yet. In the current study, we used RNAi-constructed CmTFL1 (white-flowered) and CmSVP overexpressed (yellow flowered) transgenic plants of previously conducted two studies for our experiment. Cross hybridization was performed between these intergeneric transgenic and non-transgenic plants of the winter-growing chrysanthemum selection “37” (light pink flowered). The transgene CmSVP was confirmed in F1 hybrids by RT-PCR analysis, whereas hybrids of CmTFL1 parental plants were non-transgenic. Besides this, quantitative real-time PCR (qPCR) was used to explain the molecular mechanism of flower development using reference genes. Intergeneric and interspecific hybrids produced different colored flowers unlike their respective parents. These results suggest that generic traits of CmSVP overexpressed plants can be transferred into F1 generations when crossed with mutant plants. This study will aid in understanding the breeding phenomenon among intergeneric hybrids of chrysanthemum plants at an in vivo level, and such transgenics will also be more suitable for sustainable flower yield under a low-light production system. Full article
(This article belongs to the Collection Advances in Plant Breeding)
Show Figures

Figure 1

14 pages, 4207 KiB  
Article
ISSR-Based Genetic Diversity Assessment of Genus Jasminum L. (Oleaceae) from Pakistan
by Naeem Akhtar, Ishfaq Ahmad Hafiz, Muhammad Qasim Hayat, Daniel Potter, Nadeem Akhtar Abbasi, Umer Habib, Adil Hussain, Hina Hafeez, Muhammad Ajmal Bashir and Saad Imran Malik
Plants 2021, 10(7), 1270; https://doi.org/10.3390/plants10071270 - 22 Jun 2021
Cited by 14 | Viewed by 4355
Abstract
The genus Jasminum L., of the family Oleaceae, includes many species occurring in the wild, or cultivated worldwide. A preliminary investigation based on inter-simple sequence repeats (ISSR) was performed to assess the genetic diversity among 28 accessions, representing nine species of Jasminum from [...] Read more.
The genus Jasminum L., of the family Oleaceae, includes many species occurring in the wild, or cultivated worldwide. A preliminary investigation based on inter-simple sequence repeats (ISSR) was performed to assess the genetic diversity among 28 accessions, representing nine species of Jasminum from various regions, representing a range of altitudes in Pakistan. A total of 21 ISSR primers were used, which produced 570 amplified bands of different sizes, with a mean polymorphic band percentage of 98.26%. The maximum resolving power, polymorphism information content, and index values of the ISSR markers recorded for primers 6, 16, and 19 were 0.40, 12.32, and 24.21, respectively. Based on the data of the ISSR markers, the resulting UPGMA dendrogram with the Jaccard coefficient divided the 28 accessions into two main clades. At the species level, the highest values for Shannon’s information index, polymorphism percentage, effective allele number, Nei’s genetic variations, and genetic unbiased diversity were found in Jasminum sambac L. and J. humile L., while the lowest were observed in J. mesnyi Hance and J. nitidum Skan. Based on Nei’s unbiased genetic identity pairwise population matrix, the maximum identity (0.804) was observed between J. elongatum Willd and J. multiflorum (Burm. f.) Andrews, and the lowest (0.566) between J. nitidum Skan. and J. azoricum L. Molecular variance analysis displayed a genetic variation of 79% among the nine populations. The study was aimed to established genetic diversity in Jasminum species using ISSR markers. With the help of this technique, we were able to establish immense intra- and interspecific diversity across the Jasminum species. Full article
Show Figures

Figure 1

19 pages, 3036 KiB  
Article
Response of Olive Shoots to Salinity Stress Suggests the Involvement of Sulfur Metabolism
by Muhammad Ajmal Bashir, Cristian Silvestri, Eleonora Coppa, Elena Brunori, Valerio Cristofori, Eddo Rugini, Touqeer Ahmad, Ishfaq Ahmad Hafiz, Nadeem Akhtar Abbasi, Muhammad Kausar Nawaz Shah and Stefania Astolfi
Plants 2021, 10(2), 350; https://doi.org/10.3390/plants10020350 - 12 Feb 2021
Cited by 25 | Viewed by 3918
Abstract
Global warming has two dangerous global consequences for agriculture: drought, due to water scarcity, and salinization, due to the prolonged use of water containing high concentrations of salts. Since the global climate is projected to continue to change over this century and beyond, [...] Read more.
Global warming has two dangerous global consequences for agriculture: drought, due to water scarcity, and salinization, due to the prolonged use of water containing high concentrations of salts. Since the global climate is projected to continue to change over this century and beyond, choosing salt-tolerant plants could represent a potential paramount last resort for exploiting the secondary saline soils. Olive is considered moderately resistant to soil salinity as compared to other fruit trees, and in the present study, we investigated the influence of NaCl solutions (ranging from 0 to 200 mM) in a salt-tolerant (cv Canino) and two of its transgenic lines (Canino AT17-1 and Canino AT17-2), overexpressing tobacco osmotin gene, and in a salt-sensitive (Sirole) olive cultivar. After four weeks, most of the shoots of both Canino and Sirole plants showed stunted growth and ultimate leaf drop by exposure to salt-enriched media, contrary to transgenic lines, that did not show injuries and exhibited a normal growth rate. Malondialdehyde (MDA) content was also measured as an indicator of the lipid peroxidation level. To evaluate the role of the S assimilatory pathway in alleviating the adverse effects of salt stress, thiols levels as well as extractable activities of ATP sulfurylase (ATPS) and O-acetyl serine(thiol)lyase (OASTL), the first and the last enzyme of the S assimilation pathway, respectively, have been estimated. The results have clearly depicted that both transgenic lines overexpressing osmotin gene coped with increasing levels of NaCl by the induction of S metabolism, and particularly increase in OASTL activity closely paralleled changes of NaCl concentration. Linear correlation between salt stress and OASTL activity provides evidence that the S assimilation pathway plays a key role in adaptive response of olive plants under salt stress conditions. Full article
Show Figures

Figure 1

16 pages, 740 KiB  
Review
Osmotin: A Cationic Protein Leads to Improve Biotic and Abiotic Stress Tolerance in Plants
by Muhammad Ajmal Bashir, Cristian Silvestri, Touqeer Ahmad, Ishfaq Ahmad Hafiz, Nadeem Akhtar Abbasi, Ayesha Manzoor, Valerio Cristofori and Eddo Rugini
Plants 2020, 9(8), 992; https://doi.org/10.3390/plants9080992 - 4 Aug 2020
Cited by 58 | Viewed by 6933
Abstract
Research on biologically active compounds has been increased in order to improve plant protection against various environmental stresses. Among natural sources, plants are the fundamental material for studying these bioactive compounds as their immune system consists of many peptides, proteins, and hormones. Osmotin [...] Read more.
Research on biologically active compounds has been increased in order to improve plant protection against various environmental stresses. Among natural sources, plants are the fundamental material for studying these bioactive compounds as their immune system consists of many peptides, proteins, and hormones. Osmotin is a multifunctional stress-responsive protein belonging to pathogenesis-related 5 (PR-5) defense-related protein family, which is involved in inducing osmo-tolerance in plants. In this scenario, the accumulation of osmotin initiates abiotic and biotic signal transductions. These proteins work as antifungal agents against a broad range of fungal species by increasing plasma membrane permeability and dissipating the membrane potential of infecting fungi. Therefore, overexpression of tobacco osmotin protein in transgenic plants protects them from different stresses by reducing reactive oxygen species (ROS) production, limiting lipid peroxidation, initiating programmed cell death (PCD), and increasing proline content and scavenging enzyme activity. Other than osmotin, its homologous proteins, osmotin-like proteins (OLPs), also have dual function in plant defense against osmotic stress and have strong antifungal activity. Full article
Show Figures

Figure 1

16 pages, 2285 KiB  
Review
Studies on Colchicine Induced Chromosome Doubling for Enhancement of Quality Traits in Ornamental Plants
by Ayesha Manzoor, Touqeer Ahmad, Muhammad Ajmal Bashir, Ishfaq Ahmad Hafiz and Cristian Silvestri
Plants 2019, 8(7), 194; https://doi.org/10.3390/plants8070194 - 28 Jun 2019
Cited by 143 | Viewed by 33105
Abstract
Polyploidy has the utmost importance in horticulture for the development of new ornamental varieties with desirable morphological traits referring to plant size and vigor, leaf thickness, larger flowers with thicker petals, intense color of leaves and flowers, long lasting flowers, compactness, dwarfness and [...] Read more.
Polyploidy has the utmost importance in horticulture for the development of new ornamental varieties with desirable morphological traits referring to plant size and vigor, leaf thickness, larger flowers with thicker petals, intense color of leaves and flowers, long lasting flowers, compactness, dwarfness and restored fertility. Polyploidy may occur naturally due to the formation of unreduced gametes or can be artificially induced by doubling the number of chromosomes in somatic cells. Usually, natural polyploid plants are unavailable, so polyploidy is induced synthetically with the help of mitotic inhibitors. Colchicine is a widely used mitotic inhibitor for the induction of polyploidy in plants during their cell division by inhibiting the chromosome segregation. Different plant organs like seeds, apical meristems, flower buds, and roots can be used to induce polyploidy through many application methods such as dipping/soaking, dropping or cotton wool. Flow cytometry and chromosome counting, with an observation of morphological and physiological traits are routine procedures for the determination of ploidy level in plants. Full article
Show Figures

Figure 1

Back to TopTop